专论与综述

硫酸盐还原细菌生物被膜的形成与调控研究进展

朱镭#, 王月莹#, 周荣华*

湖北省农业科学院 湖北省生物农药工程研究中心 湖北省农业科技创新中心生物农药分中心 国家生物农药 工程技术研究中心, 湖北 武汉 430064

朱镭, 王月莹, 周荣华. 硫酸盐还原细菌生物被膜的形成与调控研究进展[J]. 微生物学通报, 2022, 49(5): 1853-1862 Zhu Lei, Wang Yueying, Zhou Ronghua. Formation and regulation of sulfate-reducing bacteria biofilm: a review[J]. Microbiology China, 2022, 49(5): 1853-1862

摘 要:硫酸盐还原细菌(sulfate-reducing bacteria, SRB)形成的生物被膜是微生物导致金属锈蚀 行为的主要原因,同时也是重金属污水微生物修复技术的关键因子。生物被膜形成及调控机制研 究对 SRB 的防治和利用均十分重要。本文综述了近年来 SRB 生物被膜的研究进展,包括 SRB 生 物被膜的胞外多聚物组成和控制因子,并着重阐述了目前已知的调控因子对 SRB 生物被膜形成的 影响。

关键词:硫酸盐还原细菌;生物被膜;胞外组分;控制因子

Formation and regulation of sulfate-reducing bacteria biofilm: a review

ZHU Lei[#], WANG Yueying[#], ZHOU Ronghua^{*}

National Biopesticide Engineering Research Centre, Biopesticide Branch of Hubei Innovation Centre of Agricultural Science and Technology, Hubei Biopesticide Engineering Research Centre, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China

Abstract: The biofilm of sulfate-reducing bacteria (SRB) is regarded as the main culprit of the microbially influenced corrosion, but it is also the key to the microbial remediation of heavy metal-polluted water. The formation and regulation mechanisms of biofilm are very important for SRB control and utilization. In this study, we summarized the research progresses on SRB biofilm, including

#对本文贡献相同

#These authors equally contributed to this work

*Corresponding author: E-mail: ronghua.zhou@nberc.com

基金项目: 国家自然科学基金(31900058); 湖北省农业科学院青年科学基金(2020NKYJJ17, 2020NKYJJ18)

Supported by: National Natural Science Foundation of China (31900058); Youth Science Foundation of Hubei Academy of Agricultural Sciences (2020NKYJJ17, 2020NKYJJ18)

Received: 2021-09-15; **Accepted:** 2021-12-25; **Published online:** 2022-01-17

extracellular components of biofilm and biofilm control factors, and elucidated the role of regulators in the biofilm formation.

Keywords: sulfate-reducing bacteria; biofilm; extracellular components; control factors

硫酸盐还原细菌(sulfate-reducing bacteria, SRB)是一类广泛存在于自然界中的厌氧细菌, 主要分布于细菌的 5 个门 60 个属 220 多个种。 例如变形菌门的脱硫弧菌属(Desulfovibrio),厚壁 菌门的脱硫肠状菌属(Desufotomaculum)、脱硫 鼠孢菌属(Desulfosporomusa)和脱硫芽孢弯曲菌 属(Desulfosporosinus), 硝化螺旋菌门的热脱硫 弧菌属(Thermodesulfovibrio),以及热脱硫杆菌 门的热脱硫杆菌属(Thermodesulfobacterium)等。 硫酸盐还原菌在古菌中也有少量分布,如广古 菌门的古丸菌属(Archaeoglobus)及泉古菌门 的热分支菌属(Thermocladium)、暖枝菌属 (Caldivirga)等^[1]。SRB 在生命活动中通过还原 硫酸盐或其他氧化态硫化物作为电子受体来异 化有机物质,并且在土壤、海水、温泉、污泥、 污水、含硫沉积物、动物肠道、排泄物等诸多 环境中均有分布,因此是地球硫循环中不可或 缺的一员^[2]。

生物被膜广泛存在于自然和人工环境中的 有机或无机物质表面,是一种微生物或多种微生 物共同形成的大量细菌聚集膜样物。这类膜状结 构是由细胞分泌的胞外多糖(exopolysacchride, EPS)、蛋白质和核酸等组成的复合物将自身包 裹其中而形成^[3]。在厌氧环境中,SRB 能以有 机物、氢气(H₂)等作为电子供体还原硫酸盐, 产生硫离子(S²⁻)、硫氢根离子(HS⁻)、硫化氢 (H₂S)和有机酸等氧化剂。随着 SRB 在金属表面 附着形成生物被膜,上述代谢产物能氧化金属 使其成为离子状态并表现为点状锈蚀,这一类 以 SRB 为主的微生物介导的金属锈蚀行为被称 为 microbially induced corrosion (MIC)^[4]。金属 锈蚀每年在全球范围内造成 2.5 万亿美元的经 济损失,约占全球生产总值的 3.4%,而 MIC 占其中的 30%,MIC 多发生于原油生产、自来 水产业等管道系统及码头、港口和码头上的钢 桩等环境^[5],如 SRB 的生物被膜能引起埋藏于 地下的天然气传输管道锈蚀泄露,产生的 H₂S 等易导致原油酸化^[6-7]。因此,抑制和清除 SRB 生物被膜在 MIC 控制领域至关重要。

