研究报告

阻断消耗途径提高毕赤酵母工程菌 S-腺苷甲硫氨酸产量

苏慧颖¹,蒙世拯¹,赵欣欣²,钱江潮²,储炬²,秦秀林^{*1}

1 广西大学生命科学与技术学院 亚热带农业生物资源保护与利用国家重点实验室 广西微生物与酶工程技术研 究中心, 广西 南宁 530004

2 华东理工大学 生物反应器工程国家重点实验室, 上海 200237

苏慧颖, 蒙世拯, 赵欣欣, 钱江潮, 储炬, 秦秀林. 阻断消耗途径提高毕赤酵母工程菌 S-腺苷甲硫氨酸产量[J]. 微生物学 通报, 2023, 50(2): 441-453.

SU Huiying, MENG Shizheng, ZHAO Xinxin, QIAN Jiangchao, CHU Ju, QIN Xiulin. Blocking consumption pathway increases production of S-adenosyl-L-methionine by *Pichia pastoris*[J]. Microbiology China, 2023, 50(2): 441-453.

摘 要:【背景】S-腺苷甲硫氨酸(S-adenosyl-L-methionine, SAM)作为所有生物体内的重要中间代谢物,不仅可作为膳食补充剂,还具有良好的临床应用价值。【目的】将毕赤酵母重组菌GS115/DS16的SAM消耗途径阻断,进一步提高SAM的产量。【方法】分别敲除毕赤酵母重组菌GS115/DS16的S-腺苷同型半胱氨酸水解酶基因sah1、S-腺苷甲硫氨酸脱羧酶基因spe2和L-甲硫氨酰tRNA合酶基因msm1,构建工程菌G/Dsah、G/Dspe和G/Dmsm。检测3个工程菌的生长和SAM产量,以及L-Met添加量对SAM积累的影响。【结果】与出发菌GS115/DS16相比,工程菌G/Dsah、G/Dspe和G/Dmsm的单位菌体SAM产量分别提高了29.3%、55.6%和24.8%,其生长无显著差异。L-Met添加量优化后(0.06%),G/Dsah和G/Dmsm单位菌体的SAM产量分别提高了26.4%和28.9%。 【结论】构建的毕赤酵母工程菌可用于SAM的工业化生产,该代谢工程策略可用于改进其他化学品的生产。

关键词: S-腺苷甲硫氨酸;毕赤酵母; S-腺苷甲硫氨酸脱羧酶; S-腺苷同型半胱氨酸水解酶; L-甲硫氨酰 tRNA 合酶

This work was supported by the National Natural Science Foundation of China (31300076) and the Natural Science Foundation of Guangxi Zhuang Autonomous Region (2019GXNSFAA245001, 2018GXNSFAA281005, 2017GXNSFAA198136).

*Corresponding author. E-mail: xiulinqin@gxu.edu.cn

资助项目:国家自然科学基金(31300076);广西壮族自治区自然科学基金(2019GXNSFAA245001,2018GXNSFAA281005, 2017GXNSFAA198136)

Received: 2022-05-15; Accepted: 2022-06-30; Published online: 2022-07-21

Blocking consumption pathway increases production of S-adenosyl-L-methionine by *Pichia pastoris*

SU Huiying¹, MENG Shizheng¹, ZHAO Xinxin², QIAN Jiangchao², CHU Ju², QIN Xiulin^{*1}

2 State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China

Abstract: [Background] S-Adenosyl-L-methionine (SAM) is an important intracellular metabolite that can be used as a dietary supplement and to treat a variety of diseases. [Objective] To enhance SAM production for industrial application by blocking SAM consumption pathways in the recombinant Pichia pastoris strain GS115/DS16. [Methods] The genes associated with the metabolism of SAM, sah1 (encoding S-adenosyl-L-homocysteine hydrolase), *spe2* (encoding S-adenosylmethionine decarboxylase), and *msm1* (encoding mitochondrial methylthio-tRNA synthase), were knocked out in SAM-producing strain GS115/DS16. Accordingly, the engineered strains G/Dsah, G/Dspe, and G/Dmsm were constructed. The cell growth and SAM production of the three engineered strains were investigated. Additionally, the effect of methionine addition on SAM accumulation was studied. [Results] The knock-out did not affect cell growth, whereas it increased SAM production by 29.3%, 55.6%, and 24.8% in G/Dsah, G/Dspe, and G/Dmsm, respectively, compared with the parental strain GS115/DS16. When L-Met addition was decreased from 0.10% to 0.06%, the SAM production increased by 26.4% and 28.9% in G/Dsah and G/Dmsm, respectively. [Conclusion] Therefore, the engineered P. pastoris strains can be utilized in industrial production of SAM in a cost-effective manner, and the strategy can also be employed for improving the production of other chemicals.

Keywords: S-adenosyl-L-methionine; *Pichia pastoris*; S-adenosylmethionine decarboxylase; S-adenosyl-L-homocysteine hydrolase; mitochondrial methionyl-tRNA synthetase

S-腺苷甲硫氨酸(S-adenosyl-L-methionine, SAM)作为所有生物体内的重要中间代谢物, 是一种高价值的化学物质,具有良好的临床应 用价值。SAM 不仅被广泛地用作膳食补充剂, 也是抑郁症、肝病和癌症的有效治疗剂^[1-2]。 利用代谢工程改造微生物细胞的代谢途径可 显著提高 SAM 在细胞内的积累^[3-6]。主要的 改造方法有: (1) 强化 S-腺苷甲硫氨酸合成酶 (methionine adenosyltransferase, MAT) 基 因 (sam1 和 sam2)的表达量,提高 MAT 的活性, 从而增加 SAM 的产量;(2) 阻断或弱化 β-胱硫 醚合成酶基因(cys4)表达,减少 SAM 和 L-Met 在细胞内转化为半胱氨酸的途径,增加胞内 SAM 的积累;(3) 减少 SAM 分解代谢(消耗) 途径,提高 SAM 的胞内积累;(4)增加 ATP、 L-甲硫氨酸(L-Met)或前体的量,以提高 SAM 的胞内积累。

