研究报告

稻草微贮早期真菌群落演变及其木质纤维素降解 酶的预测

常帅飞,任文义,程雨辰,李娅楠,何金童,张力莉,徐晓锋*

宁夏大学动物科技学院, 宁夏 银川 750021

常帅飞,任文义,程雨辰,李娅楠,何金童,张力莉,徐晓锋.稻草微贮早期真菌群落演变及其木质纤维素降解酶的预测[J]. 微生物学通报,2024,51(5):1614-1625.

CHANG Shuaifei, REN Wenyi, CHENG Yuchen, LI Yanan, HE Jintong, ZHANG Lili, XU Xiaofeng. Rice straw in early stage of microbial fermentation: fungal community dynamics and lignocellulose-degrading enzymes[J]. Microbiology China, 2024, 51(5): 1614-1625.

要: 【背景】木质纤维素的难降解性是导致稻草资源产量丰富却难以广泛用于牲畜饲料的根 摘 本原因。【目的】研究稻草微贮早期发酵过程中真菌群落演变过程及真菌对木质纤维素的降解作 用。【方法】以 1.2×10⁶ CFU/g-DM 的地衣芽孢杆菌复合 5×10⁶ CFU/g-DM 的植物乳杆菌添加进 行稻草微贮。于不同时间节点(1、3、7 和 15 d)进行 internal transcribed spacer (ITS)真菌群落分 析。【结果】稻草微贮的第7天真菌群落多样性最高。发酵过程中的优势菌门依次为子囊菌门 (Ascomycetes) (64.2%)和担子菌门(Basidiomycota) (30.2%)。与第1天相比,子囊菌门相对丰度分 别在第7天和第15天均极显著升高(P<0.001);担子菌门相对丰度在第7天和第15天均极显著降 低(P<0.001)。优势菌属依次为汉纳菌属(Hannaella)(11.6%)、伊萨菌属(Issatchenkia)(8.1%)、哈萨 克斯坦菌属(Kazachstania) (6.3%)、酿酒酵母属(Saccharomyces) (6.2%)、线黑粉酵母菌属 (Filobasidium) (5.1%)。 枝顶孢属(Acremonium) (2.4%)和曲霉属(Aspergillus) (2.2%)是发酵过程中的 次优菌属。与第1天相比,汉纳菌属相对丰度在第15天极显著降低(P<0.001); 枝顶孢属和曲霉 属相对丰度均在第 7 天极显著升高(P<0.001)。PICRUSt 预测结果表明:β-葡萄糖苷酶、漆酶、α-半乳糖苷酶和 β-甘露糖苷酶是丰度最高的木质纤维素降解酶。Spearman 相关性分析结果表明, 担子菌门与 β-甘露糖苷酶有显著正相关关系(P<0.05)。汉纳菌属与 β-葡萄糖苷酶和 β-甘露糖苷酶 有显著正相关关系(P<0.05)。枝顶孢属和曲霉属均与 β-葡萄糖苷酶、β-甘露糖苷酶、漆酶和 α-半 乳糖苷酶有极显著正相关关系(P<0.001)。【结论】在稻草微贮过程中,真菌对木质纤维素有降解 作用。本文为真菌在微贮过程中的有效利用以及木质纤维素的生物降解提供了理论依据。 关键词:稻草微贮;真菌;枝顶孢属;β-葡萄糖苷酶

资助项目: 国家自然科学基金(32160769)

This work was supported by the National Natural Science Foundation of China (32160769).

^{*}Corresponding author. E-mail: gzdxdzh@163.com

Received: 2023-08-15; Accepted: 2023-12-07; Published online: 2024-01-04

Rice straw in early stage of microbial fermentation: fungal community dynamics and lignocellulose-degrading enzymes

CHANG Shuaifei, REN Wenyi, CHENG Yuchen, LI Yanan, HE Jintong, ZHANG Lili, XU Xiaofeng^{*}

College of Animal Science and Technology, Ningxia University, Yinchuan 750021, Ningxia, China

Abstract: [Background] Despite the abundant production, rice straw is rarely used as animal feed because of the difficulty in degrading lignocellulose. [Objective] To investigate the fungal community dynamics in rice straw over time and the degradation of lignocellulose by fungi in the early stage of microbial fermentation. [Methods] Rice straw was inoculated with 1.2×10⁶ CFU/g-DM of Bacillus licheniformis and 5×10^6 CFU/g-DM of Lactobacillus plantarum for microbial fermentation. The ITS sequencing was performed to analyze the fungal community on days 1, 3, 7, and 15. [Results] The highest fungal diversity was observed on day 7. The dominant phyla during fermentation were Ascomycetes (64.2%) and Basidiomycota (30.2%). Compared with that on day 1, the relative abundance of Ascomycota increased on day 7 and day 15 (P<0.001), and that of Basidiomycota decreased on day 7 and day 15 (P < 0.001). The dominant genera included Hannaella (11.6%), Issatchenkia (8.1%), Kazachstania (6.3%), Saccharomyces (6.2%), Filobasidium (5.1%), Acremonium (2.4%), and Aspergillus (2.2%). Compared with that on day 1, the relative abundance of Hannaella decreased on day 15 (P<0.001) and that of Acremonium and Aspergillus increased on day 7 (P < 0.001). PICRUSt predictions indicated that β -glucosidase, laccase, α-galactosidase, and β-mannosidase were the most abundant lignocellulose-degrading enzymes. The results of Spearman correlation analysis showed that Ascomycota had a positive correlation with β -mannosidase (P<0.05). Hannaella was positively correlated with β -glucosidase and β -mannosidase (P<0.05). In addition, both Acremonium and Aspergillus showed strong positive correlations with β -glucosidase, β -mannosidase, laccase, and α -galactosidase (P<0.001). [Conclusion] During the microbial fermentation of rice straw, fungi degrade the lignocellulose. This paper presents theoretical underpinnings for the efficient use of fungi in the microbial fermentation and the biodegradation of lignocellulose.