另一方面,由于 SRB 代谢产物具有强还原 性,是水体微生物修复领域中重金属污染治理 的主要应用细菌^[8]。不同于其他污染物的可降 解特性, 重金属污染物具有在环境中循环、富 集和无法降解的特性^[9]。SRB 的胞外电子传递 过程能使重金属离子发生价态还原反应,降低 毒性: 而代谢产生的 H₂S 等强还原性产物也能 与水体中的重金属离子结合形成金属硫化物沉 淀,从而实现从污水中去除重金属离子。目前 该技术的应用瓶颈在于,高浓度重金属离子及 强酸环境等条件容易抑制细菌生长,从而降低 净水效率。生物被膜中由 EPS、蛋白质和核酸 等组成的胞外复合结构能有效吸附污水中重金 属离子和有机化合物^[10],在细菌周围形成良好 的微环境,帮助细菌抵御外界不利因素,从而 增强污水处理效果^[11]。因此,了解 SRB 的生物 被膜形成和调控机制,对于控制 SRB 和增强净 水效率具有重要意义。

SRB 研究的主要对象是脱硫弧菌属 (*Desulfovibrio*)细菌。该属细菌为革兰氏阴性 菌,严格厌氧,不产芽孢,菌体呈弯曲或螺旋 杆状,极生鞭毛;生长温度范围较广,一般为 30℃,最适 pH 为 7.0-7.8,生长对数期严格受 氧气抑制,稳定期可抵御氧气胁迫;碳源为乳酸钠、丙酮酸钠、二氧化碳等;氮源为铵盐^[12]。目前研究模式菌株为 1946 年从英国肯特郡希尔登伯勒海岸污泥中分离并鉴定的 *D. vulgaris* Hildenborough 菌株^[13]。本文对近年来以 *D. vulgaris* 为主要研究对象的 SRB 生物被膜领域研究进展进行综述,主要讨论其生物被膜的胞外多聚物 组成、控制因子的发现及可能的调控机理。

硫酸盐还原细菌生物被膜的胞外 组成及相关合成基因

多年来对大肠杆菌(Escherichia coli)、铜绿 假单胞菌(Pseudomonas aeruginosa)等病原细菌 生物被膜的研究表明,细菌生物被膜主要是通 过产生 EPS、基质蛋白和胞外 DNA (extracellular DNA, eDNA)形成复杂的多聚物结构将细胞包 裹其中而成^[14]。

在 SRB 中, Beech 等在 D. desulfuricans 于 低碳钢表面形成的生物被膜中观察到丰富的 EPS,并通过气相色谱等方法鉴定出这类 EPS 主 要为甘露糖、葡萄糖和半乳糖的聚合物^[15]。然而 Clark 等通过模式菌株 D. vulgaris Hildenborough 的质粒消除突变株 ΔMP 与野生型菌株的电镜 观察,综合生物被膜胞外组分鉴定比较、生物 被膜的蛋白酶处理分析等结果,认为 SRB 的生 物被膜构成与其他细菌不同,主要组分为蛋白 质,伴有少量 EPS^[16],但该研究未进一步证明 具体的蛋白组分构成及相关合成基因。同时, 该研究还证实质粒消除突变株 ΔMP 生物被膜 形成能力及运动能力均有下降^[16]。Poosarla 等 依据基因组分析发现, ΔMP 菌株中所消除的大 质粒 pDV^[13]携带 41 个 EPS 合成相关功能基因, 而在染色体上也存在至少 67 个 EPS 合成、运 输相关基因^[17],因此上述结论尚不足以解释 SRB 的生物被膜构成。此外, Poosarla 等还 发现,尽管蛋白酶处理确实可以有效地清除 D. vulgaris 生物被膜,但一些商业化的糖基水 解酶类,如纤维素酶、木聚糖酶等同样也能清 除大部分的生物被膜;随后通过 EPS 染色观察发 现 D. vulgaris 生物被膜的胞外多聚物中含有以 甘露糖、N-乙酰半乳糖胺和果糖为组分的 EPS, 并且证实 D. vulgaris 生物被膜的形成受到体外 添加甘露糖及其同型物的胁迫抑制,综合这一 结果及上述全基因组 EPS 合成基因簇分析, 确定了相关的是甘露糖多聚物组分相关基因簇 (dvu0685-dvu0698)、N-乙酰半乳糖胺相关基因 簇 (dvu0319-dvu0331) 和 果 糖 相 关 基 因 簇 (dvu0072-dvu0093)^[17],这些基因的功能及 EPS 的合成调控机制等还有待进一步深入研究。SRB 生物被膜 eDNA 相关组分目前尚未见报道。

2 硫酸盐还原细菌生物被膜的控制 研究

SRB 生物被膜控制的研究十分重要,但由 于机制理论研究较少,目前油田、管道防锈等 领域主要利用各类杀菌剂进行 MIC 防控,而在 水体修复领域中的增效应用研究则尚处于初步 探索阶段。

杀菌剂根据性质一般分为氧化型和非氧化型。2,2-二溴-3-次氮基丙酰胺(DBNPA)为常用的氧化型有机溴类杀菌剂,其分子能快速渗透进细胞,通过氧化胞内蛋白质及酶类最终导致细胞的死亡,并且由于该分子能直接渗透到生物被膜深处杀死细胞,因而具有良好的生物被膜清除性能^[18]。DBNPA适用于碱性水环境下的快速杀菌,并能自行降解成无毒害的二氧化碳、氮气和溴离子,比二氧化氯、次氯酸钠等氧化型杀菌剂更安全,但这些氧化型杀菌剂均存在