在生物体内 MAT 催化 ATP 和 L-Met 合成

¹ State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning 530004, Guangxi, China

SAM,不同来源的 MAT 基因的过表达是提高 SAM产量的首要策略^[7]。当MAT活性提高到一 定水平时,它不再是 SAM 合成的限速因子^[8]。 因此,在获得了 MAT 活性足够高的工程菌后, 减少 SAM 分解代谢途径是增加细胞内 SAM 积 累的另一有效策略。

在毕赤酵母(Pichia pastoris)中, SAM 代谢 途径如图 1A 所示。L-Met 和 ATP 在 MAT 的作用 下反应生成 SAM, SAM 可通过 S-腺苷甲硫氨酸 脱羧酶 (S-adenosylmethionine decarboxylase, SPE2)催化的脱羧反应生成脱羧 S-腺苷甲硫 氨酸;也可在 S-腺苷高半胱氨酸水解酶 (S-adenosyl-L-homocysteine hydrolase, SAH1)作 用下催化 S-腺苷高半胱氨酸(S-adenosyl-Lhomocysteine, AdoHcy)形成高半胱氨酸, 随后 转化为 β-胱硫醚或 L-Met^[9]。L-Met 作为参与 SAM 合成的底物,在 L-甲硫氨酰 tRNA 合酶 (mitochondrial methionyl-tRNA synthetase, MSM1)的作用下^[10],先形成 L-甲硫氨酰-tRNA, 再反应生成 N-甲酰-甲硫氨酰-tRNA, 参与生 理反应。我们前期的研究发现,弱化 S-腺苷甲 硫氨酸(S-adenosyl-L-methionine, SAM)分解代 谢途径 β-胱硫醚(β-cystathionine)合成途径能提 高毕赤酵母重组菌的SAM产量^[4],因此,减少 SAM 在细胞内的消耗是提高其产量的有效 策略。

L-Met 和 ATP 都是合成 SAM 的底物,增加 底物浓度或降低其成本对 SAM 的合成有着重要 的意义。构建以腺苷为底物合成 ATP 的重组菌 可提高 SAM 产量并降低其生产成本^[11-12]。 L-Met 既是合成 SAM 的底物,也是菌体生长的 碳源和氮源,因此,L-Met 的添加不仅影响 SAM 产量,还会对菌体的细胞代谢产生影 响。L-Met 作为 SAM 合成过程中需外源添加的 底物,通常采用过量添加的方法,这种方法就 会导致成本上升。有研究表明,胞内浓度过高的 L-Met 会抑制 TCA 循环和氧化磷酸化作用,造成 SAM 产量降低^[13]。通过优化 L-Met 的补料策略^[14],在突变酿酒酵母中使用低成本的 DL-Met (混合的 D-Met 和 L-Met)作为 SAM 生产的底物^[15],能显著提高 SAM 产量。酵母细胞中 L-Met 的转运主要是利用 *MUP1* 和 *MUP3* 编码的甲硫氨酸透过酶。在毕赤酵母重组菌中,共表达腺苷酸激酶基因 *ADK1、MUP1* 和 *SAM2* 能提高 L-Met 转化效率和 SAM 的产量^[16]。在酵母菌株中,共表达编码甲硫氨酸合成酶的 *Met6* 和 *SAM2* 可提高细胞内的 L-Met 水平,从而提高 L-Met 的利用率^[17],降低 SAM 生产的成本。

S-腺苷同型半胱氨酸水解酶(SAH1)、S-腺 苷甲硫氨酸脱羧酶(SPE2)和 L-甲硫氨酰 tRNA 合酶(MSM1)是 SAM 代谢途径的关键酶,阻断 这些途径可以减少 SAM 在胞内的消耗,提高 工程菌积累 SAM 的能力。细胞内适度的 L-Met 水平有利于 SAM 的合成,优化 L-Met 添加浓 度,可以提高工程菌 SAM 的产量。

1 材料与方法

1.1 菌株和质粒

毕赤酵母(*Pichia pastoris*)表达质粒 pGAPZ A 和菌株 GS115 购自 Invitrogen 公司。大肠杆 菌(*Escherichia coli*) DH5a 保藏于本实验室,用 于基因克隆,本研究所构建的其他质粒和菌株 见表1。

1.2 培养基

培养基 YPG、YPD、MD、BMGY、 BMMY 按照毕赤酵母表达系统说明书制备。

LLB 培养基(g/L): 胰蛋白胨 10.0, 酵母提 取物 5.0, NaCl 10.0, Zeocin 50 µg/mL。

<i>P. pastoris</i> expression plasmid, P_{GAP} promoter; ble^+ The <i>spe2</i> gene knock out vector containing 5' <i>spe2-ble-3'spe2</i> cassette; ble^+ The <i>sah1</i> gene knock out vector containing 5' <i>sah1-ble-3'sah1</i> cassette: ble^+	reference Invitrogen This study
<i>P. pastoris</i> expression plasmid, P_{GAP} promoter; ble^+ The <i>spe2</i> gene knock out vector containing 5' <i>spe2-ble-</i> 3' <i>spe2</i> cassette; ble^+ The <i>sah1</i> gene knock out vector containing 5' <i>sah1-ble-</i> 3' <i>sah1</i> cassette: ble^+	Invitrogen This study
<i>P. pastoris</i> expression plasmid, P_{GAP} promoter; ble^+ The <i>spe2</i> gene knock out vector containing 5' <i>spe2-ble-</i> 3' <i>spe2</i> cassette; ble^+ The <i>sah1</i> gene knock out vector containing 5' <i>sah1-ble-</i> 3' <i>sah1</i> cassette: ble^+	Invitrogen This study
The <i>spe2</i> gene knock out vector containing 5' <i>spe2-ble-3'spe2</i> cassette; ble^+ The <i>sah1</i> gene knock out vector containing 5' <i>sah1-ble-3'sah1</i> cassette: ble^+	This study
The sah1 gene knock out vector containing 5'sah1-ble-3'sah1 cassette: ble^+	TT1 1
	This study
The msm1 gene knock out vector containing 5'msm1-ble-3'msm1 cassette; ble ⁺	This study
Commercial P. pastoris host strain; his4 ⁻	Invitrogen
GS115 harboring recombinant methionine adenosyltransferase gene DS16; HIS4; kan ⁺	[18]
The <i>spe2</i> gene was knock out in GS115/DS16; <i>spe2</i> ; <i>ble</i> ⁺	This study
The sah1 gene was knock out in GS115/DS16; sah1; ble ⁺	This study
The msm1 gene was knock out in GS115/DS16; msm1; ble ⁺	This study
	The <i>sah1</i> gene knock out vector containing 5' <i>sah1-ble-3'sah1</i> cassette; <i>ble</i> ⁺ The <i>msm1</i> gene knock out vector containing 5' <i>msm1-ble-3'msm1</i> cassette; <i>ble</i> ⁺ Commercial <i>P. pastoris</i> host strain; <i>his4</i> ⁻ GS115 harboring recombinant methionine adenosyltransferase gene DS16; HIS4; kan ⁺ The <i>spe2</i> gene was knock out in GS115/DS16; <i>spe2</i> ; <i>ble</i> ⁺ The <i>sah1</i> gene was knock out in GS115/DS16; <i>sah1</i> ; <i>ble</i> ⁺ The <i>msm1</i> gene was knock out in GS115/DS16; <i>msm1</i> ; <i>ble</i> ⁺