Keywords: microbial fermentation of rice straw; fungi; Acremonium; β-glucosidase

当前,中国粗饲料的利用呈现优质苜蓿和 青贮玉米产能不足与秸秆等资源丰富但利用率 低的矛盾。作为世界上水稻栽培历史最悠久的 国家之一,中国有着庞大的稻草资源。据国家 统计局公布的官方数据(https://data.stats.gov.cn/ easyquery.htm?cn=C01),2022 年全国水稻播种 面积 2.945×10¹³m²,稻谷总产量 20 849.48 万 t。 如能有效利用稻草资源,不仅能够缓解我国优

质粗饲料短缺的问题还能大大降低养殖成本。

稻草微贮是一种能够有效利用稻草资源的 方法,其原理在于厌氧条件下的"菌群发酵"。 微生物菌群利用水溶性碳水化合物增殖生长, 产生有机酸(主要是乳酸)并大量消耗氧气,营 造酸性和厌氧环境来防止腐败^[1]。同时,酸可 以使稻草柔软蓬松,并为木质纤维素降解酶提 供适宜的酶解环境^[2],而稻草的高木质素含量 (5.83%-18.5%)正是制约稻草资源利用的重要原因。Xu等^[3]利用 Pseudomonas、Anaerocolumna、 Ruminofilibacter 和 Sphaerochaeta 等细菌组成的 微生物联盟(Microbial consortium)在矿物盐培养 基中孵育7d可降解水稻秸秆 31.18%的木质素。

在自然界中,真菌对纤维降解起着重要作 用。在接种 18 d 后,平菇韩黑真菌(Pleurotus ostreatus hanhei)对稻草秸秆纤维素降解率达 45.84%, 木质素降解率 42.95%, 半纤维素降解率 51.03%; 平菇 8 号真菌(Pleurotus ostreatus 8)对稻 草秸秆纤维素降解率 32.25%, 木质素降解率 49.46%, 半纤维素降解率 40.75%^[4]。此外, 高旭 红等^[5]研究表明, 杏鲍菇真菌和香菇真菌均可显著 降低小麦秸秆中性洗涤纤维(neutral detergent fiber, NDF)和酸性洗涤木质素(acid detergent lignin, ADL) 含量。在有氧条件下,各类真菌通过产生有氧自 由基的方式间接解聚木质素,如漆酶、木质素过 氧化物酶、锰过氧化物酶、多功能过氧化物酶、 染料脱色过氧化物酶和 β-乙酶等^[6]。在最近的一 项研究中, Lankiewicz 等^[7]发现厌氧真菌酶系统产 生的自由基或其他小分子物质可以非特异性地导致 木质素化学键断裂。这一发现完善了人们对于真菌 纤维降解机制的认识,不管在有氧还是厌氧环境下 的真菌都具备木质纤维素降解的可利用性。

目前对于微贮过程中真菌群落变化及真菌 作用的研究较少。因此,本试验拟通过高通量 测序技术分析第1、3、7和15天的真菌群落组 成,通过研究不同时间点稻草微贮真菌多样性 及丰度变化的影响并结合 PICRUSt 预测有关纤 维降解酶,共同揭示稻草微贮早期真菌群落及 其相关木质纤维素降解酶的变化。

1 材料与方法

1.1 微贮稻草的制备

本试验所使用的稻草均来自宁夏回族自治

区犇旺牧场,在生理成熟期采收, 30 cm 留 茬。稻草的干物质(dry matter, DM)含量 94.49%, 粗蛋白质(crude protein, CP)含量 3.45%, 中性洗涤纤维(neutral detergent fiber, NDF)含量 59.61%, 酸性洗涤纤维(acid detergent fiber, ADF)含量 33.59%。以粉碎 2-3 cm 左右的 稻草为原料,利用小规模发酵法进行微贮。严格 按照各菌剂使用方法在样品中加入菌剂。在稻草 中添加 70 g/kg-DM 的蔗糖、5×10⁶ CFU/g-DM 的 植物乳杆菌和 1.2×10⁶ CFU/g-DM 的地衣芽孢杆 菌。植物乳杆菌(冻干型粉剂,活菌总数为 1.39×10¹⁰ CFU/g)和地衣芽孢杆菌(冻干型粉 剂,活菌总数为 1.30×10¹¹ CFU/g)均购自山东中 科嘉亿生物工程有限公司。每个时间点设置 6 个 重复。接种菌剂的选用参考 Zhu 等^[8]方法进行。 将蔗糖、植物乳杆菌和地衣芽孢杆菌溶于蒸馏水 后,用喷壶均匀喷洒至稻草样品,并在乙醇消毒 的塑料容器中充分混匀。装入 35 cm×45 cm 的聚 乙烯发酵袋中, 每袋 500 g, 用真空包装机抽真 空后密封。(28±3) ℃ 室温条件下避光贮藏。接种 后的稻草分别在微贮发酵第1、3、7和15天进行 拆包、取样和微生物测序。参数确定时间点参考 Mu 等^[9]进行。

1.2 主要试剂和仪器

2×Rapid Taq Master Mix,南京诺唯赞生物 科技股份有限公司;真菌全基因提取试剂盒, 生工生物工程(上海)股份有限公司。梯度 PCR 仪,Bio-Rad 公司;高速冷冻离心机,长沙湘 智离心机仪器有限公司;手持式高速匀浆机, 拓赫机电科技(上海)有限公司。

1.3 微生物测序及生物信息学分析

将 10 g 微贮样品与 40 mL 生理盐水混合, 以 120 r/min 的速度搅拌 120 min。所得到的均 质液经两层粗纱布过滤,在4 ℃、10 000 r/min 的条件下离心 15 min。弃上清液,取沉淀物参