加剧金属腐蚀等副作用^[19]。

目前油田行业大多使用非氧化型杀菌剂, 包括季铵盐杀菌剂、季鏻盐杀菌剂和醛类等。 季铵盐杀菌剂及新一代季鳞盐杀菌剂产品是 一种抗菌性表面活性剂,其杀菌原理是改变细 菌细胞膜的通透性,使菌体物质外渗,阻碍其 代谢而使细菌死亡,同时作为表面活性剂对包 含生物被膜的污泥具有较强的剥离作用,从而能 有效杀死污泥下层的 SRB^[20]。目前抗菌性表面 活性剂中最常用的是四羟甲基硫酸磷(THPS)。 THPS 属于季鏻盐杀菌剂,具有优良的生物被膜 清除、杀菌性能,同时由于仅含有短侧链,不 会像其他季铵盐或季鏻盐杀菌剂一样因产生泡 沫而发生吸附导致杀菌效果发挥不完全^[21]。然 而长期单独使用存在细菌产生抗药性的问题。 戊二醛等醛类杀菌剂的杀菌机理为通过渗透进 入细胞抑制细胞膜蛋白质的合成,改变蛋白质 性质,导致细胞死亡;戊二醛等醛类杀菌剂毒 性较大且不能自行降解,长期使用易造成环境污 染,但具有杀菌效果好、应用广泛且快速杀菌的 特点,多与其他杀菌剂复配使用^[22]。

投加硝酸盐也是抑制油藏中 SRB 的一种常 用方法。由于硝酸根接受电子能力更强,氧 化还原电位较硫酸盐高,通过向油田地层中 加入低浓度的硝酸盐或亚硝酸盐,可使其代 替硫酸盐成为电子受体,刺激并促进环境中 的硝酸盐还原细菌^[23]、反硝化细菌^[24]快速生 长,从而与 SRB 形成生态位上的竞争关系以 抑制 SRB 活性。然而该方法中的硝酸盐或亚硝 酸盐浓度控制与调控细菌生长的关系还有待于 进一步研究。

上述防控技术主要以杀灭 SRB 为主要手段,大多存在杀菌剂在环境中的滥用及微生物产生抗药性等问题。鉴于生物被膜是 SRB 附着于金属表面进而产生腐蚀的关键,因此,

针对生物被膜的驱散而非细菌的灭杀是新 一代环保型缓蚀剂的发展方向。Wood 等发现 *P. aeruginosa*稳定生长期的发酵上清液经浓缩 4倍后能在1h内清除92%以上的SRB生物被 膜,同时却不会杀死细胞,经过对发酵上清液 组分的分析发现是*P. aeruginosa*分泌的鼠李糖 脂起到了关键作用^[25]。鼠李糖脂是一类由多种 同族结构组成的混合物,属于糖脂类的阴离子 表面活性剂,在清除细菌生物被膜方面表现优 异,具有很强的应用前景,其工作机制和混合 物的配比优化还有待于进一步研究^[26]。Wood 等还发现商业化的鼠李糖脂对SRB生物被膜的 处理效果不如*P. aeruginosa*发酵上清液,认为 这可能是由其中同系物混合比例不同造成^[25]。

细菌生物被膜是细胞镶嵌聚集于胞外复合 结构中的群体性行为。由于外界条件的改变, 如营养物质的变化^[3],细菌能降解自身的生物 被膜,从而释放细胞进入自由生活状态^[27],这 一过程需要细菌产生分泌型酶类。利用细菌自 身产生的降解酶类进行新一代环保型缓蚀剂的 研发也符合针对生物被膜的驱散而非细菌的灭 杀的思路。模拟这一自然过程, EPS 降解酶^[28]、 蛋白酶[16]及一些小分子抑制物[29]已经在实验室 中被成功地用于生物被膜的降解和清除。在鉴 定了 SRB 胞外多糖组分及基因簇后, Zhu 等^[30] 通过生物信息学分析,预测出 SRB 基因组中含 有19个可能的糖基水解酶家族蛋白基因,其中 8 个为可能的分泌型 EPS 水解酶基因:经过蛋 白质的异源表达纯化及酶活检测,证实其中 DisH 蛋白是一种 N-乙酰己糖胺酶,具有水解 N-乙酰半乳糖胺(GalNAc)和 N-乙酰葡萄糖胺 (GlcNAc)的活性,体外添加纯化的 DisH 蛋白能 有效抑制 SRB 生物被膜形成,同时也能用于清 除已形成的生物被膜;而且 DisH 对于 SRB 的生 长无影响,不具有抗菌活性;此外,由于 GalNAc

和 GlcNAc 为常见细菌生物被膜 EPS 的组分, DisH 还能抑制和清除其他细菌生物被膜,如 *E. coli*、*P. aeruginosa*、枯草芽孢杆菌(*Bacillus subtilis*)和金黄色葡萄球菌(*Staphylococcus aureus*)等,具有良好的应用开发潜力^[30]。

3 硫酸盐还原细菌生物被膜的调控 机制

3.1 群体感应系统

细菌生物被膜的调控目前研究较为清楚的 是群体感应(quorum sensing, QS)调控和体内第 二信使(c-di-GMP)参与的调控机制。QS 是细菌 通过胞外信号分子进行细胞间通讯交流以协 调的群体性行为,通过称为自体诱导物的细胞 外小分子信号的产生、释放、累计和感应来完 成^[31]。不同的细菌往往采用不同的自体诱导物 作为信号分子。革兰氏阴性细菌一般使用酰基 高丝氨酸内酯的系列衍生物(acyl-homoserine lactone, AHL, 如假单胞菌属^[32])、呋喃酰硼酸 二酯(AI-2, 如弧菌属^[33])等, 或者同时利用多种 信号分子, 例如 AI-2 也被认为是一种通用型种 间通讯信号分子^[34]。QS的作用机制可简化为细 菌通过 LuxS 家族信号分子合成酶类产生不同 的 AHL 分子信号,当细胞密度发生变化时, AHL 信号浓度随之变化,细胞膜上 LuxR 家族 受体在结合 AHL 信号后寡聚化并结合至 DNA, 从而调节下游靶标基因的转录^[35];或者双组分 调控系统的跨膜组氨酸激酶结合 AHL 分子后 通过磷酸化作用激活下游转录调控因子,也能 借此调节下游靶标基因的转录^[36]。因此,对QS 信号分子的淬灭或信号感应过程的抑制是十分 有效地控制细菌形成生物被膜的方式^[37]。