表1 本研究所构建质粒和菌株

YPDS 培养基(g/L): 胰蛋白胨 20.0, 酵母提取 物 10.0, 葡萄糖 20.0, 山梨醇 182.2, 琼脂 15.0。

BSM 发酵培养基(g/L): K₂SO₄ 18.20, CaSO₄ 0.93, 85% H₃PO₄ 26.80, MgSO₄·7H₂O 14.90, KOH 4.13, glycerol 40.00, 毕赤微量 元素溶液(Pichia trace minerals 1 salt solution, PTM1) 12 mL_o

PTM1 (g/L): ZnCl₂ 20.00, KI 0.08, CoCl₂ 0.50, CuSO₄·5H₂O 6.00, MnSO₄·H₂O 3.00, Na₂MoO₄·2H₂O 0.20, H₃BO₃ 0.20, FeSO₄·7H₂O 65.00, 生物素 0.20, H₂SO₄ 5.00。

1.3 主要试剂和仪器

酵母氮源基础(yeast nitrogen base, YNB)、 生物素、氨苄青霉素(ampicillin, Amp)、遗传霉 素G418, Solarbio公司; Zeocin[™], Invitrogen公 司; 质粒小规模提取试剂盒、通用型 DNA 纯 化回收试剂盒、RNA 提取试剂盒, TIANGEN 公司; 2×Phanta® Max Master Mix、2×Taq Plus Master Mix、Exnase II 工具酶, Vazyme 公司; 限制性内切酶和 DNA Marker, Thermo Fisher Scientific 公司; T4 DNA Ligase, TaKaRa 公司。

气相色谱仪,上海海欣色谱仪器有限公司。

1.4 引物

研究所用引物见表 2, 由生工生物工程(上 海)股份有限公司合成。

1.5 毕赤酵母电击转化

挑取 MD 平板活化的毕赤酵母重组菌 GS115/DS16 单菌落接种至 YPD 培养基中,于 30°C、220 r/min条件下培养过夜;以1%接种 量转接至 100 mL YPD 培养基, 培养至 OD₆₀₀ 约为0.8-1.2,用于感受态细胞制备。毕赤酵母 感受态细胞的制备和电击转化参照毕赤酵母表 达手册进行。质粒pDsahZ、pDspeZ、pDmsmZ 分别经 Spe I /BamH I 酶切线性化, 然后电击 转化 GS115/DS16 感受态细胞。电转后迅速加 入 1 mL 冰预冷的无菌 1 mol 山梨醇, 温和混 匀, 取 100 µL 涂布于 YPDS 平板(含 100 µg/mL Zeocin), 于 30 °C 培养 3 d, 筛选转化子。

1.6 毕赤酵母工程菌摇瓶发酵生产 SAM

从 MD 平板上挑取单菌落接种至 3 mL YPG 培养基, 30 °C、220 r/min 培养过夜, 取 1 mL 培养液于 25 mL BMGY 中进行种子扩大

培养,培养16h(*OD*₆₀₀约为20.0)。收集 BMGY 培养的种子液,于4000 r/min 离心 5 min,弃 上清,菌体重悬于25 mL BSM 培养基(250 mL 摇瓶),于30 °C、220 r/min 甲醇诱导培养96 h。 每隔12h用气相色谱测定甲醇残留浓度,添加 甲醇至终浓度为1.2%(体积分数);每隔24 h添 加一定量的 L-Met,用 5 mol/L 氢氧化钾调节 pH(5.5-6.0)。各工程菌分别选取6个转化子用 摇瓶发酵,设3次生物学重复。

1.7 SAM 浓度和 SAM 合成酶酶活检测

胞内 SAM 浓度和 SAM 合成酶(MAT)的酶 活测定用 HPLC检测^[19],采用 Thermo-BioBasic SCX 色谱柱(4.6 mm×250 mm, 5 μm)。流动相为: A: 5 mmol/L 甲酸铵, pH 4.0; B: 500 mmol/L 甲 酸铵, pH 4.0。洗脱方式: 0.0-5.0 min, 100% A; 5.01-9.00 min, 10% A, 90% B; 9.01-12.00 min, 100% B; 12.01-14.00 min, 100% A。设定流 速为 1 mL/min, 检测波长 254 nm。1 个 MAT 酶 活单位定义为: 37 °C 条件下, 1 h 内转化生成 1 μmol 的 SAM 所对应的酶量。

1.8 气相色谱测定甲醇浓度

每隔 12 h 取 BSM 发酵培养液 1 mL, 常温 下 8 000 r/min 离心 2 min, 取上清, 经滤头 (0.22 μm)过滤, 用于甲醇浓度测定。使用气相色 谱仪, 填料为 chromosorbl01 型, 色谱柱长1 m、 内径 2 mm, 柱炉温度 125 °C, 汽化室温度 170 °C, 检测器温度 170 °C, 选用 H₂ 作为火焰 检测器燃气(流量为 30 mL/min), 空气为助燃 气(流量为 300 mL/min), N₂ 作为载气(流量为 15 mL/min), 采用 CDMC 色谱工作站进行分析。

