研究快报

下一代底盘微生物 Vibrio sp. FA2 的抗生素抗性

王静,彭源,许平,陶飞*

上海交通大学生命科学技术学院 微生物代谢国家重点实验室, 上海 200240

王静, 彭源, 许平, 陶飞. 下一代底盘微生物 *Vibrio* sp. FA2 的抗生素抗性[J]. 微生物学通报, 2022, 49(3): 861-874 Wang Jing, Peng Yuan, Xu Ping, Tao Fei. Antibiotic resistance of next-generation microbial workhorses: a case of *Vibrio* sp. FA2[J]. Microbiology China, 2022, 49(3): 861-874

摘 要:【背景】细菌耐药是当前人类面临的重大挑战之一,抗生素耐药性研究是解决耐药问题 的重要途径。Vibrio sp. FA2 是环境中分离的一株快速生长菌,其生长速度快于目前报道的快速生 长的需钠弧菌(Vibrio natriegens) 14048,并且具有多样的碳源利用能力,是具有较大潜力的下一代 徽生物底盘,可用于开发化合物高效生产菌株。【目的】前期对 FA2 菌株的常见抗生素耐药性测试 发现该菌具有多重抗生素耐受性,不利于基因工程操作,并且在工业应用中会带来生态安全风险, 因此有必要研究其抗生素抗性,并敲除其耐药性基因。【方法】采用抗生素药敏试验测试菌株耐药 性,并且利用基因组注释分析筛选目标基因,通过基因敲除构建了关于目标基因的敲除突变株, 并比较了 FA2 野生株和敲除株的抗生素敏感性和生长情况。【结果】系统分析了 FA2 菌株对以氨苄 西林为代表的 β-内酰胺类及氨基糖苷类等多种抗生素的耐受性,分析筛选出一系列与 FA2 菌株对以氨苄 西林为代表的 β-内酰胺类及氨基糖苷类等多种抗生素的耐受性,分析筛选出一系列与 FA2 菌株耐药 性相关的基因。其中, FA2 菌株对几种 β-内酰胺类抗生素都有较强的耐受性,并且注释到 carB6、 ampC2和 ampC1 这 3 个可能的氨苄西林耐受性基因。研究了氨苄西林耐受性,对 3 个基因进行了 敲除,敲除突变株的 β-内酰胺类抗生素抗性变化表明菌株对氨苄西林的敏感性提高。【结论】阐明 了 FA2 菌株的抗生素抗性情况,成功消除了其氨苄西林的耐药性,为实现 FA2 菌株的底盘开发与 改造奠定了基础。

关键词: 弧菌; 氨苄西林; 抗生素抗性

基金项目: 国家重点研发计划(2017YFC1600100); 国家自然科学基金(31870088)

Supported by: National Key Research and Development Program of China (2017YFC1600100); National Natural Science Foundation of China (31870088)

^{*}Corresponding author: E-mail: taofei@sjtu.edu.cn

Received: 2021-11-22; Accepted: 2021-11-29; Published online: 2022-01-05

Antibiotic resistance of next-generation microbial workhorses: a case of *Vibrio* sp. FA2

WANG Jing, PENG Yuan, XU Ping, TAO Fei^{*}

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract: [Background] Antibiotic resistance in bacteria is one of the current challenges, and the study of antibiotic resistance is therefore a critical way to address this challenge. Vibrio sp. FA2, a new strain isolated from the environment, has fast growth, and its growth rate is even faster than that of the reported fast-growing strain Vibrio natriegens 14048. Vibrio sp. FA2 can use a variety of carbon sources, showing great potential to serve as the next-generation biotechnological workhorse and can be used to develop efficient strains for compound production. [Objective] We have found that FA2 has multiple antibiotic resistance, which is not conducive to genetic engineering operation and will bring ecological risks in industrial application. Therefore, it is essential to study the antibiotic resistance and knock out the resistance genes from this strain. [Methods] We profiled the antibiotic resistance of FA2 by susceptibility experiments with multiple antibiotics such as β -lactams (represented by ampicillin) and aminoglycosides, and then mined the genes related to the resistance by genome annotation. The mutants were constructed through knockout of the target genes related to ampicillin resistance. Finally, the resistance to ampicillin and the growth were compared between the knockout mutants and FA2. [Results] FA2 had strong resistance to several β -lactam antibiotics and carried three possible ampicillin resistance genes; *carB6*, *ampC2*, and *ampC1*. The resistance changes of the mutants indicated that the genes knockout increased the strain susceptibility to ampicillin. [Conclusion] This study clarifies the antibiotic resistance of FA2 and eliminates the resistance of FA2 to ampicillin, laying a foundation for the development and transformation of FA2 as a microbial workhorse.