尽管人们对弧菌、假单胞菌及大肠杆菌 等常见病原菌的 QS 系统研究较为透彻^[31], 然而对 SRB 中 OS 系统的存在及作用机制仍知 之甚少。目前仅在各种属的 3 种 SRB 菌株 (D. hydrothermalis, D. salexigens 和 Desulfotalea psychrophila)基因组中发现存在 QS 系统信号分 子合成酶(LuxS)同源物编码基因,并且与大肠 杆菌 LuxS 相比氨基酸一致性较低,约为 34%^[38],其功能还有待验证。然而在典型 SRB 如 D. vulgaris 和 D. desulfuricans 等基因组中并 未找到类似家族蛋白基因。Williamson 等在研究 环境土壤基因组时发现,源于 D. vulgaris 基因组 的一个 2-异丙基苹果酸合酶基因在与 QS 信号 激活型绿色荧光蛋白(green fluorescent protein, GFP)融合报告基因共表达时能激活 GFP,因此 推断该合成酶产物可与 LuxR 类 QS 信号感应 受体结合^[39],但该酶催化产物尚不明确。Brady 等在鉴定环境样品 DNA 中的长链 N-乙酰氨基 酸合成酶(一类潜在的 QS 信号分子合成酶)基 因时,根据氨基酸序列分析推测 D. vulgaris 的一个假想蛋白基因(DVUA0034)的 N-端约 250 个氨基酸序列可能具有激活羧酸类化合物 的能力,但将其在大肠杆菌中异源表达后并未 检测到 N-乙酰氨基酸产物(可能的 QS 信号分 子)^[40]。Kawaguchi 等通过构建 Desulfovibrio sp. 菌株 H2.3jLac 的基因组 fosmid 文库,并利用 其研发的体外无细胞 QS 信号分子快速鉴定系 统鉴定出部分克隆子能产生 AHL 信号分子, 包括 C₆-AHL、oxo-C₆-AHL、C₈-AHL、C₁₀-AHL 和 C₁₂-AHL^[41],但对于哪些基因产物负责产 生这些 AHL 信号分子则未见报道。Scarascia 等对 D. vulgaris 施用 QS 信号分子 AHL 的混 合物(C8-AHL、C10-AHL 和 C12-AHL)及 QS 抑 制剂的混合物[bromofuranone、3-oxo-D12-N-(2-oxocyclohexyl)dodecanamide 和 γ-aminobutyric acid],发现不同处理下细胞数量变化不大,但 细胞内 ATP 活跃程度不同, 尤其是 QS 处理在

D. vulgaris 钢铁腐蚀上有显著的影响。该研究 经转录组分析发现,不同处理下出现显著上调 或下调表达的基因包括一些双组分调控系统、 ATP 合成酶、载体蛋白及乳酸、丙酮酸代谢、 硫酸盐还原代谢、鞭毛合成和胞外多糖合成等 相关基因^[42],但仍未指明可能的群体感应控制 系统的存在。

3.2 第二信使

环二鸟苷单磷酸(cyclic-di-GMP, c-di-GMP) 是一种广泛存在于细菌中的第二信使。细胞内 c-di-GMP 浓度水平变化参与调节细胞的运动 性、黏附能力、生物被膜的形成、不同条件下 的群体感应调节、毒力因子表达等多方面细胞 行为^[43]。c-di-GMP浓度水平的控制是通过二鸟 苷酸环化酶(diguanylate cyclase, DGC)和磷酸二 酯酶(phosphodiesterase, PDE)来进行, DGC 含 有 GGDEF 结构域,能利用 GTP 合成 c-di-GMP; PDE 含有 EAL 或者 HD-GYP 结构域,能将 c-di-GMP 降解成 pGpG 或者 GMP 分子;在生 物被膜调控方面,一般认为当细胞内 c-di-GMP 浓度低时,细菌表现为浮游生活状态;当胞内 c-di-GMP 浓度高时,细菌粘附聚集形成生物被 膜^[44]。例如,将已知功能的 *E. coli* c-di-GMP 结 合蛋白 BdcA^[45]和 PDE 酶 YhjH^[46]在 P. aeruginosa 中分别异源表达,通过 BdcA 竞争结合或 YhiH 降解 c-di-GMP 均可降低细胞内 c-di-GMP 浓度, 同时发现生物被膜的形成也均被显著抑制了。