表 2 本研究所用引物

Table 2 I fillers used in this study	Tabl	le 2	Primers	used	in t	his	stud	y
--------------------------------------	------	------	---------	------	------	-----	------	---

Primer name	Sequence $(5' \rightarrow 3')$	Amplified fragment length (bp)
sah3-F	AGCGTCGACGGTTGAAGGCCAACGCTCAGGACGT	490
sah3-R	CGCGGATCCAAAGGAGGCAAAAGCTCTGTAGGTAATTAGC	
sah5-F	AGGACTAGTGAGACAAGTATACTGATCTTCTTCTACCTATT	970
sah5-R	AAGGCGGCCGCGGTATTATTTGGTTTAGTGTAGTAGAGAGG	
msm3-F	AACGTCGACCTGTGACTTCACAGAAAGGAAACTAAAC	516
msm3-R	CGCGGATCCGGCGTAGAGCCCTTGAGAAATTTT	
msm5-F	AGGACTAGTCAGCAGTTTGGTCAATACAACCCTG	997
msm5-R	AAGGCGGCCGCACGTAGATGGTAAATACAGTGGTTAAGTGC	
spe3-F	AACGAGCTCGCGTCGACTTGGAATGAAAACTTTGAAAGAGACGG	513
spe3-R	CGCGGATCCATGTTACGAGGCTGTACTGAAATATTTGG	
spe5-F	AGGACTAGTCGGGAAATGACATCCTATAGGCGAATC	661
spe5-R	AACGAGCTCGGCGGCCGCATTGCCGGGATTAGAATGAAAAATTGTG	
zeocin-F	AAAGCGGCCGCTAACCCACACACCATAGCTTCAAAATGT	1 780
zeocin-R	AACGTCGACAGCTTGCAAATTAAAGCCTTCGAG	
sah5-F0	CTTGCCAATTTTTCAAAAGCAATTC	1 106
zeocin R0	ACATTTTGAAGCTATGGTGTGTGGG	
msm5-F0	GGGGAATGTCTTTCTATCAACAACC	1 100
zeocin R0	ACATTTTGAAGCTATGGTGTGTGGG	
spe5-F0	GGCCTTCCTATAATGCGATGACTTC	861
zeocin R0	ACATTTTGAAGCTATGGTGTGTGGG	

2 结果与分析

阻断 SAM 在胞内的消耗途径(图 1A)能进 一步提高毕赤酵母工程菌 GS115/DS16^[18]的 SAM 产量。为了敲除 DS16 的 S-腺苷同型半胱 氨酸水解酶基因 *sah1*、S-腺苷甲硫氨酸脱羧酶 基因 *spe2* 和 L-甲硫氨酰 tRNA 合成酶基因 *msm1*,构建了基因敲除载体 pDsahZ、pDspeZ 和 pDmsmZ。首先,以毕赤酵母菌 GS115/DS16 基因组 DNA 为模板,用引物对 spe5-F/spe5-R、 spe3-F/spe3-R 分别扩增基因 *spe2* 5′端和 3′端片 段。然后,将基因 *spe2* 5′端和 3′端片段分别克隆 到质粒 pGAPZ A,构建质粒 pDspe。最后,以 pGAPZ A 质粒为模板,用引物对 zeocinF/zeocinR 扩增 zeocin 抗性基因 *ble* 片段,并克隆到 pDspe 质粒的 *Not* I /*Sal* I 位点,获得用于敲除 *spe2* 的质粒 pDspeZ。

图 1 毕赤酵母重组工程菌 G/Dspe、G/Dsah 和 G/Dmsm 的构建 A:毕赤酵母 SAM 代谢途径. sah1: S-腺苷同型半胱氨酸水解酶基因; spe2: S-腺苷甲硫氨酸脱羧酶基因; sam: SAM 合成酶基 因; msm1: L-甲硫氨酰 tRNA 合酶基因; cys4: β-胱硫醚合成酶基因. B: 重组质粒 pDspeZ、pDsahZ 和 pDmsmZ 的酶切验证. C: 菌落 PCR 验证工程菌 G/Dspe、G/Dsah 和 G/Dmsm

Figure 1 Construction of recombinant strains G/Dspe, G/Dsah and G/Dmsm. A: Intracellular metabolic pathway for SAM utilization. The pathways of SAM metabolism in *Pichia pastoris. sah1*: S-adenosyl-L-homocysteine hydrolase gene; *spe2*: S-adenosylmethionine decarboxylase gene; *sam*: S-adenosylmethionine synthetase gene; *msm1*: Mitochondrial methionyl-tRNA synthetase gene; *cys4*: Cystathionine β -synthase gene. B: Verification of plasmids pDspeZ, pDsahZ and pDmsmZ by restriction enzyme digestion. C: Verification of engineered strains G/Dspe, G/Dsah and G/Dmsm by colony PCR.

以 GS115/DS16 的基因组 DNA 为模板,用 引物对 sah5-F/sah5-R、sah3-F/sah3-R 分别扩增 sah1 的 5'端和 3'端片段;分别将 sah1 的 5'和 3' 片段替换载体 pDspeZ 中 spe2 的 5'和 3'片段, 获得质粒 pDsahZ。同样地,分别将 msm1 的 5' 和 3'片段替换载体 pDspeZ 中 spe2 的 5'和 3'片 段,构建质粒 pDmsmZ。质粒 pDspeZ 和 pDsahZ、pDmsmZ 的酶切验证正确(图 1B)。

2.1.2 基因敲除工程菌的构建

质粒 pDspeZ、pDsahZ 和 pDmsmZ 经 Spe I /BamH I 酶切线性化,分别电击转化 GS115/DS16,获得工程菌 G/Dspe、G/Dsah 和 G/Dmsm。分别用引物对 zeocin R0/sah5-F0、 zeocin R0/msm5-F0 和 zeocin R0/spe5-F0 对 G/Dspe、G/Dsah 和 G/Dmsm 转化子进行 PCR 验证。对应的工程菌 G/Dsah 和 G/Dmsm 扩增出 1.1 kb 片段,G/Dspe 扩增出 0.8 kb 片段(图 1C)。 2.2 阻断 SAM 分解代谢途径对工程菌生 长的影响

在 MD 平板上,工程菌 G/Dspe、G/Dmsm 和 G/Dsah 均能正常生长(图 2A),说明敲除 *spe2*、 *msm1* 和 *sah1* 不会导致工程菌变成营养缺陷型。

图 2 毕赤酵母工程菌在 MD (A)、BMGY (B)、BMMY (C)和 BSM (D)培养基中的生长 Figure 2 Cell growth of engineered strains on MD medium (A) and in BMGY medium (B), BMMY medium (C), BSM medium (D).