照真菌全基因提取试剂盒说明书提取基因组 DNA。使用引物 ITS3 KYO2F (5'-GATGAAGA ACGYAGYRAA-3')和 ITS4R (5'-TCCTCCGCTT ATTGATATGC-3') 扩增 internal transcribed spacer (ITS) rDNA 序列。PCR 反应条件和体系按照 2×Rapid Tag Master Mix 试剂说明书进行。PCR 产物送往广州基油奥生物科技有限公司,使用 Illumina HiSeq PE 2500 平台双端测序, 测定 ITS rDNA 序列。基于 OTU 结果, 使用 Mothur v1.30.1 进行 α 多样性分析^[10]。由于微贮是真菌与 细菌共同发挥作用的过程,实测的酶类数据很难 完全排除细菌产生的影响,因此使用 PICRUSt 软 件对真菌 OTU 的木质纤维素降解酶进行功能预 测。具体操作方法如下:使用 PICRUSt v2.1.4 将 ITS rDNA 测序得到的 OTU 代表序列置于软件 中已有的系统发育树中进行基因家族拷贝数预 测, 使用 integrated microbial genomes (IMG)微 生物基因组数据进行功能信息的输出^[11]。预测 得到的基因家族拷贝数用于代表各功能基因丰 度。之后对所获得的酶类数据进行筛选, 仅保 留木质纤维素降解相关酶,进行统计分析。

1.4 数据统计与分析

使用 SAS v9.4 对数据进行 ANOVA 方差分 析。并采用 Duncan 差异检测确定不同样品均

值之间的统计学显著性差异。所有分析均以 P<0.05 为有统计学意义。

2 结果与分析

2.1 地农芽孢杆菌与植物乳杆菌复合微贮 稻草发酵过程中真菌 α 多样性分析和 β 多 样性分析

在通过 QIIME v1.9.1 质控后, 第 1 天 (1 d)、第 3 天(3 d)、第 7 天(7 d)和第 15 天(15 d) 这 4 个时间点 24 个样品总共生成 3 094 319 个 clean reads 和 2 854 956 个 effective tags。参考 真菌数据库,所有序列以 97%的相似水平聚为 13 个门 330 个属 229 个 OTU 信息。根据每个 样品的 OTU 总数及各个 OTU 的相对丰度进行 样品多样性指数计算(表 1)。与第 1 天相比, Shannon 指数在第 7 天极显著升高(P<0.001), 在第 15 天极显著降低(P<0.001); Simpson 指数 在第 3 天和第 15 天均极显著降低(P<0.001); Sobs 指数在第 7 天极显著升高(P<0.001)。表明 稻草微贮早期真菌群落多样性随时间推移先升 高后下降。与第1天相比, ACE 指数在第7天 极显著升高(P<0.001), 在第 15 天极显著降低 (P<0.001); Chao 1 指数在第 7 天极显著升高 (P<0.001)。表明群落丰富度也呈现先升高后降

表 1	不同时间点稻 草微贮真 菌菌群 a 多样性指数

Table 1 Alpha diversity indexes of fungal flora of rice straw microstorage at different time points						
Items	1 d	3 d	7 d	15 d	SEM	P-value
Shannon index	5.02Bb	4.76Bb	5.42Aa	4.30Cc	0.10	< 0.001
Simpson index	0.93Aa	0.90Bb	0.94Aa	0.88Cc	0.01	< 0.001
Sobs index	437.17Bb	434.17Bb	496.67Aa	405.50Bb	9.46	0.001
ACE index	503.40Bb	495.49Bb	559.30Aa	456.31Cc	9.74	< 0.001
Chao1 index	501.34Bb	494.36Bb	568.70Aa	460.24Bb	10.79	< 0.001
Pielou index	0.57Bb	0.54Bb	0.61Aa	0.50Cc	0.01	< 0.001
PD index	107.42a	108.30ab	118.47a	102.96b	2.04	0.038

不同小写字母表示差异显著(P<0.05),不同大写字母表示差异极显著(P<0.01).下同

Different lowercase letters indicate significant difference (P < 0.05), different capital letters indicate significant difference (P < 0.01). The same below.

低的变化趋势。Pielou 指数是仅代表菌群群落 均匀度的 α 多样性指数^[10],在第 7 天极显著升 高,又在第 15 天极显著降低(*P*<0.001)。PD 指 数是谱系多样性指数^[12],在第 15 天显著降低 (*P*=0.038)。表明稻草微贮早期真菌群落之间的 谱系多样性随时间推移逐渐降低。从这些结果 可以看出,本试验条件下第 7 天稻草微贮真菌 总数和多样性最高。

2.2 地衣芽孢杆菌与植物乳杆菌复合微贮 稻草发酵过程中真菌群落组成分析

在门和属水平上,稻草微贮早期不同时间

点的真菌群落组成和相对丰度如图 1 所示。试验共检测到 13 个门 330 个属。其中,子囊菌门 (Ascomycota)、担子菌门(Basidiomycota)和黄藻门(Anthophyta)是本试验条件下的优势菌门和次优菌门,分别占总菌的 64.2%、30.2%和 2.2%。稻草微贮的优势菌属依次为汉纳菌属(Hannaella) (11.6%)、伊萨菌属(Issatchenkia) (8.1%)、哈萨克斯坦菌属(Kazachstania) (6.3%)、酿酒酵母属 (Saccharomyces) (6.2%)和线黑粉酵母菌属 (Filobasidium) (5.1%)。次优菌属依次是链孢菌属(Alternaria) (3.8%)、Papiliotrema (3.2%)、枝顶

图 1 不同样品稻草微贮真菌在门水平和属水平上的分布 A: 门水平. B: 属水平

Figure 1 Distribution of different sample microbial fermented straw fungi at the phylum and genus levels. A: Phylum level. B: Genus level.

