研究报告

南极莫氏黑粉菌热激蛋白 70 家族启动子鉴定及 活性比较

张聪¹,郭利桃¹,董国云²,李毅³,李新文³,张政兵³,林宇丰³,侯春生^{*1}, 李智敏^{*1}

1 中国农业科学院麻类研究所,湖南 长沙 410205

2 张家界市农业科学技术研究所,湖南 张家界 427000

3 湖南省农业农村厅植保植检站,湖南 长沙 410005

张聪, 郭利桃, 董国云, 李毅, 李新文, 张政兵, 林宇丰, 侯春生, 李智敏. 南极莫氏黑粉菌热激蛋白 70 家族启动子鉴定及活性比较[J]. 微生物学通报, 2024, 51(8): 2934-2946.

ZHANG Cong, GUO Litao, DONG Guoyun, LI Yi, LI Xinwen, ZHANG Zhengbing, LIN Yufeng, HOU Chunsheng, LI Zhimin. Identification and activity comparison of promoters of the heat shock protein 70 family of *Moesziomyces antarcticus*[J]. Microbiology China, 2024, 51(8): 2934-2946.

摘 要:【背景】南极莫氏黑粉菌(Moesziomyces antarcticus)由于能够产生优良的生物表面活性剂和 脂酶而被深入研究,但目前仍缺乏遗传操作相关的基因表达元件。【目的】检测南极莫氏黑粉菌热 激蛋白 70 超家族全部 7 个基因的启动子表达活性,明确该菌中不同热激蛋白 70 家族成员的启动 子活性差异,并筛选出可用于调控南极莫氏黑粉菌基因表达的强启动子。【方法】通过基因组数据 库获得南极莫氏黑粉菌 JCM10317 菌株中 7 个热激蛋白 70 家族成员的基因信息,利用生物信息学 方法进行热激蛋白 70 家族进化分析并预测热激蛋白 70 家族成员的基因信息,利用生物信息学 方法进行热激蛋白 70 家族进化分析并预测热激蛋白 70 家族成员的基因信息,利用生物信息学 方法进行热激蛋白 70 富动子连接增强型绿色荧光蛋白基因的重组表达载体,通过测定阳性转 化子荧光值和荧光显微观察比较不同热激蛋白 70 家族成员启动子的活性差异。【结果】蛋白进化 分析表明 7 个热激蛋白 70 家族成员分别属于不同亚家族,并且各成员启动子中的顺式作用元件种 类和数量也具有明显差异。此外,以 P_{Hsp701}、P_{Hsp703}、P_{Hsp703}、P_{Hsp705}、P_{Hsp705}和 P_{Hsp707}构 建的重组质粒转化菌株 BDH3-1 所获得的阳性转化子平均荧光值分别为对照的 12.8、1.6、2.9、5.8、 4.6、5.0 和 1.5 倍,与荧光显微观察结果一致。【结论】根据生物信息学分析及绿色荧光蛋白表达 结果发现,南极莫氏黑粉菌热激蛋白 70 家族不同成员间的启动子活性差异显著,其中 P_{Hsp701}的活 性最高,是南极莫氏黑粉菌中的强启动子, P_{Hsp704}、P_{Hsp705}、P_{Hsp706}启动子活性太之,可作为备选

资助项目: 湖南省植保植检站植物防疫防控科研项目(HNZB202104); 中国农业科学院科技创新工程项目(ASTIP-IBFC) This work was supported by the Plant Epidemic Prevention and Control Research Project of Plant Protection and Plant Inspection Station of Hunan Province (HNZB202104), and the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences (ASTIP-IBFC).

^{*}Corresponding authors. E-mail: LI Zhimin, lizhimin@caas.cn; HOU Chunsheng, houchunsheng@caas.cn Received: 2023-10-18; Accepted: 2024-01-01; Published online: 2024-01-31

启动子用于后续研究。

关键词: 南极莫氏黑粉菌; 热激蛋白 70 家族; 启动子活性; 遗传转化; 增强型绿色荧光蛋白

Identification and activity comparison of promoters of the heat shock protein 70 family of *Moesziomyces antarcticus*

ZHANG Cong¹, GUO Litao¹, DONG Guoyun², LI Yi³, LI Xinwen³, ZHANG Zhengbing³, LIN Yufeng³, HOU Chunsheng^{*1}, LI Zhimin^{*1}

1 Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, Hunan, China

2 Zhangjiajie Agricultural Science and Technology Research Institute, Zhangjiajie 427000, Hunan, China

3 Plant Protection and Plant Inspection Station, Department of Agriculture and Rural Affairs of Hunan Province,

Changsha 410005, Hunan, China

Abstract: [Background] *Moesziomyces antarcticus* has been extensively studied for its ability to produce excellent biosurfactants and lipases, while little is known about its expression elements for genetic manipulation. [Objective] To measure and compare the promoter activities of all the seven genes of the heat shock protein 70 superfamily in *M. antarcticus*, and screen out the strong promoters that can be used for regulating gene expression in M. antarcticus. [Methods] The gene information on seven members of the heat shock protein 70 family was obtained from the genome database of *M. antarcticus* JCM10317. Bioinformatics tools were used for evolutionary analysis of the heat shock protein 70 family, and key cis-acting elements in the heat shock protein 70 promoter (P_{Hsp70}) sequences were predicted. The recombinant expression vectors were constructed by fusing the promoters of the seven heat shock protein 70 genes with the gene encoding the enhanced green fluorescent protein. The positive transformants were measured for the fluorescence intensity and observed under a fluorescence microscope, on the basis of which the promoter activities of different members of the heat shock protein 70 family were compared. [Results] The seven heat shock protein 70 family members belonged to different subfamilies, and their promoters had different categories and number of cis-acting elements. Moreover, the average fluorescence intensities of transformants with P_{Hsp701}, P_{Hsp702}, P_{Hsp703}, P_{Hsp704}, P_{Hsp705}, P_{Hsp706}, and P_{Hsp707} recombinant plasmids respectively were 12.8, 1.6, 2.9, 5.8, 4.6, 5.0, and 1.5 times of that in the control. The results are consistent with the fluorescence observation results under the microscope. [Conclusion] The results of bioinformatics analysis and enhanced green fluorescent protein expression revealed significant differences in the promoter activity among the heat shock protein 70 family members in M. antarcticus. P_{Hsp701} showed the highest expression activity, serving as a strong promoter in *M. antarcticus.* P_{Hsp704} , P_{Hsp705} , and P_{Hsp706} had lower activities than P_{Hsp701} but could be used as alternative promoters for further research.