Keywords: Vibrio; ampicillin; antibiotic resistance

Vibrio sp. FA2 (VsFA2),在分类学上归属 于弧菌属(Vibrio),是一类杆状、弯曲且可进行 兼性厌氧代谢的革兰氏阴性菌^[1],菌落形态呈圆 形,是本课题组由环境中分离出的菌株。弧菌 可以在基础研究和工业技术领域发挥巨大优 势。首先,弧菌的生长速率快,需钠弧菌(Vibrio natriegens)处于对数生长期时的倍增时间小于 10 min 且平均倍增时间为(15.61±0.18) min,快 于目前生长最快的大肠杆菌菌株同条件下的平 均倍增时间^[2-3]。其次,近年来弧菌作为快速 生长的分子生物学宿主被陆续开发利用^[2,4:8], 为代谢的靶向修饰提供了一套新的基因工程工 具。前期研究将 VsFA2 从生长特点、生长机 制、基因组分析和代谢网络等方面同需钠弧菌 ATCC 14048 (Vn14048)进行了比对, VsFA2 菌 株在各阶段的生长速率高于 Vn14048^[9]。VsFA2 中与复制、翻译等相关基因比 Vn14048 中的基 因数目要多。另外,在VsFA2中有关DNA 修复 基因的拷贝数、酸性条件抗逆性以及氨基酸合 成的基因拷贝数最多,为 VsFA2 的快速生长提 供了基因层面的依据^[10-15]。快速生长意味着弧 菌在 DNA 复制以及蛋白质合成方面的极快速 率和生物量的高效产生^[5,16]。VsFA2 可以利用 多种碳源,包括淀粉、甘油、甘糖、蔗糖、葡 萄糖和几丁质。底物的广谱性使得该菌株有望 进行具有成本效益的工业发酵。此外,该菌株 具有生产丁醇、乳酸、丁酸和丁二醇的完整途 径,为进一步生产各种化合物提供了良好的基 础。因此,VsFA2 极有潜力成为新型底盘细 胞,可用于开发高效的细胞工厂,生产蛋白 质、乳酸及香兰素等高价值化合物。

细菌的抗生素耐药性是一种固有的现象。 随着近年来抗生素的普遍使用,细菌耐药性的 研究已经逐渐成为研究者广泛关注的问题[17]。 对于弧菌的耐药表现,在多个国家地区已有不 同的相关报道,但不同种、不同地区的弧菌菌 株在耐药性方面会显示出不同程度的差异[18-22]。 前期对 VsFA2 的几种常用抗生素耐药情况探究 获知其携带多重的抗生素耐受性,但对于底盘 开发而言, VsFA2 的多重抗生素耐受性不利于 基因工程操作及环境保护。首先,基因工程中 常用环状质粒作为载体来进行基因克隆与改 造^[23-24],质粒携带的抗生素抗性基因是载体 最常用的生长筛选标记,但宿主自身抗性基因 的存在会影响载体选取合适的筛选标记。对于 VsFA2 而言,由于其对多种抗生素的耐受性, 导致适合在 VsFA2 中进行改造利用的质粒载体 范围缩小,极大地增加了载体选取的局限性。 其次,在工业应用中,大量抗生素耐受基因的 存在也会带来一定程度不可逆的生态安全风 险。工业化大规模生产中,含有多重抗性基 因菌种的使用可能会通过多种方式进入自然 环境中,其抗性基因通过水平基因转移在微 生物间传播^[25],最终对生态环境造成抗性基因 的污染^[26]。