Rajeev 等依据 c-di-GMP 调节蛋白含有 GGDEF、EAL 或者 HD-GYP 结构域,在 SRB 研究模式菌株 *D. vulgaris* Hildenborough 的基 因组中预测了 8 个 c-di-GMP 响应调控因子, 体外实验证实其中属于 DGC 的 DVU2067、 DVU0636 具备 c-di-GMP 合成能力; DVU0722、 DVUA0086 和 DVU2933 是镁离子依赖的 PDE, 能将 c-di-GMP 转化为 pGpG;同时含有 GGDEF 和 EAL 结构域的 DVU0408 未表现出 DGC 活性,但具有 PDE 活性; DVU0330 和 DVU1181则未表现出 c-di-GMP 相关酶活;利用转座子插入的基因中断突变,作者发现 DGC 中 DVU0636的功能缺失对 D. vulgaris 生物被膜中的胞外碳水化合物及蛋白质比例有显著影响,DVU2067的缺失使得该菌株在浮游生活状态下有更长的生长迟滞期,其他 PDE 蛋白的基因敲除菌株表现为稍显推长的生长迟滞期^[47]。

3.3 σ54 因子依赖型调控因子

σ54 依赖型调控子家族又被称为细菌增强 子结合蛋白(bacterial enhancer binding protein, bEBP)。bEBP 是一种转录开关,通过其蛋白质 序列的 N 端信号感应结构域接受上游组氨酸激 酶传递的磷酸化信号,以中段的 σ 54 因子结合 结构域及 ATP 酶功能结构域结合 σ 54 因子, 以 及 C 端 DNA 结合结构域结合靶标基因启动子 的上游激活区,与 RNA 聚合酶形成复合物,开 启或增强靶标基因的转录。这类磷酸化信号感 应 bEBP 大多参与氮源代谢、甲酸盐、丙酸盐 和乙酰乳酸代谢及能量产生等,生物被膜形成 的相关报道较少。Matsuyama 等在 P. aeruginosa 中发现一个新型 bEBP 调控子 FleQ,负责调控 生物被膜的形成; 其 N 端信号感应结构域并不 接受磷酸化信号, 而是 c-di-GMP 信号, 其为 c-di-GMP 调控生物被膜形成的关键因子^[48]。

前人经信息学分析及转录起始分析,认为 SRB模式菌株 D. vulgaris Hildenborough 基因组 中至少包含 91 个各类调控子基因,根据其下游 靶标基因预测,认为它们可能参与了各类代谢 过程、细胞运动、压力响应及生物被膜形成等 方面的调控,其中 37 个属于 bEBP,可能分别 参与了氮源、碳源及能量代谢、跨膜运输功能 和胞外物质合成等过程^[49-50]。Zhu 等^[51]通过对 D. vulgaris 浮游生活与生物被膜形成的分化初 期转录组分析发现, c-di-GMP 相关 DGC、PDE 的基因转录无显著变化,但同时发现调控蛋白 DVU2956 的基因只在浮游生活细胞中转录,而 在生物被膜细胞中受极显著抑制:信息学分析 发现 DVU2956 属于 bEBP 家族, 但其蛋白质 N 端序列既不具有保守的磷酸化信号感受结构 域,也不具有 FleO 这类生物被膜调控子所具有 的 c-di-GMP 等信使分子感受结构域;DVU2956 的 DNA 结合结构域也与 FleQ 等不同,其调控 靶标除自身基因簇^[49]外其余尚不清楚。通过构 建生物被膜时期基因超表达重组菌,发现 DVU2956的基因超表达能显著抑制 SRB 生物被 膜的形成(抑制率为 72.0%±10.0%), 而 DVU2956 缺失突变株则显著增强了生物被膜的形成(形 成率为 130.1%±0.6%); 此外, 生物被膜时期 DVU2956 基因超表达重组菌的硫化氢(H₂S)产生 能力降低了 51.0%±2.0%, 突变株则增加至野生 型的 131.0%±5.0%, 因此 DVU2956 是 SRB 生物 被膜形成及硫化氢产生的负调控因子;通过对生 物被膜时期 DVU2956 基因超表达重组菌及空载 质粒对照菌株的转录组分析发现,DVU2956 显著诱导了高分子量细胞色素c复合体合成基 因操纵子 hmc^[52] (dvu0529-dvu0536)以及唯铁 氢化酶操纵子 hydA/B^[53] (dvu1769-dvu1770)的 转录上调,推测 DVU2956 可能是通过调节电子 传递进行生物被膜形成及硫酸盐还原代谢等的 调控^[51]。

4 结论与展望

生物被膜状态与浮游生活状态的周期性变 化是微生物与外界环境交互作用下的一种社会 性行为。生物被膜的形成有利于细菌抵抗营养 贫瘠、抗生素和宿主免疫系统等不利因素,而 生物被膜的解离分散也便于细菌寻求更佳的生 活环境^[3]。SRB 是自然界中硫元素循环的参与 者,对人类社会活动有重要影响。经多年研究, 人们发现生物被膜是 SRB 介导形成 MIC 型金 属锈蚀^[4]及钝化污水中重金属离子^[10]的关键形 式。深入研究 SRB 生物被膜的形成和调控,对于 进一步指导 MIC 型金属锈蚀的绿色防控以及重 金属污水生物修复技术的研发均具有重要意义。

本文综述了近年来 SRB 生物被膜领域的研 究进展,主要得到了以下结论:(1) 明确了 SRB 生物被膜中的胞外多聚物骨架的组成由类似 鞭毛的蛋白结构和胞外多糖共同构成;(2) 发 现源自 SRB 自身的 N-乙酰己糖胺酶、微生物源 表面活性剂鼠李糖脂均有较好的应用潜力,可 用于减少广谱杀菌剂的使用,这为开发绿色 SRB 生物被膜清除剂提供了新的思路;(3) 目 前在其他细菌中发现的群体感应、第二信使等 参与生物被膜调控的系统理论都不能很好地阐 释 SRB 生物被膜的调控方式, SRB 中新发现的 对生物被膜具有调控作用的 σ54 因子依赖型调 控因子表明,其 SRB 生物被膜可能存在新型调