Keywords: *Moesziomyces antarcticus*; heat shock protein 70 family; promoter activity; genetic transformation; enhanced green fluorescent protein

南极莫氏黑粉菌(Moesziomyces antarcticus) 属于黑粉菌科(Ustilaginaceae)莫氏黑粉菌属 (Moesziomyces)黑粉菌^[1],该真菌最初在南极洲 万达湖的沉积物中被发现^[2],当前研究表明南 极莫氏黑粉菌分布范围十分广泛,该菌不仅可 以在土壤、湖泊中进行无性繁殖,还能寄生在 甘蔗、水稻、稗草等多种禾本科植物组织内[3-5]。 此外,由于南极莫氏黑粉菌能够合成一些活性 物质和酶类,因而被广泛应用于工业领域,其 中一种重要应用是该菌合成的一种天然生物表 面活性剂甘露糖赤藓糖醇酯(mannosylerythritol lipid, MEL)^[6],相较于人工合成的表面活性剂, MEL 更易降解并且对环境无污染,因此被用于化 妆品和护肤品行业^[7]。南极莫氏黑粉菌还能够 合成一种塑料降解酶^[8-9],其中菌株 JCM10317 产生的塑料降解酶被报道对聚丁二酸丁二醇酯 (polybutylene succinate, PBS)和聚丁二酸-己二 酸丁二酯(polybutylene succinate adipate, PBSA)组 成的农用地膜等可生物降解塑料(biodegradable plastic, BP)具有较强的降解活性^[10]。另外,该菌 产生的脂肪酶 A 和脂肪酶 B 还被应用于生物催 化领域^[11]。作为一种新的微生物资源,南极莫 氏黑粉菌在工业上有着广阔的应用前景,然而 由于目前在该菌中已知可用的基因表达调控元 件较少、遗传操作较难等原因,导致对其基因 功能和遗传改造等研究进展缓慢。

热激蛋白是普遍存在于各类原核和真核生物中的一种分子伴侣蛋白,在调节细胞活性、维持细胞功能方面具有重要作用^[12],其中热激蛋白 70 (heat shock protein 70, Hsp70)是结构最保守且最受关注的热激蛋白^[13],其启动子被证明具有较强的热激活性,因而在真核基因表达研究中被广泛使用^[14]。对从菰黑粉菌(Ustilago esculenta)中筛选的 P_{hsp}、P_{ef}、P_{actin}等 10 个高强度启动子活性进行比较后发现,Hsp70 启动子

(Phy)是表达能力最强的内源启动子^[15]。基于 Hsp70 启动子驱动基因表达能力强、表达相对 稳定的特点,研究人员常将其作为基因高效表 达的调控元件进行基因超表达研究。在菰黑粉 菌^[16]和黑粉病致病菌 Thecaphora thlaspeos^[17] 中分别使用内源 Hsp70 启动子构建了 β-1,4-内 切葡聚糖酶基因 UeEgl1 过表达载体和质粒介 导的 CRISPR/Cas9 系统。此外,有研究证实 Hsp70 启动子具有相对保守的调控机制,甘紫菜 (Porphyra tenera) Hsp70 启动子可调控合成的 GUS 基因在甘紫菜和条斑紫菜(Porphyra yezoensis)中 进行有效表达,而条斑紫菜的 GAPDH 启动子 在甘紫菜中却丧失了启动子活性[18],在球孢白 僵菌(Beauveria bassiana)中也曾使用玉米瘤黑 粉菌(Ustilago maydis) Hsp70 启动子建立遗传 转化体系^[13]。这表明 Hsp70 启动子不仅是内源 强启动子,还可以作为通用启动子在其他物种中 构建异源表达系统。因此,鉴定 Hsp70 启动子 对建立南极莫氏黑粉菌及其他各类真核生物遗 传转化体系和基因功能研究具有重要意义。

尽管 Hsp70 启动子被证明是高效和保守的 启动子元件,然而随着基因组学的发展,发现 Hsp70 是一个基因家族,即在同一个生物体基 因组中有多个 Hsp70 编码基因^[19]。在禾本科植 物玉米中的 Hsp70 家族成员多达 41 个^[20],而在 真菌玉米大斑病菌(Exserohilum turcicum)^[21]和土 曲霉(Aspergillus terreus)^[22]中分别鉴定出 11 个和 9 个 Hsp70 家族成员,它们在蛋白质家族分析 与建模数据库 (protein family analysis and modeling, PFAM)中均被归为 Hsp70 (PF00012), 但迄今为止在高表达 Hsp70 启动子的应用研究 报道中均未指明使用了该家族中哪一个基因的 启动子。由此引出的问题是:在一个物种中, 不同 Hsp70 基因家族成员的启动子序列各异, 而这些启动子是否都具有高表达活性?为解答 这一问题,本文对南极莫氏黑粉菌 Hsp70 基因 家族的全部启动子进行了表达活性研究。首先, 对南极莫氏黑粉菌与其他近缘黑粉菌 Hsp70 家 族成员的氨基酸序列进行比对,用于分析不同 Hsp70 家族成员之间的蛋白进化关系。随后,通 过生物信息学方法分析南极莫氏黑粉菌不同 Hsp70 家族成员启动子中的关键顺式作用元件, 初步预测其启动子活性。在此基础上,从南极莫 氏黑粉菌菌株 BDH3-1 中分别克隆相应的 Hsp70 启动子片段并构建增强型绿色荧光蛋白(enhanced green fluorescent protein, eGFP)表达载体,通过 比较重组质粒表达 eGFP 的荧光强度来分析不 同 Hsp70 家族成员启动子的表达活性差异。