以甘油为碳源时检测了工程菌在 BMGY 培养基中的生长情况。从 MD 平板上挑取单菌 落接种至 3 mLYPG 液体培养基中培养过夜, 再取 1 mL 培养液置于 25 mL BMGY 中进行培 养。结果显示,与出发菌 GS115/DS16 相比, 工程菌 G/Dspe、G/Dmsm 和 G/Dsah 的生长 无显著差异;培养 16 h 菌体生长进入平稳期 (图 2B)。

在甲醇诱导培养基中(BMMY和BSM)检测 了工程菌的生长。取 BMGY 培养 16 h 的培养 液,于4 000 r/min 离心 5 min,弃上清,菌体 重悬于 25 mL BMMY 或 BSM 中。工程菌于 30 °C、220 r/min 和甲醇诱导条件下培养 96 h, 每隔 12 h 添加甲醇至终浓度为 1.2% (体积分 数)。在甲醇诱导培养基 BMMY 中,与出发菌 株 GS115/DS16 相比,工程菌 G/Dsah 生长较缓 慢,G/Dspe和G/Dmsm无显著差异(图 2C);在 基础盐培养基 BSM 中,工程菌与出发菌的生 长趋势相似且未出现停滞期,菌体生长呈持续 上升的趋势,菌体量显著高于 BMMY 培养条 件下(图 2D)。因此,后继发酵 SAM 培养基采 用生长较好的 BSM 培养基。

2.3 阻断 SAM 分解代谢途径对其产量的 影响

从工程菌分别挑选 6 个阳性转化子在摇瓶 中检测其 SAM 产量,在基础盐培养基 BSM 中 发酵,甲醇诱导 12 h 后,每隔 24 h 添加 L-Met 至终浓度为 0.10% (质量体积分数),诱导 96 h 后 测定各工程菌的菌体量和胞内 SAM 浓度。

与对照菌 GS115/DS16 的单位菌体干重 SAM 产量(98.8 mg/g-DCW)相比,工程菌 G/Dspe、 G/Dsah 和 G/Dmsm 的 SAM 产量分别提高了 29.3%、55.6%和 24.8%,达到 127.7、153.7 和 123.3 mg/g-DCW;其中 G/Dsah 的 SAM 产量提 高幅度最大,提高了 55.6% (图 3)。检测不同工 程菌胞内的 MAT 酶活,与对照菌 GS115/DS16 的 MAT 酶活[(236.5±19.4) U/g-DCW]相比,各工程 菌的 MAT 酶活[G/Dspe: (244.7±20.8) U/g-DCW; G/Dsah: (228.4±18.6) U/g DCW; G/Dmsm: (240.2±18.5) U/g-DCW]无显著性差异,说明工程 菌 SAM 产量的提高并非其 MAT 酶活提高造成。

图 3 工程菌 G/Dspe、G/Dsah 和 G/Dmsm 转化 子的 SAM 产量盒须图 每个工程菌挑选 6 个转 化子进行摇瓶发酵,诱导 96 h,将转化子的单位 菌体干重 SAM 产量做成盒须图.在盒须图中, —:样本中最大值和最小值;□:平均值;长方 形盒子内的样本数占 75%.分别对工程菌和对照 菌 GS115/DS16 的数据进行 t 检验显著性分析, *: P<0.05

Figure 3 Box-plot representation of SAM specific production of G/Dspe, G/Dsah and G/Dmsm transformants. Six transformants from each engineered stain were cultivated in shake flask for 96 h. Box-plot is used to show the distribution of SAM specific production. In box plot, —: The maximum and minimum values in the sample; \Box : Average value; the box represents 75% of the sample size. *: P < 0.05 indicate significant differences between engineered strains and parental strain GS115/DS16 by Student's *t*-test.

2.4 L-Met 添加量对工程菌 SAM 积累的 影响

L-Met 直接参与细胞中 SAM 的合成,利用微生物合成 SAM 时,优化 L-Met 添加策略可提高 SAM 产量。但额外添加的 L-Met 浓度过高时会抑制 MAT 酶活,对菌体生长也有影响^[20]。因此,我们研究了不同的 L-Met 添加量(0.06%和 0.10%)对工程菌 SAM 产量和菌体生长的影响。

2.4.1 L-Met 添加量对工程菌 G/Dspe 合成 SAM 的影响

在基础盐培养基 BSM 中,甲醇诱导 96 h, 诱导期间每隔 24 h 加入 L-Met 至终浓度为 0.06%或 0.10% (质量体积分数)。不同的 L-Met 添加量对工程菌 G/Dspe 的生长和单位菌体干 重 SAM 产量无显著影响(图 4)。

2.4.2 L-Met 添加量对重组菌 G/Dsah 合成 SAM 的影响

不同 L-Met 添加量条件下,工程菌 G/Dsah 的生长无显著差异。当 L-Met 添加量为 0.10% 时,G/Dsah 的单位菌体干重 SAM 产量为

(155.5±9.5) mg/g-DCW。L-Met 添加量为 0.06%
时, G/Dsah 的单位菌体干重 SAM 产量达到
(196.6±12.2) mg/g-DCW,比 0.10% L-Met 添加量时提高了 26.4% (图 5)。因此,0.06%的
L-Met 添加量更适合 G/Dsah 生产 SAM。