目前上述研究虽然有了突破性进展,但相 较于研究较为深入的铜绿假单胞菌、金黄色葡 萄球菌和弧菌等细菌而言,SRB 生物被膜的研 究仍存在一些亟待解决的问题,例如:(1)体外 实验发现 SRB 可能同其他细菌一样产生 AHL 信号分子^[41-42],因此,明确 SRB 是否具备完整 功能的群体感应系统,及信号分子合成、感受 及体内信号传导机制等遗传本质,是阐明 SRB 生物被膜调控机制的关键之一。(2)作为严格厌 氧细菌,胞外电子传递与细胞生长代谢密切相 关。上述 σ54 因子依赖型调控因子调控 SRB 生 物被膜的研究结果提示,胞外电子传递参与了 生物被膜形成和调控,这一过程的机理如何值 得关注。(3)研究群体感应系统及胞外电子传 递之间可能存在的相互作用或关联性,对明确 SRB 生物被膜的控制机制有重要意义。其中, 我们对上述 σ54 因子依赖型调控因子的上游感 受信号、下游调控靶标的探索,将有助于阐明 SRB 从生物被膜中解离分散,进入浮游生活状 态的调控通路和机制。此外,SRB 基因组、转 录组、蛋白质组、代谢组等方面的生物信息学 联合分析,以及应用新型成像技术示踪厌氧细 菌生活状态变化,将为发现 SRB 生物被膜形成 调控的遗传本质提供线索。由于厌氧细菌的特 殊生活方式以及现有遗传操作手段的相对匮 乏,这些研究都面临巨大的挑战。然而作为实 际影响自然和人类社会生活的重要部分,对于 SRB 生物被膜的研究将有助于加深人们对细菌 生物被膜的认识,为人工干预、利用厌氧细菌 提供理论依据。

REFERENCES

- Barton LL, Fauque GD. Biochemistry, physiology and biotechnology of sulfate-reducing bacteria[J]. Advances in Applied Microbiology, 2009, 68: 41-98
- [2] Bao P, Li GX, Sun GX, Xu YY, Meharg AA, Zhu YG. The role of sulfate-reducing prokaryotes in the coupling of element biogeochemical cycling[J]. Science of the Total Environment, 2018, 613/614: 398-408
- [3] Wood TK. Biofilm dispersal: deciding when it is better to travel[J]. Molecular Microbiology, 2014, 94(4): 747-750
- [4] Zhang PY, Xu DK, Li YC, Yang K, Gu TY. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the *Desulfovibrio vulgaris* biofilm[J]. Bioelectrochemistry, 2015, 101: 14-21
- [5] Koch G, Varney J, Thompson N, Moghissi O, Gould M, Payer J. International measures of prevention, application, and economics of corrosion technologies study[EB/OL]. USA: NACE International, 2016. http://impact.nace.org/documents/Nace-International-R eport.pdf
- [6] Enning D, Garrelfs J. Corrosion of iron by sulfate-reducing bacteria: new views of an old problem[J]. Applied and Environmental Microbiology, 2014, 80(4): 1226-1236

- [7] Priha O, Nyyssönen M, Bomberg M, Laitila A, Simell J, Kapanen A, Juvonen R. Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields[J]. Applied and Environmental Microbiology, 2013, 79(17): 5186-5196
- [8] Hwang SK, Jho EH. Heavy metal and sulfate removal from sulfate-rich synthetic mine drainages using sulfate reducing bacteria[J]. Science of the Total Environment, 2018, 635: 1308-1316
- Zhao MH, Xu Y, Zhang CS, Rong HW, Zeng GM. New trends in removing heavy metals from wastewater[J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6509-6518
- [10] Yue ZB, Li Q, Li CC, Chen TH, Wang J. Component analysis and heavy metal adsorption ability of extracellular polymeric substances (EPS) from sulfate reducing bacteria[J]. Bioresource Technology, 2015, 194: 399-402
- [11] Quintelas C, Pereira R, Kaplan E, Tavares T. Removal of Ni(II) from aqueous solutions by an *Arthrobacter* viscosus biofilm supported on zeolite: from laboratory to pilot scale[J]. Bioresource Technology, 2013, 142: 368-374
- [12] Hansen TA. Metabolism of sulfate-reducing prokaryotes[J]. Antonie Van Leeuwenhoek, 1994, 66(1/2/3): 165-185
- [13] Heidelberg JF, Seshadri R, Haveman SA, Hemme CL, Paulsen IT, Kolonay JF, Eisen JA, Ward N, Methe B, Brinkac LM, et al. The genome sequence of the anaerobic, sulfate-reducing bacterium *Desulfovibrio vulgaris* Hildenborough[J]. Nature Biotechnology, 2004, 22(5): 554-559
- [14] Franklin MJ, Nivens DE, Weadge JT, Howell PL. Biosynthesis of the *Pseudomonas aeruginosa* extracellular polysaccharides, alginate, pel, and psl[J]. Frontiers in Microbiology, 2011, 2: 167
- [15] Beech IB, Gaylarde CC, Smith JJ, Geesey GG. Extracellular polysaccharides from *Desulfovibrio desulfuricans* and *Pseudomonas fluorescens* in the presence of mild and stainless steel[J]. Applied Microbiology and Biotechnology, 1991, 35(1): 65-71
- [16] Clark ME, Edelmann RE, Duley ML, Wall JD, Fields MW. Biofilm formation in *Desulfovibrio vulgaris* Hildenborough is dependent upon protein filaments[J]. Environmental Microbiology, 2007, 9(11): 2844-2854
- [17] Poosarla VG, Wood TL, Zhu L, Miller DS, Yin B, Wood TK. Dispersal and inhibitory roles of mannose,