1 材料与方法

1.1 样品

南极莫氏黑粉菌菌株 BDH3-1 和质粒 pMF-Sr*Hsp70-eGFP*均保存于中国农业科学院 麻类研究所。其中 pMF-Sr*Hsp70-eGFP*质粒包 含氨苄青霉素和潮霉素抗性基因以及 *eGFP*基 因,载体构建所用的大肠杆菌(*Escherichia coli*) DH5α 感受态细胞购自北京博迈德基因技术有 限公司。

1.2 培养基

LB 培养基(g/L): 酵母提取物 5.0, 蛋白胨 10.0, 氯化钠 5.0, 固体培养基另加琼脂粉 17.0。 YEPSL 培养基(g/L): 酵母提取物 10.0, 蛋白胨 4.0, 蔗糖 4.0。氨苄青霉素抗性培养基:将氨苄青 霉素母液加入 LB 培养基中,终浓度为 100 µg/mL。 潮霉素抗性培养基:将潮霉素母液加入 YEPSL 培养基中,终浓度为 200 µg/mL。

1.3 主要试剂和仪器

无缝克隆试剂盒,南京诺唯赞生物科技股份有限公司;核糖核酸酶 A 及限制性内切酶 *Afl* II,宝日医生物技术(北京)有限公司;限制 性内切酶 Cla I,赛默飞世尔科技(中国)有限公司; MonAmp[™] 2×MonHI-FI HS Mix 试剂盒, 莫纳生物科技有限公司;T3 Super PCR Mix 试剂 盒,北京擎科生物科技股份有限公司。荧光酶标 仪,TECAN 公司;荧光显微镜,Leica 公司。

1.4 南极莫氏黑粉菌 Hsp70 家族成员蛋白 进化分析

从 JGI 数据库(https://mycocosm.jgi.doe. gov/mycocosm/home)中获取南极莫氏黑粉菌 JCM10317 菌株参考基因组中 7 个 Hsp70 家族 成员的蛋白质序列信息,在NCBI (https://www. ncbi.nlm.nih.gov/)数据库中进行 BLAST 检索以 获得相应蛋白质序列登录号;用同样的方法查 找近缘物种玉米瘤黑粉菌(Ustilago maydis)、玉 米丝轴黑粉菌(Sporisorium reilianum)、蚜虫莫 氏黑粉菌(Moesziomyces aphidis)、黑麦草腥黑粉 菌(Tilletia walkeri)和湖北拟酵母(Pseudozyma hubeiensis)的 Hsp70 家族成员蛋白质序列,将南 极莫氏黑粉菌及近缘物种的 Hsp70 家族成员进 行重命名(表 1)。使用 MEGA 7.0 软件对南极莫 氏黑粉菌及近缘物种的 Hsp70 家族成员的氨基 酸序列进行 neighbor-joining 法聚类分析并构建 系统发育树(Bootstrap 值为1000)。

1.5 南极莫氏黑粉菌 Hsp70 启动子调控元件 分析

根据 JGI 数据库中南极莫氏黑粉菌 JCM10317 菌株的 7 个 *Hsp70* 基因序列选取上 游相应长度序列作为其启动子,将各启动子序 列分别与菌株 BDH3-1 基因组进行比对,从而 得到菌株 BDH3-1 的 7 个 *Hsp70* 启动子序列。 为分析启动子序列特征与表达活性之间的关 系,将获得的 7 个 *Hsp70* 的启动子分别命名为 P_{Hsp701}、P_{Hsp702}、P_{Hsp703}、P_{Hsp704}、P_{Hsp705}、P_{Hsp706}、 P_{Hsp707},用 Plant CARE (http://bioinformatics.psb. ugent.be/webtools/plantcare/html/)启动子在线分

表 1 南极莫氏黑粉菌及近缘物种 Hsp70 家族成员信息

Table 1 The Hsp70 family information of *Moesziomyces antarcticus* and related species

物种名称	氨基酸序列重命名	氨基酸数量	NCBI 登录号
Species name	Amino acid sequence renaming	Amino acid number (aa)	NCBI accession number
Moesziomyces antarcticus	MaHsp70-1	644	XP_014655775.1
	MaHsp70-2	1 084	XP_014658722.1
	MaHsp70-3	574	XP_014654537.1
	MaHsp70-4	619	XP_014655565.1
	MaHsp70-5	942	XP_014657791.1
	MaHsp70-6	673	XP_014658973.1
	MaHsp70-7	1 312	XP_014658668.1
Ustilago maydis	UmHsp70-1	645	XP_011390235.1
	UmHsp70-2	619	XP_011391166.1
	UmHsp70-3	672	XP_011387146.1
	UmHsp70-4	919	XP_011386916.1
	UmHsp70-5	573	XP_011392059.1
	UmHsp70-6	660	XP_011387505.1
Moesziomyces aphidis	MapHsp70-1	556	ETS64348.1
	MapHsp70-2	396	ETS62365.1
	MapHsp70-3	917	ETS61203.1
	MapHsp70-4	915	ETS60751.1
	MapHsp70-5	1 070	ETS61164.1
Tilletia walkeri	TwHsp70-1	648	KAE8206153.1
	TwHsp70-2	629	KAE8268258.1
	TwHsp70-3	620	KAE8211441.1
	TwHsp70-4	790	KAE8266144.1
	TwHsp70-5	921	KAE8266414.1
	TwHsp70-6	694	KAE8211740.1
Pseudozyma hubeiensis	PhHsp70-1	619	XP_012189617.1
	PhHsp70-2	645	XP_012186068.1
	PhHsp70-3	572	XP_012191474.1
	PhHsp70-4	634	XP_012190629.1
	PhHsp70-5	690	XP_012190900.1
	PhHsp70-6	917	XP_012192422.1
	PhHsp70-7	896	XP_012192629.1
Sporisorium reilianum	SrHsp70-1	648	CBQ68406.1
	SrHsp70-2	619	CBQ69252.1
	SrHsp70-3	573	CBQ70135.1
	SrHsp70-4	916	CBQ70325.1
	SrHsp70-5	689	CBQ70371.1
	SrHsp70-6	671	CBQ70616.1
	SrHsp70-7	790	CBQ70961.1