2.4.3 L-Met 添加量对重组菌 G/Dmsm 合成 SAM 的影响

当 L-Met 添加量为 0.06%时, 在发酵后期 (72-96 h), 工程菌 G/Dmsm 的生物量和单位菌 体干重 SAM 产量显著高于 L-Met 添加量为 0.10%时(图 6)。当 L-Met 添加量为 0.10%时, G/Dmsm 的单位菌体干重 SAM 产量为 (136.8±7.1) mg/g-DCW, L-Met 添加量为 0.06% 时, G/Dmsm 的菌体量和单位菌体干重 SAM产量 [(176.4±9.2) mg/g-DCW]分别比 0.10% L-Met 添加 量时提高了 17.2%和 28.9%。检测了工程菌 G/Dmsm 胞内的 MAT 酶活,当 L-Met 添加量为 0.06%时 MAT 酶活为(274.4±21.3) U/g-DCW, 较 优化前[(240.2±18.5) U/g-DCW]提高了 14.2%。结 果表明, 0.06% L-Met 添加量比 0.10% L-Met 添 加量更适合 G/Dmsm 生产 SAM。

图 4 L-Met 添加量对工程菌 G/Dspe 生长(A)和 SAM 产量(B)的影响

Figure 4 The influence of L-Met addition on cell growth (A) and SAM accumulation (B) of engineered strain G/Dspe.

图 5 L-Met 添加量对工程菌 G/Dsah 的生长(A)和 SAM 产量(B)的影响 对数据进行 *t* 检验显著性分 析.**: *P*<0.01

Figure 5 The influence of L-Met addition on cell growth (A) and SAM accumulation (B) of engineered strain G/Dsah. **: P < 0.01 indicate significant differences between the results on different L-Met concentration by Student's *t*-test.

*: *P*<0.05; **: *P*<0.01

Figure 6 The influence of L-Met addition on cell growth (A) and SAM accumulation (B) of engineered strain G/Dmsm. *: P < 0.05; **: P < 0.01 indicate significant differences between the results on different L-Met concentration by Student's *t*-test.

3 讨论与结论

本研究通过敲除重组菌 GS115/DS16 (过表 达高活性 MAT 的毕赤酵母重组菌)的 S-腺苷同 型半胱氨酸水解酶基因 *sah1*、S-腺苷甲硫氨酸 脱羧酶基因 *spe2*和 L-甲硫氨酰 tRNA 合酶基因 *msm1*,分别抑制了 SAM 经转甲基向 AdoHcy 转化、经脱羧向脱羧 S-腺苷甲硫氨酸转化以及 向 L-甲硫氨酰-tRNA转化,减少 SAM 在胞内的 消耗利用,提高了工程菌积累 SAM 的能力。 通过优化 L-Met 添加量,进一步提高了工程菌 G/Dmsm 和 G/Dsah 的 SAM 产量。

在毕赤酵母中, 敲除 *spe2、sah1*和 *msm1*不会造成菌株的营养缺陷(图 2A)。SAM 脱羧转化为脱羧 S-腺苷甲硫氨酸是多胺合成的重要途径^[21]。在粟酒裂殖酵母(*Schizosaccharomyces pombe*)和酿酒酵母(*Saccharomyces cerevisiae*)中, 敲除 S-腺苷甲硫氨酸脱羧酶基因 *spe2*后,细胞不能合成亚精胺或精胺,耗尽胞内多胺后停止成长,会造成亚精胺营养缺陷型,培养基中需额外添加亚精胺菌体才能生长^[22-23]。但我们的结果显示,敲除 *spe2*后,工程菌 G/Dspe在 BMMY 培养基或 BSM 基础盐培养基中都能正常生长。与对照菌 GS115/DS16 相比,G/Dspe 菌株的单位菌体干重 SAM 产量提高了 29.3%。

S-腺苷高半胱氨酸(AdoHcy)作为 SAM 众 多转甲基化反应的共同产物,胞内的 SAM/AdoHcy 值处于一个稳定水平。SAH 的功 能很可能与 L-Met/半胱氨酸的体内平衡有关, 但敲除 sah1 并不影响毕赤酵母的正常生长;只 有在缺乏硫同化的情况下, sahl 在酵母中才是 必需的^[24]。合成培养基 BMMY 中,与出发菌 株 GS115/DS16 相比, G/Dsah 菌株的生长较缓 慢; 而在基础盐培养基 BSM 中, G/Dsah 菌株 的生长与对照菌无显著差异(图 2C、2D)。这很 可能是因为与合成培养基 BMMY 相比, 基础 盐培养基 BSM 中含有更丰富的硫,可以补偿 工程菌由于 sah1 敲除后不能进行的硫循环。 sah1 敲除后抑制了 G/Dsah 胞内的转甲基和转 巯基作用,一定程度上减少了 SAM 的转化利 用。因此, G/Dsah 菌株的单位菌体干重 SAM 产量提高幅度最大,提高了 55.6%。类似的研 究发现,在日本清酒酵母中引入突变的 sah1 并 敲除野生型 SAH1 后 SAM 产量提高了 2.5 倍^[25]。

参与 SAM 合成的底物 L-Met 经 L-甲硫氨 酰 tRNA 合酶 MSM1 催化^[10],先形成 L-甲硫

氨酰-tRNA,再生成 N-甲酰-甲硫氨酰-tRNA,参 与生理反应。敲除 msm1 阻断了工程菌 G/Dmsm 由 L-Met 生成 L-甲硫氨酰-tRNA 的途径,一定程 度上提高了胞内的 L-Met 浓度,但并未影响其正 常生长。在 BMMY 和 BSM 培养基中,G/Dmsm 菌株和对照菌的生长曲线基本持平。细胞内 L-Met 浓度增加有利于 SAM 的合成,与对照菌 DS16 相比,G/Dmsm 菌株的单位菌体干重 SAM 产量提高了 24.8%。