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

孢属(Acremonium) (2.4%)、维希尼克氏酵母属 (Vishniacozyma) (2.4%)、曲霉属(Aspergillus) (2.2%), Alfaria (1.7%), Glycine (1.6%), Gibberella (1.4%)、*Pichia* (1.4%)、*Bulleromyces* (1.3%)和 Sporobolomyces (1.2%)。与第 1 天相比,子囊 菌门相对丰度在第7天和第15天均极显著升高 (P<0.001), 分别升高 16.8%和 56.4%; 担子菌 门相对丰度在第 7 天和第 15 天均极显著降低 (P<0.001), 分别降低 19.3%和 66.7%; 绿藻门 相对丰度在第 7 天极显著升高(P<0.001), 升高 191.7%; 汉纳菌属相对丰度在第 15 天极显著 降低(P<0.001),降低 61.3%;伊萨菌属相对丰 度在第 3 天和第 15 天均极显著升高 (P<0.001), 分别升高1 055.3%和2 040.8%; 哈 萨克斯坦菌属相对丰度在第 15 天极显著升高 (P<0.001), 升高 8 368.2%; 酿酒酵母属相对丰 度在第 7 天和第 15 天均极显著升高(P<0.001), 分别升高1 040.0%和3 106.0%; 线黑粉酵母属

相对丰度在第 7 天和第 15 天均极显著降低 (P<0.001),分别降低 41.4%和 72.2%;链孢菌 属相对丰度在第 3 天极显著降低(P<0.001),降 低 56.3%; Papiliotrema 相对丰度在第 3 天极显著 降低(P=0.003),降低 49.0%;枝顶孢属相对丰度 在第 7 天极显著升高(P<0.001),升高 87.6%;曲 霉属相对丰度在第 7 天极显著升高(P<0.001), 升高 160.9%。

2.3 PICRUSt 对真菌酶丰度的预测

PICRUSt 预测与木质纤维素降解相关酶的 丰度如表 2 所示。本试验共预测到 15 个与木质 纤维素降解相关的酶。与第 1 天相比,漆酶 (laccase)的丰度在第 3、7 和 15 天均极显著降 低 (*P*<0.001),分别降低 41.2%、48.5%和 67.5%;过氧化物酶(peroxidase)丰度在第 3、7 和 15 天均极显著降低(P<0.001), 分别降低 32.3%、33.5%和 60.6%; β-葡萄糖苷酶(βglucosidase)丰度在第 7 天极显著升高(P<0.001), 升高 59.5%, 并在第 15 天极显著降低(P<0.001), 降低 94%; 内切葡聚糖酶(cellulase)丰度在 第 7 天显著升高(P=0.025), 升高 65.6%; α-半 乳糖苷酶(α-galactosidase)丰度在第7天极显著 升高(P=0.001), 升高 65.6%; β-甘露糖苷酶(βmannosidase)丰度在第 15 天显著降低(P=0.018), 降低 55.8%; 非还原端-α-L-阿拉伯聚糖酶(nonreducing end-α-L-arabinofuranosidase) 丰度在 第 7 天极显著升高(P<0.001), 升高 61.7%, 又 在第 15 天极显著降低(P<0.001),降低 39.6%; 内切-1,4-β-木聚糖酶(endo-1,4-β-xylanase)丰度 在第 15 天极显著降低(P=0.028),降低 31.6%; 内切-1,5-α-L-阿拉伯聚糖酶(arabinan endo-1,5-α-L-arabinosidase) 丰度在第 15 天显著降低 (P=0.030), 降低 39.2%; 内切-1,4-B-甘露糖苷酶 (mannan endo-1,4-β-mannosidase)丰度在第 15 天显 著降低(P=0.018),降低 55.6%。

2.4 真菌丰度与木质纤维素降解相关酶丰度关联分析

对菌门、菌属的丰度与木质纤维素降解酶 丰度进行 Spearman 相关性分析,结果用热图展 示(图 2)。β-葡萄糖苷酶、漆酶、α-半乳糖苷 酶、β-甘露糖苷酶、内切葡聚糖酶、非还原端α-L-阿拉伯聚糖酶和过氧化物酶是本试验预测 丰度最高的 7 个木质纤维素降解酶,这些酶与 绿藻门、枝顶孢属、维希尼克氏酵母属和曲霉 属均有显著正相关关系(P<0.05)。子囊菌门是 本试验条件下的第一优势菌门,其与内切-1,4β-甘露糖苷酶有显著负相关关系(P<0.05);与乙 酰木聚糖酯酶有显著正相关关系(P<0.05)。担 子菌门是本试验条件下的第二优势菌门,其与 β-甘露糖苷酶、过氧化物酶、阿魏酰酯酶、内 切-1,4-β-木聚糖酶、内切-1,5-α-L-阿拉伯聚糖酶 和内切-1,4-β-甘露糖苷酶均有显著正相关关系 (P<0.05); 与乙酰木聚糖酯酶有显著负相关关 系(P<0.05)。汉纳菌属是本试验条件下的第一 优势菌属, 其与 β-葡萄糖苷酶、β-甘露糖苷 酶、内切葡聚糖酶、非还原端-α-L-阿拉伯聚糖 酶、过氧化物酶、阿魏酰酯酶、内切-1,4-B-木 聚糖酶、内切-1,5-α-L-阿拉伯聚糖酶和内切-1,4β-甘露糖苷酶均有显著正相关关系(P<0.05); 与 乙酰木聚糖酯酶有显著负相关关系(P<0.05)。枝 顶孢属与 β-葡萄糖苷酶(r=0.823)、β-甘露糖苷酶 (r=0.817)均有极显著强正相关关系(P<0.001)(表 3)。

....

a......

-.

表 2	PICRUSt 对真菌木质纤维素降解相关酶丰度的预测
1x 4	TICKUSI 对其困个灰纤维系件胜怕大晦十反的顶点

. .

 Table 2
 PICRUSt prediction of the abundance of enzymes related to lignocellulose degradation in fungi
 A 1