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

析网站对南极莫氏黑粉菌 7个 Hsp70 启动子序列 中的关键顺式作用元件 TATA-box 和 CAAT-box 进行预测分析。

1.6 eGFP 重组表达载体的构建

根据 7 个 *Hsp70* 启动子序列分别设计特异 性引物用于扩增启动子片段(表 2),在引物两端 添加 20 bp 重叠片段用于构建重组质粒。参照 文献[23]的方法制备南极莫氏黑粉菌 BDH3-1 的基因组 DNA 作为 PCR 反应模板,用相应引物 扩增 7 个 *Hsp70* 启动子片段,PCR 反应条件和 体系按照 MonAmp[™] 2×MonHI-FI HS Mix 试剂 盒说明书操作。使用限制性内切酶 *Cla* I 和 *Afl* II 对原质粒 pMF-Sr*Hsp70-eGFP* 进行双酶切,从而获 得去除原有启动子的线性化 pMF-Sr*Hsp70-eGFP* 质粒。

按照无缝克隆试剂盒说明书分别将7个*Hsp70* 启动子片段与双酶切后的 pMF-Sr*Hsp70-eGFP* 质粒片段进行连接,用连接产物转化大肠杆菌 DH5α 感受态细胞,在含氨苄青霉素的LB固 体培养基中37℃过夜培养筛选阳性转化子, 第2天挑选转化子单菌落于含氨苄青霉素的LB 液体培养基中37℃、180 r/min 扩大培养,用 特异性引物 Hsp70-YZF/Hsp70-YZR 对转化子 进行 PCR 检测并测序,PCR 反应条件和体系 按照 T3 Super PCR Mix 试剂盒说明书操作。 将构建成功的重组质粒分别命名为 pMF-Hsp701-eGFP、 pMF-Hsp702-eGFP、 pMF-Hsp705-eGFP、 pMF-Hsp706-eGFP 和 pMF-Hsp707-eGFP。

1.7 eGFP 重组质粒转化南极莫氏黑粉菌

成功构建 7 个 *eGFP* 重组质粒后在冰上解 冻南极莫氏黑粉菌感受态细胞,分别加入 1 μL 浓度为 15 mg/mL 的肝素和 1 μg 重组质粒,

	primers used in this study	
引物	序列	产物大小
Primer	Sequence $(5' \rightarrow 3')$	Product size (bp)
Hsp701-F	ACCATGATTACGCCCTTAAGGTTGGAAGTTGAACCGAGCG	701
Hsp701-R	CCCTTGCTCACCATATCGATGATGGCGATGCTAGATCTTTTG	
Hsp702-F	ACCATGATTACGCCCTTAAGCTTGCAAGAAGTGGGCGAG	509
Hsp702-R	CCCTTGCTCACCATATCGATGGGGGGCAATGTCGAAGC	
Hsp703-F	ACCATGATTACGCCCTTAAGCAAGGTCAGCACCGAAAGG	516
Hsp703-R	<u>CCCTTGCTCACCATATCGAT</u> GATTGTATATGTGTGATATGGGGGGT	
Hsp704-F	ACCATGATTACGCCCTTAAGCGTGAATGCTCGATGTATACGG	738
Hsp704-R	CCCTTGCTCACCATATCGATGATGACGAAGTTTGTTTGTGATG	
Hsp705-F	ACCATGATTACGCCCTTAAGATGACGGCAATGACGAGGG	1 376
Hsp705-R	CCCTTGCTCACCATATCGATGTTTTCGTTTTGGGGGAAGAGTC	
Hsp706-F	ACCATGATTACGCCCTTAAGGCTTTTTGCATTATTAAGCCCC	1 401
Hsp706-R	CCCTTGCTCACCATATCGATGGCTGTGTATGAGATGCGGAG	
Hsp707-F	ACCATGATTACGCCCTTAAGCTCACCAGAGTAAGTACGCCG	1 099
Hsp707-R	CCCTTGCTCACCATATCGATCCAAGTTGGGCGCGC	
Hsp70-YZF	CGGCTCGTATGTTGTGTGGA	
Hsp70-YZR	GCTGAACTTGTGGCCGTTT	

表 2 本研究中所使用的引物

Table 2 The primers used in this study

重叠片段用下划线标出

Overlapping fragments are underlined.