2-deoxy-D-glucose and N-acetylgalactosaminidase on the biofilm of *Desulfovibrio vulgaris*[J]. Environmental Microbiology Reports, 2017, 9(6): 779-787

- [18] Grobe KJ, Zahller J, Stewart PS. Role of dose concentration in biocide efficacy against *Pseudomonas aeruginosa* biofilms[J]. Journal of Industrial Microbiology & Biotechnology, 2002, 29(1): 10-15
- [19] 刘宏芳,杨华啸,黄玲,胡裕龙.环境友好型溴类杀 菌剂的合成及其抗菌防腐蚀性能研究[J].材料保护, 2008,41(7):18-20,87
 Liu HF, Yang HX, Huang L, Hu YL. An environmentally friendly bromine-based bactericide and its antibacterial and anticorrosion performance[J]. Materials Protection, 2008, 41(7): 18-20, 87 (in
- [20] 苟绍华, 尹婷, 吴雁, 段巍卓, 胡海. 注水开发污水 中硫酸盐还原菌抑制剂研究进展[J]. 精细化工, 2015, 32(5): 481-486

Chinese)

Gou SH, Yin T, Wu Y, Duan WZ, Hu H. A review of the research into sulfate reducing bacteria inhibitor for oilfield wastewater of water-flooding[J]. Fine Chemicals, 2015, 32(5): 481-486 (in Chinese)

[21] 史振国,刘洪玉,史荣久,张颖,于亮,赵峰,韩斯琴,殷奎德.不同杀菌剂抑制渤海湾海域高温油藏中硫酸盐还原菌活性效力研究[J].安全与环境学报,2016,16(1):263-268

Shi ZG, Liu HY, Shi RJ, Zhang Y, Yu L, Zhao F, Han SQ, Yin KD. Efficacies of different biocides in inhibiting the activity of sulfate-reducing bacteria in offshore high-temperature reservoirs at Bohai Bay, China[J]. Journal of Safety and Environment, 2016, 16(1): 263-268 (in Chinese)

- [22] 杨春雨,李进,沈莹.硫酸盐还原菌杀菌剂的杀菌能 力评价[J]. 工业用水与废水,2008,39(2):76-78 Yang CY, Li J, Shen Y. Evaluation of bactericidal performance of several bactericides to sulfate-reducing bacteria[J]. Industrial Water & Wastewater, 2008, 39(2): 76-78 (in Chinese)
- [23] 杨德玉,张颖,史荣久,韩斯琴,李光哲,李国桥, 赵劲毅. 硝酸盐抑制油田采出水中硫酸盐还原菌活 性研究[J]. 环境科学, 2014, 35(1): 319-326 Yang DY, Zhang Y, Shi RJ, Han SQ, Li GZ, Li GQ, Zhao JY. Inhibition of the activity of sulfate-reducing bacteria in produced water from oil reservoir by nitrate[J]. Environmental Science, 2014, 35(1): 319-326 (in Chinese)
- [24] 金鹏康,杨珍瑞,李蓉,李岩,周立辉.反硝化抑制 硫酸盐还原的工艺特性[J].环境科学,2017,38(5):

1982-1990

Jin PK, Yang ZR, Li R, Li Y, Zhou LH. Characteristics of denitrification inhibiting sulfate reducing process[J]. Environmental Science, 2017, 38(5): 1982-1990 (in Chinese)

- [25] Wood TL, Gong T, Zhu L, Miller J, Miller DS, Yin B, Wood TK. Rhamnolipids from *Pseudomonas* aeruginosa disperse the biofilms of sulfate-reducing bacteria[J]. npj Biofilms and Microbiomes, 2018, 4: 22
- [26] Jovanovic M, Radivojevic J, O'Connor K, Blagojevic S, Begovic B, Lukic V, Nikodinovic-Runic J, Savic V. Rhamnolipid inspired lipopeptides effective in preventing adhesion and biofilm formation of *Candida albicans*[J]. Bioorganic Chemistry, 2019, 87: 209-217
- [27] Kaplan JB. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses[J]. Journal of Dental Research, 2010, 89(3): 205-218
- [28] Yu S, Su TT, Wu HJ, Liu SH, Wang D, Zhao TH, Jin ZJ, Du WB, Zhu MJ, Chua SL, et al. PslG, a self-produced glycosyl hydrolase, triggers biofilm disassembly by disrupting exopolysaccharide matrix[J]. Cell Research, 2015, 25(12): 1352-1367
- [29] Sambanthamoorthy K, Luo CY, Pattabiraman N, Feng XR, Koestler B, Waters CM, Palys TJ. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development[J]. Biofouling, 2014, 30(1): 17-28
- [30] Zhu L, Poosarla VG, Song S, Wood TL, Miller DS, Yin B, Wood TK. Glycoside hydrolase DisH from *Desulfovibrio vulgaris* degrades the N-acetylgalactosamine component of diverse biofilms[J]. Environmental Microbiology, 2018, 20(6): 2026-2037
- [31] Mukherjee S, Bassler BL. Bacterial quorum sensing in complex and dynamically changing environments[J]. Nature Reviews Microbiology, 2019, 17(6): 371-382
- [32] Favre-Bonté S, Köhler T, Van Delden C. Biofilm formation by *Pseudomonas aeruginosa*: role of the C4-HSL cell-to-cell signal and inhibition by azithromycin[J]. Journal of Antimicrobial Chemotherapy, 2003, 52(4): 598-604
- [33] Jiang TY, Zhu P, Du LP, Li MY. Identification of AI-2 quorum sensing inhibitors in *Vibrio harveyi* through structure-based virtual screening[J]. Methods in Molecular Biology: Clifton, N J, 2018, 1673: 353-362
- [34] Ng WL, Perez LJ, Wei YZ, Kraml C, Semmelhack MF, Bassler BL. Signal production and detection specificity in *Vibrio* CqsA/CqsS quorum-sensing systems[J]. Molecular Microbiology, 2011, 79(6): 1407-1417