L-Met 是细胞内重要的含硫化合物,参与 许多重要的生理代谢, 包括合成蛋白质和活性 甲基供体 SAM。在植物的相关研究中发现, Lemna pausicostata 将细胞中 80%的 L-Met 用于 合成 SAM^[26]。利用微生物合成 SAM 时,优化 发酵培养中的 L-Met 添加量可提高 SAM 产量并 降低发酵成本。但添加的 L-Met 浓度过高会抑 制 MAT 酶活和菌体生长^[20]。与出发菌株 GS115/DS16相比, 工程菌 G/Dspe、G/Dmsm 和 G/Dsah 胞内的 L-Met 浓度很可能会有不同程度 的增加。发酵过程中添加相同量的 L-Met, 各 工程菌的 L-Met 消耗量可能会由于胞内原有积 累程度的不同而改变。敲除 sahl 后可能会影响 到SAM合成反应底物L-Met的循环,从而影响 SAM 的积累。L-Met 添加量为 0.06%时, G/Dsah 的单位菌体干重 SAM 产量比 0.10% L-Met 添加量时提高了 26.4%。MSM1 直接和 L-Met代谢相关, 敲除 msml 很可能会提高胞内 的 L-Met 浓度。L-Met 添加量为 0.06%时, G/Dmsm的菌体量、单位菌体干重 SAM 产量和 MAT 酶活水平比 0.10% L-Met 添加量时分别提 高了 17.2%、28.9%和 14.2%。这说明低浓度的 L-Met 添加不仅有利于 G/Dmsm 菌体的生长, 而且对 MAT 酶活和 SAM 产量也有促进作用。 L-Met 作为底物,是 SAM 生物合成的瓶颈之 一,发酵过程要额外补加;当 L-Met 添加量较 高时(0.15%), 酵母的 TCA 循环和氧化磷酸化 作用被显著抑制, 胞内 ATP 也基本被耗尽^[13]。 ATP 的减少不利于细胞的增殖, 也很可能成为 SAM 生产的限制步骤。因此, 相较于高浓度的 L-Met 添加量, 在保证底物供应的情况下, 低 浓度 L-Met 添加量(0.06%)更适于工程菌 SAM 的 生产。

本研究通过阻断毕赤酵母胞内 SAM 的转 化利用途径,进一步提高了工程菌积累 SAM 的 能力。与出发菌株相比,工程菌 G/Dspe、G/Dsah 和 G/Dmsm 的单位菌体干重 SAM 产量分别提 高了 29.3%、55.6%和 24.8%。通过优化 L-Met 添加量, G/Dsah 和 G/Dmsm 的单位菌体干重 SAM 产量分别达到(196.6±12.2) mg/g-DCW 和 (176.4±9.2) mg/g-DCW,是出发菌的 2.0 倍和 1.8 倍。 通过代谢工程改造对 SAM 代谢途径相关基因 进行多基因的过表达或敲除,毕赤酵母和酿酒 酵母的单位菌体干重 SAM 产量最高可达到 186.3 mg/g-DCW^[4]和 455.1 mg/g-DCW^[3]。本研 究构建的工程菌 G/Dsah, 在优化 L-Met 添加量 后,单位菌体干重 SAM 产量达到目前报道的毕 赤酵母最高水平;单基因敲除工程菌的 SAM 产 量较出发菌的均有提高,双基因或三基因组合 敲除后,工程菌的 SAM 产量很可能会进一步提 升。由于各工程菌的基因型不同,其生理生化 特性存在差异, SAM 发酵的最优条件也不尽相 同,因此,经发酵调控优化后工程菌的 SAM 产 量还有进一步提升的潜力。

REFERENCES

- MISCHOULON D, ALPERT JE, ARNING E, BOTTIGLIERI T, FAVA M, PAPAKOSTAS GI. Bioavailability of S-adenosyl methionine and impact on response in a randomized, double-blind, placebocontrolled trial in major depressive disorder[J]. The Journal of Clinical Psychiatry, 2012, 73(6): 843-848.
- [2] PARASHAR S, CHEISHVILI D, ARAKELIAN A,

HUSSAIN Z, TANVIR I, KHAN HA, SZYF M, RABBANI SA. S-adenosylmethionine blocks osteosarcoma cells proliferation and invasion *in vitro* and tumor metastasis in vivo: therapeutic and diagnostic clinical applications[J]. Cancer Medicine, 2015, 4(5): 732-744.

- [3] CHEN HL, ZHU NQ, WANG Y, GAO XX, SONG YH, ZHENG J, PENG JP, ZHANG X. Increasing glycolysis by deletion of kcs1 and arg82 improved S-adenosyl-L-methionine production in *Saccharomyces cerevisiae*[J]. AMB Express, 2021, 11(1): 20.
- [4] QIN XL, LU JJ, ZHANG Y, WU XL, QIAO XF, WANG ZP, CHU J, QIAN JC. Engineering *Pichia pastoris* to improve S-adenosyl- l-methionine production using systems metabolic strategies[J]. Biotechnology and Bioengineering, 2020, 117(5): 1436-1445.
- [5] XU CT, SHI ZW, SHAO JQ, YU CK, XU ZN. Metabolic engineering of *Lactococcus lactis* for high level accumulation of glutathione and S-adenosyl-Lmethionine[J]. World Journal of Microbiology & Biotechnology, 2019, 35(12): 185.
- [6] HAYAKAWA K, MATSUDA F, SHIMIZU H. 13 C-metabolic flux analysis of ethanol-assimilating Saccharomyces cerevisiae for S-adenosyl-L-methionine production[J]. Microbial Cell Factories, 2018, 17(1): 82.
- [7] Hero Nmeri Godspower, 乔郅钠, 徐美娟, 饶志明. 不同来源 S-腺苷甲硫氨酸合酶在大肠杆菌中的表达及催化应用[J]. 食品与发酵工业, 2022. DOI: 10.13995/j.cnki.11-1802/ts.031256.
 GODSPOWER H, QIAO ZN, XU MJ, RAO ZM. Expression and catalytic application of S-adenosylmethionine synthase from different sources in *Escherichia* coli[J]. Food and Fermentation Industries, 2022. DOI: 10.13995/j.cnki.11-1802/ts.031256 (in Chinese).
- [8] QIN XL, QIAN JC, YAO GF, ZHUANG YP, ZHANG SL, CHU J. GAP promoter library for fine-tuning of gene expression in *Pichia pastoris*[J]. Applied and Environmental Microbiology, 2011, 77(11): 3600-3608.
- CHEN HL, WANG ZL, CAI HB, ZHOU CL. Progress in the microbial production of S-adenosyl-L-methionine[J]. World Journal of Microbiology & Biotechnology, 2016, 32(9): 153.
- [10] SERRE L, VERDON G, CHOINOWSKI T, HERVOUET N, RISLER JL, ZELWER C. How methionyl-tRNA synthetase creates its amino acid recognition pocket upon L-methionine binding[J]. Journal of Molecular Biology, 2001, 306(4): 863-876.
- [11] 江林林, 吴磊, 许海霞, 黄坚丽, 张永进, 徐期, 杨 勇. ATP 合成菌株的构建及用于联合生产 S-腺苷甲