通过聚乙二醇(polyethylene glycol, PEG)介导的 原生质体转化法^[24]对南极莫氏黑粉菌 BDH3-1 感受态细胞进行转化,在含潮霉素的固体 YEPSL培养基中30℃培养3-4d筛选阳性转化 子,为避免挑取假阳性菌落,再次挑取固体培 养基上的阳性菌落并在含潮霉素的液体 YEPSL 培养基中30℃、180 r/min 振荡培养12-16 h 进 行二次筛选。

1.8 eGFP 荧光强度分析

用移液枪吸取二次筛选后的阳性转化子菌 液并转移至含潮霉素的液体 YEPSL 培养基中 30 ℃、180 r/min 重新扩大培养,直至菌液 *OD*₆₀₀ 达到 0.6,取 200 μL 菌液转移至 96 孔板,在荧光 酶标仪激发光 488 nm 和发射光 520 nm 下分别 测定 pMF-*Hsp701- eGFP*-pMF-*Hsp707-eGFP*共 7个重组质粒转化子菌液的荧光值(菌株 BDH3-1 作为对照),每个样品设置 6 个重复,并用 SAS 和 GraphPad Prism 8 软件进行单因素方差分析 和作图。

另外,分别在荧光显微镜下拍摄各转化子 (菌株 BDH3-1 作对照)的原始图像及绿色荧光 图像(保持曝光时间、对比度以及其他参数条件 一致),以比较不同 *Hsp70* 启动子驱动 *eGFP* 荧 光表达强弱^[15]。

2 结果与分析

2.1 南极莫氏黑粉菌 Hsp70 家族蛋白进化 分析结果

从 JGI 数据库中获取南极莫氏黑粉菌 7 个 Hsp70 家族成员的氨基酸序列后,用 MEGA 7.0 软件对该菌和玉米瘤黑粉菌等 5 个近缘物种的 Hsp70 家族成员共同进行 ClustalW 多序列比对 并构建系统发育树(图 1)。蛋白进化分析结果显 示:南极莫氏黑粉菌与近缘物种的 38 个 Hsp70 家族成员共形成了 7 个 group (亚家族),且南极 莫氏黑粉菌的 7 个 Hsp70 家族成员分别在 7 个 group 中,其中 MaHsp70-2、MaHsp70-3、 MaHsp70-5、MaHsp70-7 最终均与同属的蚜虫 莫氏黑粉菌的 Hsp70 家族成员聚在同一分支, 说明相较于其他 4 种黑粉菌来说,这两个物种 亲缘关系最近。Hsp70 家族蛋白进化分析结果 表明同一物种的 Hsp70 家族包含不同的亚家族 成员,尽管这些家族成员之间蛋白序列具有明 显差异,但却与近缘物种中的某些 Hsp70 家族 成员高度同源。

2.2 南极莫氏黑粉菌 Hsp70 启动子调控元件 分析结果

启动子元件是启动子的核心组成部分,具 有调控转录过程的功能,对启动子活性有着关 键的作用^[25]。不同启动子元件具有各自的特异 序列结构特征和功能,其中 TATA-box 和 CAAT-box 是真核生物中普遍存在和关键的启 动子元件^[26]。TATA-box 可以被 RNA 聚合酶识 别,具有控制转录起始的作用;而 CAAT-box 负责控制转录的频率,与 TATA-box 共同影响 编码基因的转录效率。对南极莫氏黑粉菌 7 个 Hsp70 启动子调控元件预测结果显示: PHsp701 中有 4 个 CAAT-box, P_{Hsp702}、P_{Hsp703} 中分别含 有1个CAAT-box 和1个TATA-box, PHSp704中 有 2 个 TATA-box 和 1 个 CAAT-box, P_{Hsp705} 和 PHsp706均含有6个CAAT-box, PHsp707中有2个 CAAT-box。对比7个Hsp70启动子内的关键顺 式作用元件后发现, P_{Hsp702}、P_{Hsp703}和 P_{Hsp707}中 所含顺式作用元件数量较少,而其余4个Hsp70 启动子中都含有3个及3个以上顺式作用元件, 其中 P_{Hsp705} 和 P_{Hsp706} 中所含元件最多, 推测其 驱动基因表达能力也比较强。各启动子序列内 TATA-box 和CAAT-box 元件的分布如图2所示。

图 1 南极莫氏黑粉菌 Hsp70 家族系统发育树

图 2 南极莫氏黑粉菌 Hsp70 启动子内的 TATA-box 和 CAAT-box 分布情况

Figure 2 Distribution of TATA-box and CAAT-box within Moesziomyces antarcticus Hsp70 promoters.

2.3 eGFP 重组质粒转化及转化子筛选

通过表 2 设计的特异性引物分别扩增 7 个 *Hsp70* 启动子片段,片段大小与预期相符(图 3)。 按照无缝克隆试剂盒操作要求,将纯化后的 7 个 *Hsp70* 启动子片段(P_{Hsp701}-P_{Hsp707})分别与线性化 的 pMF-Sr*Hsp70-eGFP* 质粒连接并转化大肠杆 菌 DH5α,对转化子进行 PCR 检测,测序结果 无误,证明已经成功构建出 pMF-*Hsp701eGFP*-pMF-*Hsp707-eGFP* 共 7 个重组质粒。

七个 eGFP 重组质粒构建完成后,提取 7 个 重组质粒并分别转化南极莫氏黑粉菌感受态细 胞,从转化皿中随机挑取 24 个转化子菌落进行 二次筛选,经过二次筛选后大部分转化子菌液均 变浑浊(即为二次筛选的阳性菌落),只有少数阳 性菌落在二次筛选时未浑浊(即为假阳性)。二次 筛选的阳性转化子结果如表 3 所示,不同重组 质粒的转化阳性率为 70.8%–100.0%。推测不同 启动子序列可能对阳性筛选稍有影响。24 个随 机菌落在二次筛选后多数仍为阳性菌落,说明 重组质粒已经成功转入这些细胞中。

2.4 重组质粒转化子荧光值检测和分析

分别测定二次筛选后的阳性转化子菌液 (含重组质粒 pMF-*Hsp701-eGFP*-pMF-*Hsp707-eGFP*)的荧光值(菌株 BDH3-1 作为对照),每个

图 3 南极莫氏黑粉菌 *Hsp70* 启动子 PCR 扩增 片段

Figure 3 PCR amplified fragments of Hsp70 promoters in *Moesziomyces antarcticus*. M: DNA Marker III. 1–7: P_{Hsp701}–P_{Hsp707}.