- 1

Items	l d	3 d	/ d	15 d	SEM	<i>P</i> -value
木质素降解酶						
Ligin-degrading enzyme						
漆酶 Laccase	21 043.00Aa	12 370.00Bb	10 837.00BCbc	6 835.00Cc	1 343.21	< 0.001
过氧化物酶 Peroxidase	3 021.80Aa	2 046.80Bb	2 010.80Bb	1 190.20Cc	163.79	< 0.001
纤维素降解酶						
Cellulose-degrading enzyme						
β-葡萄糖苷酶	48 747.00Bb	45 904.00Bb	77 766.00Aa	2 904.05Cc	4 331.04	< 0.001
β-glucosidase						
内切葡聚糖酶	2 806.00b	3 343.50ab	4 648.80a	2 248.20b	306.08	0.025
Cellulase						
外切葡聚糖酶	97.83	208.00	206.33	157.17	19.56	0.140
Cellulose 1,4-β-celllobiosidase						
半纤维素降解酶						
Hemicellulose-degrading enzyme						
α-半乳糖苷酶 α-galactosidase	9 680.00Bb	9 202.00Bb	16 028.00Aa	5 956.00Bb	1 033.10	0.001
β-甘露糖苷酶 β-mannosidase	1 500.20a	1 473.00a	1 258.00a	666.30b	111.28	0.018
非还原端-α-L-阿拉伯聚糖酶	3 076.70Bb	2 950.50BCbc	4 975.50Aa	1 858.20Cc	292.77	< 0.001
Non-reducing end α -L-arabinofuranosidase						
阿魏酰酯酶 Feruloyl esterase	1 523.80ab	1 909.30a	2 132.50a	1 233.00b	121.57	0.031
内切-1,4-β-木聚糖酶	1 378.20ab	1 568.50a	1 721.80a	943.70b	101.60	0.028
Endo-1,4-β-xylanase						
内切-1,5-α-L-阿拉伯聚糖酶	1 297.00a	1 389.30a	1 516.20a	789.00b	96.78	0.030
Arabinan endo-1,5-α-L-arabinosidase						
内切-1,4-β-甘露糖苷酶	1 500.20a	1 473.00a	1 258.00a	666.30b	112.28	0.018
Mannan endo-1,4-β-mannosidase						
木糖 1,4-β-木糖苷酶	349.70	767.00	823.70	611.20	78.28	0.133
Xylan 1,4-β-xylosidase						
乙酰木聚糖酯酶	0.00	0.00	0.00	15.00	3.25	0.271
Acetylxylan esterase						
α-葡糖醛酸酶	8.33	13.00	0.33	2.50	3.02	0.464
α-glucuronidase						

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

图 2 稻草微贮早期真菌丰度与木质纤维素降解相关酶丰度关联分析 *表示显著相关(P<0.05)

Figure 2 Correlation analysis of fungal abundance and lignocellulose-degradation-related enzyme abundance in early stages of rice straw microstorage. * indicated a significant association (P<0.05).

表 3 真菌菌属与木质纤维素降解酶之间的 Spearman 相关系数和相关显著性

Table 3Spearmancorrelationcoefficientandcorrelationsignificancebetweenfungalgeneraandlignocellulose-degradingenzymes

相关对	<i>r</i> -value	P-value
Correlation pair		
枝顶孢属 vs. β-葡萄糖苷酶	0.823	< 0.001
Acremonium vs. β-glucosidase		
枝顶孢属 vs. β-半乳糖苷酶	0.817	< 0.001
Acremonium vs. β-mannosidase		

3 讨论与结论

微贮饲料微生物是影响其发酵品质的关键 因素,无论是原料表面附着的微生物还是外源 添加的微生物在微贮发酵过程中都对微生物群 落演替起着极为重要的作用^[13]。本试验条件 下,稻草微贮发酵早期子囊菌门始终处于优势 地位,其相对丰度最高,担子菌门次之。子囊 菌门和担子菌门具有丰富的碳水化合物活性酶 (carbohydrate activity enzymes, CAZymes)基因。 CAZymes 负责糖缀合物、寡聚物及多糖的分 解、生物合成和修饰^[14],在分解木质纤维素时 起重要作用^[15]。有报道称,GH130、GH67、 GH94、PL10 和 PL11 只存在于子囊菌门中, GH44 和 PL15 只存在于担子菌门,而 CE1、 GH5、GH47 和 GT2 在两种菌门中均可以被检 测到^[14-15]。GH130 家族成员可以参与 β-甘露聚 糖(β-mannan)的磷酸解和水解^[16-17]。GH67 家族 成员参与葡萄糖醛酸聚糖的水解,如 α-葡糖醛 酸酶(α-glucuronidases, E.C 3.2.1.131)^[18]。GH94 族成员主要通过催化 β-消除反应来参与果胶降 解^[20], PL10 家族酶降解由 β-1,4-糖苷键连接的 D-半乳糖醛酸构成果胶主链结构^[21],如 PL10 果胶酸裂解酶(EC 4.2.2.2)^[22]。而 PL11 家族酶 成员降解由鼠李半乳糖醛酸构成的果胶侧链结 构,如鼠李半乳糖醛酸聚糖裂解酶 (CtRGLf)^[23]。木葡聚糖酶活性可能是 GH44 家 族的一般特征^[24]。CE1 家族成员参与阿魏酸及 乙酰木聚糖的降解^[25-26]。GH47 家族酶属参与 分泌蛋白的翻译后修饰,并与低聚糖代谢息息 相关^[27]。因此,以子囊菌门和担子菌门变化为 主导的发酵过程具有强大纤维降解潜力。同 时,酸性环境会破坏木质素的构象结构,为微 生物活性和酶水解创造易抵达并发挥作用的区 域^[2],在微贮过程中的子囊菌和担子菌可能会 发挥更强的纤维降解作用。

纤维酸是纤维二糖-1,5-内酯与水自发反应 的产物,在磷酸化后又经过α-磷酸葡萄糖变位 酶(EC 6.2.7.5)和 1-磷酸葡萄糖酸脱氢酶(EC 12.6.1.1)的作用分别进入糖酵解途径和磷酸戊 糖途径^[19]。子囊菌门的各种纤维素分解真菌具 有纤维酸磷酸化酶同源蛋白。GH94 纤维酸磷 酸化酶的发现表明纤维酸的能量高效分解通常只 发生在子囊菌门真菌的氧化纤维素代谢中^[19]。

Morosanova 等^[28]与 Jia 等^[29]分别在 Agaricus bisporus 和 Auricularia polytricha 中检测到 GH47α-甘露糖苷酶。真核细胞的蛋白质合成须 经糖苷水解酶家族加工和修饰后才能发挥生物 活性。普遍认为,GH47α-甘露糖苷酶参与分泌 蛋白的翻译后修饰,与低聚糖的代谢息息相 关。GH47甘露糖苷酶还会在其底物上施加超 构象来增强催化作用^[27]。值得注意的是,A. bisporus 和 A. polytricha 同隶属于担子菌门。 Alzahal 等^[30]报道,添加酿酒酵母提高了奶牛瘤 胃内 β-1.4-葡聚糖酶的丰度,并有增加 α-葡醛 酸酶的趋势。Li 等^[31]论述了酿酒酵母有利于纤 维降解细菌的活性。β-1,4-葡聚糖酶和 α-葡醛酸 酶同属于纤维素降解酶,高丰度酿酒酵母饲料 将有益于提升纤维降解能力。然而,酿酒酵母 正是子囊菌门家族的一员,在本次研究中相对 丰度显著提高。