本文旨在探究 VsFA2 的抗生素耐药谱,探 明其基因组中潜在的抗性基因,揭示 VsFA2 的 抗生素抗性,并对相关耐药基因进行消除,从 而为底盘开发奠定基础。

1 材料与方法

1.1 菌株、质粒与引物

本研究所使用的菌株和质粒都列于表1中。 VsFA2 作为出发菌株; *Escherichia coli* S17-1 *λpir* 用于自杀质粒 pKR6K 的复制,并与 VsFA2 接合,将自杀质粒转移到受体菌中,用于目的 基因的敲除。

1.2 主要试剂、仪器和培养基

氯化钠、琼脂粉,上海麦克林生化科技有限 公司;胰蛋白胨、酵母提取物,北京拜尔迪生物 技术有限公司;蔗糖,国药集团化学试剂有限公 司;标准商业化的抗生素药物敏感纸片,杭州微 生物试剂有限公司;Master Mix 酶、无缝克隆 酶,南京诺唯赞生物科技有限公司;限制性核酸 内切酶,纽英伦生物技术(北京)有限公司。

PCR 仪、NanoDrop 微量紫外分光光度计, 赛默飞世尔科技公司;电泳仪,伯乐生命医学 产品(上海)有限公司;紫外分光光度计,上海 美谱达仪器有限公司。

LB 培养基(g/L): 胰蛋白胨 10.0, 酵母提取 物 5.0, 氯化钠 10.0, 调节 pH 至 7.0 (固体培养基 加 15.0 g/L琼脂粉), 1×10⁵ Pa高压灭菌 20 min, 冷却后备用。LB3 培养基: LB 基础上将氯化 钠提升为 30.0 g/L。LBS 培养基: LB 基础上添 加蔗糖 150.0 g/L。MKO 培养基的配制详见参 考文献[9]。

1.3 方法

1.3.1 耐药谱的测定

按照标准纸片扩散法^[27]测定耐药谱。将 VsFA2 接种至 LB3 培养基, 37 °C、200 r/min 培养至 *OD*₆₀₀ 为 0.6-0.8。使用无菌脱脂棉将菌 液均匀地涂布于 LB3 平板上,再放置药敏纸片, 37 °C 培养 16 h。使用直尺测量抑菌圈直径大小 3 次,取平均值作为最终抑菌圈结果并计算标 准差。