处理设置 6 次重复。荧光值测定结果如图 4 所示。转入 pMF-Hsp701-eGFP 重组质粒的转化子荧光值最高,平均荧光值达到 CK 的 12.8 倍,转入 pMF-Hsp704-eGFP、pMF-Hsp705-eGFP 和 pMF-Hsp706-eGFP 重组质粒的转化子荧光值较高,平均荧光值分别为 CK 的 5.8、4.6 和 5.0 倍,转入 pMF-Hsp703-eGFP 重组质粒转化子的平均荧光值较低,为 CK 的 2.9 倍,转入 pMF-Hsp702-eGFP 和 pMF-Hsp707-eGFP 重组质粒转化子的平均荧光值最低,仅为 CK 的 1.6 倍和 1.5 倍。使用 SAS 软件对转入不同 eGFP 重

表 3 eGFP 重组质粒转化南极莫氏黑粉菌产生的阳性转化子筛选结果

Table 3 Screening results of positive transformants produced by transforming *Moesziomyces antarcticus* with *eGFP* recombinant plasmids

质粒名称	转化皿中的阳性转化子数量	挑选的阳性转化子数量	二次筛选后的阳性转化子数量	阳性率
Plasmid name	Number of positive colonies	Number of picked	Number of positive colonies for	Positive
	in the screening plate	positive colonies	the second screening	rate (%)
pMF-Hsp701-eGFP	85	24	23	95.8
pMF-Hsp702-eGFP	47	24	21	87.5
pMF-Hsp703-eGFP	54	24	18	75.0
pMF-Hsp704-eGFP	68	24	24	100.0
pMF-Hsp705-eGFP	61	24	22	91.7
pMF-Hsp706-eGFP	49	24	21	87.5
pMF-Hsp707-eGFP	53	24	17	70.8

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

组质粒转化子(菌株 BDH3-1 作为对照)的荧光值 进行单因素方差分析发现:不同 Hsp70 启动子 驱动 eGFP 基因的表达能力存在显著性差异 (P<0.05),其中菌株 BDH3-1 的平均荧光值显著 小于其他 7 个转入 eGFP 重组质粒转化子的荧 光值,而转入 pMF-Hsp701-eGFP 重组质粒的转 化子荧光值最高且显著高于所有处理。方差分 析结果证明了 7 个 Hsp70 启动子均具有转录活 性,且 P_{Hsp701}的活性最高。

为可视化 7 个 Hsp70 启动子驱动 eGFP 基 因表达的效果,进一步判定 7 个 Hsp70 启动子 间的活性差异,在荧光显微镜下直接观察各转 化子荧光强度(图 5)。荧光显微观察结果显示: P_{Hsp701} 驱动 eGFP 基因表达的荧光强度最强, P_{Hsp704}、P_{Hsp705}、P_{Hsp706} 驱动 eGFP 基因表达的

图 4 不同 *eGFP* 表达载体阳性转化子的平均荧 光值 图中误差线表示标准误差;不同小写字母 表示差异显著(P<0.05);每个处理 6 个生物学重复 Figure 4 Mean fluorescence values of positive transformants in different *eGFP* expression vectors. Error lines in the graphs indicate standard errors; Different lowercase letters indicate significant differences (P<0.05); Six biological replicates per treatment.

荧光强度较强, P_{Hsp703} 驱动 eGFP 基因表达的荧 光强度很弱, P_{Hsp702}、P_{Hsp707}和 CK 组未观察到 荧光。荧光显微观察结果与酶标仪测定的荧光 值结果基本相符, 证明 Hsp70 基因家族各个启 动子的表达活性有明显差异, 其中 P_{Hsp701} 是表 达活性最高的启动子。

3 讨论与结论

挖掘高表达活性启动子是进行真菌基因功 能研究和遗传操作的基础, Hsp70 启动子不仅是 表达活性较强的内源启动子,还因其保守的调控 机制被用于构建异源表达系统,早在1985年, 研究人员就曾发现果蝇 Hsp70 启动子在烟草中 仍然具有活性^[27],此后 Hsp70 启动子便作为调 控各类真核生物基因表达的启动子元件被广泛 使用。在球孢白僵菌(Beauveria bassiana)中,使 用玉米瘤黑粉菌Hsp70启动子建立的遗传转化 体系相较于常用的 PgpdA 启动子转化效率提高 了近 60%^[13]; 在罗伯茨绿僵菌(Metarhizium robertsii)中则利用 Hsp70 启动子成功调控 GFP 基因表达^[28]。此外,近些年来 Hsp70 启动子还被 用于构建高效的 CRISPR/Cas9 质粒表达系统^[29], 在稗黑粉菌(Ustilago trichophora)^[30]和大麦坚 黑粉菌(Ustilago hordei)^[31]中均是在 Hsp70 启动 子控制下高效表达了 Cas9 蛋白, 而在黑粉病 致病菌 Thecaphora thlaspeos 中则是通过使用 自身的 Hsp70 启动子成功驱动潮霉素抗性基因表 达^[17]。然而这些研究中均笼统地写某一物种的 "Hsp70 启动子"却并未指明使用了 Hsp70 家族 中哪一个基因的启动子。本研究通过分析和比 较南极莫氏黑粉菌 Hsp70 家族全部基因启动子 的表达活性发现,虽然这些基因在数据库均被 命名为 Hsp70, 但它们的启动子却并非都具有 高转录活性。

图 5 不同 *Hsp70* 启动子构建的 *eGFP* 表达载体阳性转化子的荧光观察结果 Bright: 白光通道下拍 摄; Green: 绿色荧光通道下拍摄; Merged: 所有通道重叠

Figure 5 Fluorescence observation of positive transformants in *eGFP* expression vectors constructed with different *Hsp70* promoters. Bright: Shooting under white light channel; Green: Shooting under green fluorescent channel; Merged: Overlapping all channels.