木质纤维素是木质素、纤维素和半纤维素 共同构成的聚合体。广泛接受的酶促纤维素水 解机制是包括内切葡聚糖酶、外切葡聚糖酶或 纤维二糖水解酶和 β-葡萄糖苷酶的协同作用。 内切葡聚糖酶(endo-1,4-β-D-glucanohydrolase, EC 3.2.1.4)随机水解纤维素链分子内 β-1,4-葡萄 糖苷键以产生新的链端,外切葡聚糖酶在末端 切割纤维素链以释放可溶性纤维二糖或葡萄 糖, β-葡萄糖苷酶(β-glucosidase)将纤维二糖水 解为葡萄糖,这3个水解过程同时发生^[32]。在 进行 PICRUSt 功能基因预测后发现, 与编码 β-葡萄糖苷酶有关基因在纤维素降解酶中最高, 真菌可能对纤维二糖的降解作用最为突出。同 时,内切葡聚糖酶、外切葡聚糖和β-葡萄糖苷 酶三者之间的比例不平衡可能是制约真菌降解 纤维素的重要原因。最重要的半纤维素分解酶 是内切-β-1,4-木聚糖酶,其水解 β-1,4-木聚糖(β-1,4-xylan)产生木糖低聚物(xylo-oligomers)。而 木糖低聚物到木糖(xylose)之间的转化由 β-木糖 苷酶(β-xylosidase, EC 3.2.1.37)催化进行^[33]。内 切-β-1,4-甘露糖苷酶水解β-1,4-甘露聚糖,产生 甘露糖低聚物。β-甘露糖苷酶(β-mannosidase, EC 3.2.1.25)水解 β-1,4 甘露糖低聚糖产生甘露 糖^[34]。非还原端 α-L-阿拉伯呋喃糖苷酶(nonreducing end alpha-L-arabinofuranosidase, EC 3.2.1.55)作用于 α-L-arabinofuranosy 的 O-2 和 O-3 位点,产生 L-arabinose。α-L-阿拉伯聚糖酶 (α-L-arabinanase, EC 3.2.1.99) 水 解 α-1,5arabinan, 产生 arabinose。α-半乳糖苷酶(αgalactosidases, EC 3.2.1.22)水解 α-半乳糖基团 低聚糖,产生半乳糖和蔗糖。乙酰木聚糖酯酶 (acetyl xylan esterase, EC 3.1.1.72)水解乙酰木 聚糖的 O-2 和 O-3 位点,产生乙酸。阿魏酰酯 酶(feruloyl xylan esterase, EC 3.1.1.73)水解 ferulic acid substitutions, 产生阿魏酸^[35]。在这 些降解半纤维素相关酶中 α-葡萄糖醛酸酶功能 基因相对丰度最高,暗示真菌对含有半乳糖基 团的低聚糖的降解作用较大。木质素的降解过 程中会产生阿魏酸。阿魏酸是降解高粱和柳枝 稷等软木类木质素过程中产生的第二大有机 酸,其浓度仅次于香豆酸^[7]。阿魏酸可能通过 延长菌株适应期,破坏蛋白合成来干扰菌株的 正常生理代谢活动,来影响微生物对木质纤维 素的降解。阿魏酸酯酶可以通过破坏阿魏酸与 半纤维素之间的细胞壁酯键,并与木聚糖酶和 纤维素酶协同作用来催化阿魏酸降解,从而对 木质纤维素降解产生积极影响[36]。阿魏酸酯酶 活性尤其能影响原位酸性洗涤纤维降解性(acid detergent fiber digestibility, ADFD)这一参数^[37-38]。 而酸性洗涤纤维正是纤维素、木质素和硅酸盐 等一系列极难降解物质的统称。因此, 阿魏酰 酯酶是与木质素降解相关的半纤维素酶。漆酶 (laccase)在真菌降解木质素的过程中起着不可替 代的作用,其可以使用环境中的氧气作为氧化 剂,可以参与木质素降解而不需要 H₂O₂^[39]。与 漆酶不同,过氧化物酶具有高氧化还原电位^[40]。 过氧化物酶在降解木质素过程中会被氧化为中 间体 peroxidase I和 peroxidase II, 随后又恢复 到 peroxidase。这一过程产生大量阳离子自由 基,通过自由基反应破坏木质素单体侧链上的 Cα-Cβ键^[41]。

在本试验条件下,稻草在微贮过程中存在 多种真菌群落。其中,担子菌门和汉纳菌属是 稻草微贮发酵过程中对木质纤维素降解具有有 利影响的优势菌门和优势菌属,其与多种木质 纤维素酶有显著正相关关系。此外,枝顶孢属 和曲霉属在发酵第7天均极显著增加,并与β-葡萄糖苷酶、漆酶、α-半乳糖苷酶和β-甘露糖 苷酶有极显著正相关关系。本文丰富了微贮过 程中真菌与木质纤维素酶对应关系的理论研究 成果,同时为真菌在微贮过程中的有效利用以 及木质纤维素的生物降解提供了思路。