菌株、质粒与引物	说明/序列	来源/应用
Strains, plasmids and primers	Description/Sequence $(5' \rightarrow 3')$	Source/Application
国休 Strains	uz //	
VsFA2	野生 Wild type	头验至保臧 Lab stock
$\Delta ampC2$	FA2 (ampC2)敲除株 FA2 (ampC2) knockout strain	本研究 This study
$\Delta ampC2\Delta carB6$	FA2 (ampC2carB6)敲除株 FA2 (ampC2carB6) knockout strain	本研究 This study
$\Delta ampC2\Delta carB6\Delta ampC1$	FA2 (ampC2carB6ampC1)敲除株 FA2 (ampC2carB6ampC1) knockout strain	本研究 This study
S17-1 λpir	E. coli F–, RP4-2 (Km::Tn7, Tc::Mu-1), pro-82, λpir, recA1, endA1, thiE1, hsdR17, creC510	实验室保藏 Lab stock
质粒 Plasmids		
pKR6K	可移动遗传元件,携带氯霉素抗性	实验室保藏
pKR6K-ampC2	Mobile genetic elements, carrying chloramphenicol resistance 插入 <i>ampC2</i> 敲除盒的 pKR6K 重组质粒	Lab stock 本研究 This study
pKR6K-carB6	pKR6K recombinant plasmid inserted the <i>ampC2</i> knockout cassette 插入 <i>carB6</i> 敲除盒的 pKR6K 重组质粒 pKP6K recombinant plasmid inserted the <i>carB6</i> knockout cassette	本研究 This study
pKR6K-ampC1	插入 <i>ampC1</i> 敲除盒的 pKR6K 重组质粒 pKR6K recombinant plasmid inserted the <i>ampC1</i> knockout cassette	本研究 This study
引物 Primers		
pKR6K-F	TAGCTCACTCATTAGGCACCCC	pKR6K
pKR6K-R	GCGGGCCTCTTCGCTATTA	
ampC2-up-F	TATGACATGATTACGTTCATCAACTCGTAGTCACGCC	ampC2
ampC2-up-R	AAATATATCCTTAATTACCGTGGTATACGAGCAGCCT	
ampC2-down-F	TCGTATACCACGGTAAAATATATCCTTAATAATTTCTTATAGAACCTC	
ampC2-down-R	CGACTCTAGAGGATCAATCACCAATGAAACATTTGATCAT	
<i>carB6</i> -up-F	TATGACATGATTACGTTTTGAACACTCGGCCAACAA	carB6
<i>carB6</i> -up-R	TGAAGAACACGATCCGTCACCACTCACCTGACCCTATTT	
<i>carB6</i> -down-F	CAGGTGAGTGGTGACGGATCGTCTTCTTCAATTTTAGTTTT	
carB6-down-R	CGACTCTAGAGGATCCAGTTTGTAGTCATGAACACCGGTA	
ampC1-up-F	TATGACATGATTACGCGAGAAAAGCGATATTTGACATG	ampC1
ampC1-up-R	TGAACCCTCAATTTTATTTTAGTGGTAATAGGAACTACGTAATTAGA	
ampC1-down-F	TATTACCACTAAAATTGAACCCTCAATTTTTAATTTTAACT	
ampC1-down-R	CGACTCTAGAGGATCAGACCCTGCCTTTTTTACTATCCA	
<i>carB6</i> -F	TGAAAAAGTTATTTTGTTGGCTGG	基因敲除验证
<i>carB6</i> -R	TAAAATCAACTGACTTATCTGCGCA	Gene knockout
ampC1-F	ATGAAGTTAAACAATGCCTTGCTGG	verification
ampC1-R	AGCCTCTACTCTTTCGGCATTAGGG	
ampC2-F	CTTTTCAGTGCTTCGTCTTTTGCTT	
ampC2-R	TTAAGGAACATGAAGAAGTTTGCCT	

表1 菌株、质粒与引物 Table 1 Strains plasmids

and priv

1.3.2 抗性基因的预测

根据本实验室对 VsFA2 利用 PROKKA 注释出的基因组信息,并登录 RAST 在线网页(https://rast.nmpdr.org/)在线查看 VsFA2 的基因功能注释情况。通过基因注释结果寻找抗生素耐受性相关基因。

1.3.3 基因敲除

(1) 目的片段的克隆与融合

在目标基因的上、下游约 500-800 bp 分别 设计引物。以 VsFA2 基因组为模板。PCR 反应 体系(100 μL): 2×Phanta Max Master Mix 50 μL, 上、下游引物(20 μmol/L)各 2 μL, 模板 1 μL, ddH₂O 补齐至 100 μL。PCR 反应条件: 95 °C 5 min; 95 °C 30 s, 60 °C 30 s, 72 °C 30 s, 30 个循环; 72 °C 10 min。以 1.2%琼脂糖凝胶电 泳检测 PCR 产物。将第一轮 PCR 产物通过融合 PCR 进行融合。

(2) 无痕敲除载体的构建

酶切的 pKR6K 质粒^[28]与融合片段通过无 缝克隆构成重组质粒,将重组质粒转化至 S17-1 感受态细胞中,菌落 PCR 筛选阳性克隆,以 pKR6K-F/pKR6K-R 为引物,挑取阳性克隆测 序,比对结果。