- [35] Smith D, Wang JH, Swatton JE, Davenport P, Price B, Mikkelsen H, Stickland H, Nishikawa K, Gardiol N, Spring DR, et al. Variations on a theme: diverse N-acyl homoserine lactone-mediated quorum sensing mechanisms in Gram-negative bacteria[J]. Science Progress, 2006, 89(3/4): 167-211
- [36] Ng WL, Bassler BL. Bacterial quorum-sensing network architectures[J]. Annual Review of Genetics, 2009, 43: 197-222
- [37] Brackman G, Coenye T. Quorum sensing inhibitors as anti-biofilm agents[J]. Current Pharmaceutical Design, 2015, 21(1): 5-11
- [38] Scarascia G, Wang T, Hong PY. Quorum sensing and the use of quorum quenchers as natural biocides to inhibit sulfate-reducing bacteria[J]. Antibiotics: Basel, Switzerland, 2016, 5(4): 39
- [39] Williamson LL, Borlee BR, Schloss PD, Guan CH, Allen HK, Handelsman J. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum-sensing biosensor[J]. Applied and Environmental Microbiology, 2005, 71(10): 6335-6344
- [40] Brady SF, Chao CJ, Clardy J. Long-chain N-acyltyrosine synthases from environmental DNA[J]. Applied and Environmental Microbiology, 2004, 70(11): 6865-6870
- [41] Kawaguchi T, Chen YP, Norman RS, Decho AW. Rapid screening of quorum-sensing signal N-acyl homoserine lactones by an *in vitro* cell-free assay[J]. Applied and Environmental Microbiology, 2008, 74(12): 3667-3671
- [42] Scarascia G, Lehmann R, Machuca LL, Morris C, Cheng KY, Kaksonen A, Hong PY. Effect of quorum sensing on the ability of *Desulfovibrio vulgaris* to form biofilms and to biocorrode carbon steel in saline conditions[J]. Applied and Environmental Microbiology, 2019, 86(1): e01664-19.
- [43] Jenal U, Reinders A, Lori C. Cyclic di-GMP: second messenger extraordinaire[J]. Nature Reviews Microbiology, 2017, 15(5): 271-284
- [44] Martín-Rodríguez AJ, Römling U. Nucleotide second messenger signaling as a target for the control of bacterial biofilm formation[J]. Current Topics in Medicinal Chemistry, 2017. https://pubmed.ncbi.nlm. nih.gov/28056744/
- [45] Ma Q, Zhang GS, Wood TK. Escherichia coli BdcA

controls biofilm dispersal in *Pseudomonas aeruginosa* and *Rhizobium* meliloti[J]. BMC Research Notes, 2011, 4: 447

- [46] Christensen LD, Van Gennip M, Rybtke MT, Wu H, Chiang WC, Alhede M, Høiby N, Nielsen TE, Givskov M, Tolker-Nielsen T. Clearance of *Pseudomonas aeruginosa* foreign-body biofilm infections through reduction of the cyclic Di-GMP level in the bacteria[J]. Infection and Immunity, 2013, 81(8): 2705-2713
- [47] Rajeev L, Luning EG, Altenburg S, Zane GM, Baidoo EEK, Catena M, Keasling JD, Wall JD, Fields MW, Mukhopadhyay A. Identification of a cyclic-di-GMPmodulating response regulator that impacts biofilm formation in a model sulfate reducing bacterium[J]. Frontiers in Microbiology, 2014, 5: 382
- [48] Matsuyama BY, Krasteva PV, Baraquet C, Harwood CS, Sondermann H, Navarro MV. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from *Pseudomonas aeruginosa*[J]. The Plant Cell, 2016, 113(2): E209-E218
- [49] Kazakov AE, Rajeev L, Chen A, Luning EG, Dubchak I, Mukhopadhyay A, Novichkov PS. σ54-dependent regulome in *Desulfovibrio vulgaris* Hildenborough[J]. BMC Genomics, 2015, 16: 919
- [50] Rajeev L, Luning EG, Dehal PS, Price MN, Arkin AP, Mukhopadhyay A. Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium[J]. Genome Biology, 2011, 12(10): R99
- [51] Zhu L, Gong T, Wood TL, Yamasaki R, Wood TK. σ54-dependent regulator DVU2956 switches *Desulfovibrio vulgaris* from biofilm formation to planktonic growth and regulates hydrogen sulfide production[J]. Environmental Microbiology, 2019, 21(10): 3564-3576
- [52] Dolla A, Pohorelic BKJ, Voordouw JK, Voordouw G. Deletion of the *hmc* operon of *Desulfovibrio vulgaris* subsp. *vulgaris* Hildenborough hampers hydrogen metabolism and low-redox-potential niche establishment[J]. Archives of Microbiology, 2000, 174(3): 143-151
- [53] Voordouw G. Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough[J]. Journal of Bacteriology, 2002, 184(21): 5903-5911