REFERENCES

- [1] XIE YX, DU EM, YAO YD, WANG WQ, HUANG XK, SUN H, ZHENG YL, CHENG QM, WANG CM, CHEN C, LI P. Effect of epiphytic microflora after aerobic enrichment and reconstitution on fermentation quality and microbial community of corn stalk silage and *Pennisetum* sinese silage[J]. Frontiers in Microbiology, 2022, 13: 1078408.
- [2] SUN H, CUI X, LI RL, GUO JB, DONG RJ. Ensiling process for efficient biogas production from lignocellulosic substrates: methods, mechanisms, and measures[J]. Bioresource Technology, 2021, 342: 125928.
- [3] XU CF, SU X, WANG JH, ZHANG FZ, SHEN GN, YUAN Y, YAN L, TANG HZ, SONG FQ, WANG WD. Characteristics and functional bacteria in a microbial consortium for rice straw lignin-degrading[J]. Bioresource Technology, 2021, 331: 125066.
- [4] 孙江慧,张楠,沈其荣,沈标. 几种食用真菌降解稻草的潜力研究[J]. 南京农业大学学报, 2012, 35(4): 49-54.
 SUN JH, ZHANG N, SHEN QR, SHEN B. Study on biodegraded ability of edible fungi to rice straw[J]. Journal of Nanjing Agricultural University, 2012, 35(6): 49-54 (in Chinese).
- [5] 高旭红,章炉军,梁小军,毛磊.杏鲍菇和香菇固态发酵小麦秸秆对其营养价值的影响[J].动物营养学报,2023,35(9):6111-6120.
 GAO XH, ZHANG LJ, LIANG XJ, MAO L. Effects of Solid-State fermentation of wheat straw with *Pleurotus eryngii* and *Lentinula edodes* on its nutritional value[J]. Chinese Journal of Animal Nutrition, 2023, 35(9):6111-6120 (in Chinese).
- [6] JANUSZ G, PAWLIK A, SULEJ J, ŚWIDERSKA-BUREK U, JAROSZ-WILKOŁAZKA A, PASZCZYŃSKI A. Lignin degradation: microorganisms, enzymes involved, genomes analysis

and evolution[J]. FEMS Microbiology Reviews, 2017, 41(6): 941-962.

- [7] LANKIEWICZ TS, CHOUDHARY H, GAO Y, AMER B, LILLINGTON SP, LEGGIERI PA, BROWN JL, SWIFT CL, LIPZEN A, NA H, AMIREBRAHIMI M, THEODOROU MK, BAIDOO EEK, BARRY K, GRIGORIEV IV, TIMOKHIN VI, GLADDEN J, SINGH S, MORTIMER JC, RALPH J, et al. Lignin deconstruction by anaerobic fungi[J]. Nature Microbiology, 2023, 8(4): 596-610.
- [8] ZHU YC, XIONG HM, WEN ZY, TIAN HC, CHEN YY, WU LF, GUO YQ, SUN BL. Effects of different concentrations of *Lactobacillus plantarum* and *Bacillus licheniformis* on silage quality, *in vitro* fermentation and microbial community of hybrid *Pennisetum*[J]. Animals: an Open Access Journal from MDPI, 2022, 12(14): 1752.
- [9] MU L, WANG QL, CAO X, LI H, ZHANG ZF. The potential of pre-fermented juice or *Lactobacillus* inoculants to improve the fermentation quality of mixed silage of agro-residue and lucerne[J]. Frontiers in Microbiology, 2022, 13: 858546.
- [10] YAN H, LI F, LIU GX. Diminishing influence of negative relationship between species richness and evenness on the modeling of grassland α -diversity metrics[J]. Frontiers in Ecology and Evolution, 2023, 11: 1108739.
- [11] DOUGLAS GM, MAFFEI VJ, ZANEVELD J, YURGEL SN, BROWN JR, TAYLOR CM, HUTTENHOWER C, LANGILLE MGI. PICRUSt2: an improved and extensible approach for metagenome inference[J]. bioRxiv, 2019, DOI: 10.1101/672295.
- [12] FAITH DP, LOZUPONE CA, NIPPERESS D, KNIGHT R. The cladistic basis for the phylogenetic diversity (PD) measure links evolutionary features to environmental gradients and supports broad applications of microbial ecology's "phylogenetic beta diversity" framework[J]. International Journal of Molecular Sciences, 2009, 10(11): 4723-4741.
- [13] YANG G, YANG DQ, WANG XD, CAO WT. A novel thermostable cellulase-producing *Bacillus licheniformis* A5 acts synergistically with *Bacillus subtilis* B2 to improve degradation of Chinese distillers' grains[J]. Bioresource Technology, 2021, 325: 124729.
- [14] ZHAO ZT, LIU HQ, WANG CF, XU JR. Comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi[J]. BMC Genomics, 2013, 14: 274.

- [15] OSPINA-GIRALDO MD, GRIFFITH JG, LAIRD EW, MINGORA C. The CAZyome of *Phytophthora* spp.: a comprehensive analysis of the gene complement coding for carbohydrate-active enzymes in species of the genus *Phytophthora*[J]. BMC Genomics, 2010, 11(1): 1-16.
- [16] SIJINAMANOJ V, MUTHUKUMAR T, MUTHURAJA R, RAYAPPAN K, KARMEGAM N, SAMINATHAN K, GOVARTHANAN M, KATHIRESWARI P. Ligninolytic valorization of agricultural residues by Aspergillus nomius and Trichoderma harzianum isolated from gut and comb of Odontotermes obesus (Termitidae)[J]. Chemosphere, 2021, 284: 131384.
- [17] YE YX, SABURI W, ODAKA R, KATO K, SAKURAI N, KOMODA K, NISHIMOTO M, KITAOKA M, MORI H, YAO M. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies[J]. FEBS Letters, 2016, 590(6): 828-837.
- [18] LEE CC, KIBBLEWHITE RE, WAGSCHAL K, LI RP, ROBERTSON GH, ORTS WJ. Isolation and characterization of a novel GH67 α-glucuronidase from a mixed culture[J]. Journal of Industrial Microbiology and Biotechnology, 2012, 39(8): 1245-1251.
- [19] NIHIRA T, SAITO Y, NISHIMOTO M, KITAOKA M, IGARASHI K, OHTSUBO K, NAKAI H. Discovery of cellobionic acid phosphorylase in cellulolytic bacteria and fungi[J]. FEBS Letters, 2013, 587(21): 3556-3561.
- [20] OCHIAI A, ITOH T, MARUYAMA Y, KAWAMATA A, MIKAMI B, HASHIMOTO W, MURATA K. A novel structural fold in polysaccharide lyases[J]. Journal of Biological Chemistry, 2007, 282(51): 37134-37145.
- [21] LIN JF, XIANG SW, LV H, WANG TT, RAO YL, LIU L, YUAN DZ, WANG XR, CHU YW, LUO D, SONG T. Antimicrobial high molecular weight pectin polysaccharides production from diverse citrus peels using a novel PL10 family pectate lyase[J]. International Journal of Biological Macromolecules, 2023, 234: 123457.
- [22] ZHAO Y, YUAN Y, ZHANG XY, LI YM, LI Q, ZHOU YF, GAO J. Screening of a novel polysaccharide lyase family 10 pectate lyase from *Paenibacillus polymyxa* KF-1: cloning, expression and characterization[J]. Molecules, 2018, 23(11): 2774.
- [23] DHILLON A, FERNANDES VO, DIAS FMV, PRATES JAM, FERREIRA LMA, FONTES CMGA, CENTENO MJ, GOYAL A. A new member of family 11 polysaccharide lyase, rhamnogalacturonan lyase (CtRGLf) from Clostridium thermocellum[J]. Molecular