在 Hsp70 家族成员的蛋白序列演化方面, 通过对南极莫氏黑粉菌与几个近缘黑粉菌 Hsp70 家族共同进行蛋白进化分析后发现同一 物种内 Hsp70 家族各成员之间氨基酸序列差异 较大,可分为不同的亚家族,且该家族各成员 在近缘物种中具有高度保守性。这说明包括南 极莫氏黑粉菌在内的多种黑粉菌的 Hsp70 家族 成员可能在演化地位更早的黑粉菌祖先中已演 化出多个基因,且这些基因可能具有不同功能、 不同活性并且保留至今。而对南极莫氏黑粉菌 Hsp70 家族 7 个启动子中的关键顺式作用元件 分析后发现各启动子内关键顺式作用元件种类 和数量同样具有明显差异,通过进一步检测 eGFP重组质粒转化子荧光值后发现P_{hsp701}具有 较高转录活性,P_{Hsp704}、P_{Hsp705}、P_{Hsp706}转录活 性适中,P_{Hsp703}转录活性较低,P_{Hsp702}和P_{Hsp707} 转录活性极低。因此,结合蛋白演化分析、启 动子序列比对和 eGFP 表达结果可以推测,可 能只有与南极莫氏黑粉菌 MaHsp70-1 聚在同一 分支的其他黑粉菌 Hsp70 启动子才具有高表达 活性。因此,在使用 Hsp70 启动子时需要谨慎, 不宜单纯根据基因名称搜索获得启动子序列, 而更应根据蛋白序列同源性来查找启动子。

本研究揭示了南极莫氏黑粉菌 Hsp70 家族 各个启动子表达活性差异,挖掘出几个有较高 活性的启动子,为南极莫氏黑粉菌的遗传操作 增加了可用的基因表达调控元件。

REFERENCES

- [1] WANG QM, BEGEROW D, GROENEWALD M, LIU XZ, THEELEN B, BAI FY, BOEKHOUT T. Multigene phylogeny and taxonomic revision of yeasts and related fungi in the *Ustilaginomycotina*[J]. Studies in Mycology, 2015, 81: 55-83.
- [2] GOTO S, SUGIYAMA J, IIZUKA H. A taxonomic study of Antarctic yeasts[J]. Mycologia, 1969, 61(4): 748-774.
- [3] KRUSE J, DOEHLEMANN G, KEMEN E, THINES M. Asexual and sexual morphs of *Moesziomyces* revisited[J]. IMA Fungus, 2017, 8(1): 117-129.
- [4] LI YM, SHIVAS RG, LI BJ, CAI L. Diversity of Moesziomyces (Ustilaginales, Ustilaginomycotina) on Echinochloa and Leersia (Poaceae)[J]. MycoKeys, 2019, 52: 1-16.
- [5] KHUNNAMWONG P, JINDAMORAKOT S, LIMTONG S. Endophytic yeast diversity in leaf tissue of rice, corn and sugarcane cultivated in Thailand assessed by a culture-dependent approach[J]. Fungal Biology, 2018, 122(8): 785-799.
- [6] SAIKA A, KOIKE H, YARIMIZU T, WATANABE T, KITAMOTO H, MORITA T. Deficiency of biodegradable plastic-degrading enzyme production in a gene-deletion mutant of phyllosphere yeast, *Pseudozyma antarctica* defective in mannosylerythritol

lipid biosynthesis[J]. AMB Express, 2019, 9(1): 100.

- [7] YAMAMOTO S, MORITA T, FUKUOKA T, IMURA T, YANAGIDANI S, SOGABE A, KITAMOTO D, KITAGAWA M. The moisturizing effects of glycolipid biosurfactants, mannosylerythritol lipids, on human skin[J]. Journal of Oleo Science, 2012, 61(7): 407-412.
- [8] TANAKA E, KOITABASHI M, KITAMOTO H. A teleomorph of the ustilaginalean yeast *Moesziomyces* antarcticus on barnyardgrass in Japan provides bioresources that degrade biodegradable plastics[J]. Antonie van Leeuwenhoek, 2019, 112(4): 599-614.
- [9] WATANABE T, SHINOZAKI Y, YOSHIDA S, KOITABASHI M, SAMESHIMA-YAMASHITA Y, FUJII T, FUKUOKA T, KITAMOTO HK. Xylose induces the phyllosphere yeast *Pseudozyma antarctica* to produce a cutinase-like enzyme which efficiently degrades biodegradable plastics[J]. Journal of Bioscience and Bioengineering, 2014, 117(3): 325-329.
- [10] SHINOZAKI Y, MORITA T, CAO XH, YOSHIDA S, KOITABASHI M, WATANABE T, SUZUKI K, SAMESHIMA-YAMASHITA Y, NAKAJIMA-KAMBE T, FUJII T, KITAMOTO HK. Biodegradable plastic-degrading enzyme from *Pseudozyma antarctica*: cloning, sequencing, and characterization[J]. Applied Microbiology and Biotechnology, 2013, 97(7): 2951-2959.
- [11] DOMÍNGUEZ de MARÍA P, CARBONI-OERLEMANS C, TUIN B, BARGEMAN G, van der MEER A, van GEMERT R. Biotechnological applications of *Candida antarctica* lipase A: state-of-the-art[J]. Journal of Molecular Catalysis B: Enzymatic, 2005, 37(1/2/3/4/5/6): 36-46.
- [12] ALMALKI AFY, ARABDIN M, KHAN A. The role of heat shock proteins in cellular homeostasis and cell survival[J]. Cureus, 2021, 13(9): e18316.
- [13] 关兵兵.玉米黑粉菌热激蛋白启动子介导的白僵菌 转化效率评价[D].哈尔滨:哈尔滨师范大学硕士学 位论文, 2014.
 GUAN BB. Evaluation of *Beauveria bassiana* transformation efficiency mediated by *Ustilago maydis* heat shock protein promoter[D]. Harbin: Master's Thesis of Harbin Normal University, 2014 (in Chinese).
- [14] 王林玲,林海静,王钰,李治,周泽扬. 家蚕热休克 蛋白 70 家族基因的染色体定位及表达特征[J]. 蚕业 科学, 2012, 38(4): 617-623.
 WANG LL, LIN HJ, WANG Y, LI Z, ZHOU ZY. Chromosomal localization and expressional profile of heat shock protein 70 family genes in silkworm,

Bombyx mori[J]. Science of Sericulture, 2012, 38(4): 617-623 (in Chinese).