硫氨酸[J]. 生物技术通报, 2019, 35(6): 221-226. JIANG LL, WU L, XU HX, HUANG JL, ZHANG YJ, XU Q, YANG Y. Construction of ATP synthetic strain and its application in the production of Sadenosylmethionine[J]. Biotechnology Bulletin, 2019, 35(6): 221-226 (in Chinese).

- [12] 郑计瑞,陈丽芬,杨善岩,朱家荣. 腺嘌呤合成腺苷甲 硫氨酸的工程菌构建及其高产株筛选[J]. 食品与发酵 工业, 2014, 40(9): 23-28.
 ZHENG JR, CHEN LF, YANG SY, ZHU JR. Synthesis of S-adenosylmethionine from adenine in constructing engineered strain and the screening of high yield strain[J].
 Food and Fermentation Industries, 2014, 40(9): 23-28 (in Chinese).
- [13] KENSHI H, FUMIO M, HIROSHI S. Metabolome analysis of *Saccharomyces cerevisiae* and optimization of culture medium for S-adenosyl-L-methionine production[J]. AMB Express, 2016, 6(1): 38.
- [14] HU H, QIAN JC, CHU J, WANG YH, ZHUANG YP, ZHANG SL. Optimization of L: -methionine feeding strategy for improving S-adenosyl-L: -methionine production by methionine adenosyltransferase overexpressed *Pichia pastoris*[J]. Applied Microbiology and Biotechnology, 2009, 83(6): 1105-1114.
- [15] LIU W, TANG DD, SHI R, LIAN JZ, HUANG L, CAI J, XU ZN. Efficient production of S-adenosyl-1-methionine from dl-methionine in metabolic engineered *Saccharomyces cerevisiae*[J]. Biotechnology and Bioengineering, 2019, 116(12): 3312-3323.
- [16] RAVI KANT H, BALAMURALI M, MEENAKSHISUNDARAM S. Enhancing precursors availability in *Pichia pastoris* for the overproduction of S-adenosyl-L-methionine employing molecular strategies with process tuning[J]. Journal of Biotechnology, 2014, 188: 112-121.
- [17] CHEN H, WANG Z, WANG Z, DOU J, ZHOU C. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in *Saccharomyces cerevisiae*[J]. World Journal of Microbiology & Biotechnology, 2016, 32(4): 56.
- [18] HU H, QIAN JC, CHU J, WANG Y, ZHUANG YP, ZHANG SL. DNA shuffling of methionine adenosyltransferase gene leads to improved S-adenosyl-L-methionine production in *Pichia pastoris*[J]. Journal of Biotechnology, 2009, 141(3/4): 97-103.
- [19] YAO GF, QIN XL, CHU J, WU XL, QIAN JC. Expression, purification, and characterization of a

recombinant methionine adenosyltransferase pDS16 in *Pichia pastoris*[J]. Applied Biochemistry and Biotechnology, 2014, 172(3): 1241-1253.

- [20] HE JY, DENG JJ, ZHENG YH, GU J. A synergistic effect on the production of S-adenosyl-L-methionine in *Pichia pastoris* by knocking in of S-adenosyl-Lmethionine synthase and knocking out of cystathioninebeta synthase[J]. Journal of Biotechnology, 2006, 126(4): 519-527.
- [21] BALASUNDARAM D, DINMAN JD, TABOR CW, TABOR H. SPE1 and SPE2: two essential genes in the biosynthesis of polyamines that modulate +1 ribosomal frameshifting in *Saccharomyces cerevisiae*[J]. International Journal of Molecular Sciences, 1994, 176(22): 7126-7128.
- [22] CHATTOPADHYAY MANAS K, WHITE TC, HERBERT T. Absolute requirement of spermidine for growth and cell cycle progression of fission yeast (*Schizosaccharomyces pombe*)[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(16): 10330-10334.
- [23] CHATTOPADHYAY MK, TABOR CW, TABOR H. Spermidine but not spermine is essential for hypusine biosynthesis and growth in *Saccharomyces cerevisiae*: spermine is converted to spermidine *in vivo* by the FMS1-amine oxidase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(24): 13869-13874.
- [24] NERMINA M, INGO S, HEIMO W, GERALD R, KOHLWEIN SEPP D, OKSANA T. S-adenosyl-Lhomocysteine hydrolase, key enzyme of methylation metabolism, regulates phosphatidylcholine synthesis and triacylglycerol homeostasis in yeast: implications for homocysteine as a risk factor of atherosclerosis[J]. The Journal of Biological Chemistry, 2008, 283(35): 23989-23999.
- [25] ANO A, SUEHIRO D, CHA-AIM K, ARITOMI K, PHONIMDAENG P, NONTASO N, HOSHIDA H, MIZUNUMA M, MIYAKAWA T, AKADA R. Combinatorial gene overexpression and recessive mutant gene introduction in sake yeast[J]. Bioscience, Biotechnology, and Biochemistry, 2009, 73(3): 633-640.
- [26] STÉPHANE R, BLOCK MARYSE A, PASCAL R, SAMUEL J, GILLES C, FABRICE R, ROLAND D. Methionine metabolism in plants: chloroplasts are autonomous for *de novo* methionine synthesis and can import S-adenosylmethionine from the cytosol[J]. The Journal of Biological Chemistry, 2004, 279(21): 22548-22557.