Biotechnology, 2016, 58(4): 232-240.

- [24] ARIZA A, EKLÖF JM, SPADIUT O, OFFEN WA, ROBERTS SM, BESENMATTER W, FRIIS EP, SKJØT M, WILSON KS, BRUMER H, DAVIES G. Structure and activity of *Paenibacillus polymyxa* xyloglucanase from glycoside hydrolase family 44[J]. The Journal of Biological Chemistry, 2011, 286(39): 33890-33900.
- [25] DILOKPIMOL A, VERKERK B, LI XX, BELLEMARE A, LAVALLEE M, FROMMHAGEN M, UNDERLIN EN, KABEL MA, POWLOWSKI J, TSANG A, de VRIES RP. Screening of novel fungal Carbohydrate Esterase family 1 enzymes identifies three novel dual feruloyl/acetyl xylan esterases[J]. FEBS Letters, 2022, 596(15): 1932-1943.
- [26] de VRIES S, de VRIES J. A global survey of carbohydrate esterase families 1 and 10 in *Oomycetes*[J]. Frontiers in Genetics, 2020, 11: 756.
- [27] QUIRKE JCK, CRICH D. GH47 and other glycoside hydrolases catalyze glycosidic bond cleavage with the assistance of substrate super-arming at the transition state[J]. ACS Catalysis, 2021, 11: 10308-10315.
- [28] MOROSANOVA MA, FEDOROVA TV, POLYAKOVA AS, MOROSANOVA EI. Agaricus bisporus crude extract: characterization and analytical application[J]. Molecules, 2020, 25(24): 5996.
- [29] JIA DH, WANG B, LI XL, PENG WH, ZHOU J, TAN H, TANG J, HUANG ZQ, TAN W, GAN BC, YANG ZR, ZHAO J. Proteomic analysis revealed the fruitingbody protein profile of *Auricularia polytricha*[J]. Current Microbiology, 2017, 74(8): 943-951.
- [30] ALZAHAL O, LI FY, GUAN LL, WALKER ND, MIBRIDE BW. Factors influencing ruminal bacterial community diversity and composition and microbial fibrolytic enzyme abundance in lactating dairy cows with a focus on the role of active dry yeast[J]. Journal of Dairy Science, 2017, 100(6): 4377-4393.
- [31] LI ZH, FAN Y, BAI H, ZHANG JY, MAO SY, JIN W. Live yeast supplementation altered the bacterial community's composition and function in rumen and hindgut and alleviated the detrimental effects of heat stress on dairy cows[J]. Journal of Animal Science, 2023, 101: skac410.
- [32] ZHANG YP, HIMMEL ME, MIELENZ JR. Outlook for

cellulase improvement: screening and selection strategies[J]. Biotechnology Advances, 2006, 24(5): 452-481.

- [33] LOPES AM, FILHO EF, MOREIRA LRS. An update on enzymatic cocktails for lignocellulose breakdown[J]. Journal of Applied Microbiology, 2018, 125(3): 632-645.
- [34] SOUZA DTSP, KAWAGUTI HY. Cellulases, hemicellulases, and pectinases: applications in the food and beverage industry[J]. Food and Bioprocess Technology, 2021, 14(8): 1446-1477.
- [35] HOUFANI AA, ANDERS N, SPIESS AC, BALDRIAN P, BENALLAOUA S. Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars-a review[J]. Biomass and Bioenergy, 2020, 134: 105481.
- [36] WILKINSON JM, RINNE M. Highlights of progress in silage conservation and future perspectives[J]. Grass and Forage Science, 2018, 73(1): 40-52.
- [37] XIE YX, GUO JG, LI WQ, WU Z, YU Z. Effects of ferulic acid esterase-producing lactic acid bacteria and storage temperature on the fermentation quality, *in vitro* digestibility and phenolic acid extraction yields of *Sorghum (Sorghum bicolor L.)* silage[J]. Microorganisms, 2021, 9(1): 114.
- [38] NSEREKO VL, SMILEY BK, RUTHERFORD WM, SPIELBAUER A, FORRESTER K, HETTINGER GH, HARMAN EK, HARMAN BR. Influence of inoculating forage with lactic acid bacterial strains that produce ferulate esterase on ensilage and ruminal degradation of fiber[J]. Animal Feed Science and Technology, 2008, 145(1/2/3/4): 122-135.
- [39] XIAO JL, ZHANG ST, CHEN G. Mechanisms of lignindegrading enzymes[J]. Protein & Peptide Letters, 2020, 27(7): 574-581.
- [40] ZHANG S, DONG Z, SHI J, YANG C, FANG Y, CHEN G, CHEN H, TIAN C. Enzymatic hydrolysis of corn stover lignin by laccase, lignin peroxidase, and manganese peroxidase[J]. Bioresource Technology, 2022, 361: 127699.
- [41] MA RS, GUO M, ZHANG X. Recent advances in oxidative valorization of lignin[J]. Catalysis Today, 2018, 302: 50-60.