[15] 卞加慧, 胡映莉, 汤近天, 夏文强, 叶子弘, 张雅芬. 菰黑粉菌遗传转化体系启动子的筛选[J]. 中国计量 大学学报, 2022, 33(1): 106-115. BIAN JH, HU YL, TANG JT, XIA WQ, YE ZH, ZHANG

YF. Screening promoters for the genetic transformation of *Ustilago esculenta*[J]. Journal of China University of Metrology, 2022, 33(1): 106-115 (in Chinese).

- [16] ZHANG ZJ, BIAN JH, ZHANG YF, XIA WQ, LI SY, YE ZH. An endoglucanase secreted by Ustilago esculenta promotes fungal proliferation[J]. Journal of Fungi, 2022, 8(10): 1050.
- [17] PLÜCKER L, BÖSCH K, GEIßL L, HOFFMANN P, GÖHRE V. Genetic manipulation of the *Brassicaceae* smut fungus *Thecaphora thlaspeos*[J]. Journal of Fungi, 2021, 7(1): 38.
- [18] SON SH, AHN JW, UJI T, CHOI DW, PARK EJ, HWANG MS, LIU JR, CHOI D, MIKAMI K, JEONG WJ. Development of an expression system using the heat shock protein 70 promoter in the red macroalga, *Porphyra tenera*[J]. Journal of Applied Phycology, 2012, 24(1): 79-87.
- [19] BOORSTEIN WR, ZIEGELHOFFER T, CRAIG EA. Molecular evolution of the *HSP70* multigene family[J]. Journal of Molecular Evolution, 1994, 38(1): 1-17.
- [20] 祁茂冬. 玉米 HSP70 家族成员的鉴定及抗旱基因的 筛选和功能分析[D]. 保定:河北农业大学硕士学位 论文, 2018.

QI MD. Identification of maize *HSP70* family members and screening and functional analysis of drought resistance genes[D]. Baoding: Master's Thesis of Hebei Agricultural University, 2018 (in Chinese).

[21] 张淑红,范永山. 玉米大斑病菌热激蛋白 Hsp70 的鉴定和结构分析 [J]. 福建农业学报, 2022, 37(9): 1187-1193.
ZHANG SH, FAN YS. Identification and characterization

of Heat shock protein *Hsp70* in *Setosphaeria* turcica[J]. Fujian Journal of Agricultural Sciences, 2022, 37(9): 1187-1193 (in Chinese).

[22] BLATZER M, BLUM G, JUKIC E, POSCH W, GRUBER P, NAGL M, BINDER U, MAURER E, SARG B, LINDNER H, LASS-FLÖRL C, WILFLINGSEDER D. Blocking *Hsp70* enhances the efficiency of amphotericin B treatment against resistant Aspergillus terreus strains[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(7): 3778-3788.

- [23] LIU YY, CHEN J, CHENG Y, LI Y, LI XW, ZHANG ZB, XU XM, LIN YF, XU JP, LI ZM. A simple and rapid technique of template preparation for PCR[J]. Frontiers in Microbiology, 2022, 13: 1024827.
- [24] YU JJ, ZHANG YF, CUI HF, HU P, YU XP, YE ZH. An efficient genetic manipulation protocol for Ustilago esculenta[J]. FEMS Microbiology Letters, 2015, 362(12): fnv087.
- [25] ZHANG YM, ZHENG YM, XIAO N, WANG LN, ZHANG Y, FANG RX, CHEN XY. Functional analysis of the HS185 regulatory element in the rice *HSP70* promoter[J]. Molecular Biology Reports, 2012, 39(2): 1649-1657.
- [26] 黎晨. 玉米黑粉菌 cyp51 基因上游启动子克隆及功能鉴定[D]. 武汉: 华中师范大学硕士学位论文, 2010.
 LI C. Cloning of upstream region of cyp51 gene from Ustilago maydis and analysis by bioinformatics[D].
 Wuhan: Master's Thesis of Central China Normal University, 2010 (in Chinese).
- [27] SPENA A, HAIN R, ZIERVOGEL U, SAEDLER H, SCHELL J. Construction of a heat-inducible gene for plants. Demonstration of heat-inducible activity of the *Drosophila hsp70* promoter in plants[J]. The EMBO Journal, 1985, 4(11): 2739-2743.
- [28] HUANG W, HONG S, TANG GR, LU YZ, WANG CS. Unveiling the function and regulation control of the DUF3129 family proteins in fungal infection of hosts[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2019, 374(1767): 20180321.
- [29] SCHUSTER M, SCHWEIZER G, KAHMANN R. Comparative analyses of secreted proteins in plant pathogenic smut fungi and related basidiomycetes[J]. Fungal Genetics and Biology, 2018, 112: 21-30.
- [30] HUCK S, BOCK J, GIRARDELLO J, GAUERT M, PUL Ü. Marker-free genome editing in Ustilago trichophora with the CRISPR-Cas9 technology[J]. RNA Biology, 2019, 16(4): 397-403.
- [31] ÖKMEN B, SCHWAMMBACH D, BAKKEREN G, NEUMANN U, DOEHLEMANN G. The Ustilago hordei-barley interaction is a versatile system for characterization of fungal effectors[J]. Journal of Fungi, 2021, 7(2): 86.