(3) 敲除突变体的构建

接合转移:将VsFA2与含有敲除载体*E. coli* S17-1 培养至 *OD*₆₀₀ 同时达 0.6-0.8 时将 VsFA2 和 S17-1 以 1:5-1:6 的体积比混合。用生理盐水 洗涤 2 次,并用约 100 μL 生理盐水重悬,吸取 菌液滴涂到 LB3 平板上, 37 ℃ 培养过夜。

单交换筛选:用少量生理盐水洗净上述平板上的菌体,洗涤2次。用1mL生理盐水重 悬,吸取100μL菌液稀释涂布到含有25μg/mL 氯霉素(Chl)和50μg/mL卡那霉素(Kan)的固体 MKO培养基上,37°C培养过夜。挑取单菌落 于LB3培养,再转接入含有Chl和Kan的LB3 培养,选取在该培养基中生长的菌株进行菌落 PCR 验证。阳性转化子用 LB3 冲洗 2 次后接种 到 LB3 培养基中进行传代。

双交换筛选:吸取上一步骤的菌液进行梯 度稀释,吸取适当倍数的稀释液涂布于 LBS 固 体培养基上,使未发生双交换的菌死亡。PCR 验证后的阳性转化子再验证其在 25 μg/mL 氯霉 素抗性中的生长情况。最后使用目的基因片段 敲除验证引物进行验证。

1.3.4 敲除株的生长测试

将 FA2 野生型及上述改造的 3 株敲除株活 化后转接到 25 μg/mL 氨苄西林(Amp)的 30 mL LB3 培养基中。37 °C、200 r/min 培养 48 h。对 生长测试样品前 12 h 每隔 2 h 取样,后每 12 h 取样检测。用紫外分光光度计测量 *OD*₆₀₀ 值, 可适当稀释,使测量值在紫外分光光度计的线 性范围内。根据稀释倍率计算出每个时刻的实 际 *OD*₆₀₀ 值。以时间和对应 *OD*₆₀₀ 值为坐标利 用 GraphPad Prism 5.0 软件绘制生长曲线。

2 结果与分析

2.1 耐药谱分析与抗性基因预测

对抑菌圈直径进行测量,得到如表 2 所示 抗生素敏感性结果。将受试抗生素分为 β-内酰 胺类、氨基糖苷类、大环内酯类及喹诺酮类四 大类,其余抗生素则统一归为其他类型。

在 β-内酰胺类抗生素中, VsFA2 对青霉素 类的耐受性最强, 对碳青霉烯类较为敏感, 对 头孢菌素也有一定程度的耐受性, 而对几种内 酰胺类抑制剂则表现出敏感的状态。在氨基糖 苷类抗生素中, VsFA2 对大观霉素和奈替米星 耐受, 而对卡那霉素、丁胺卡那等的敏感性很 高。在大环内酯类抗生素中, VsFA2对红霉素、 罗红霉素、克拉霉素的敏感性较高, 对阿奇霉 素、吉他霉素、乙酰螺旋霉素则不敏感。在喹

表 2 VsFA2 针对不同种类抗生素的抑菌圈直径大小

Table 2 The diameter of bacteriostatic circle of VsFA2 against different kinds of antibiotics

抗生素种类及浓度(每片)	抑菌圈	抑菌圈直径
Type and concentration of antibiotics (per tablet)	Zone of inhibition	Diameter of inhibition zone (cm)
β-内酰胺类 Beta-lactam		
阿洛西林 Azlocillin (75 μg)	-	0.50±0.000
阿莫西林 Amoxicillin (20 μg)	_	0.50±0.000
氨苄西林 Ampicillin (10 μg)	-	0.50±0.000
氨苄西林/舒巴坦 Ampicillin-sulbactam (10 μg/10 μg)	-	0.50±0.000
氨曲南 Aztreonam (30 μg)	+	0.68±0.005
奥格门汀 Augmentin (20 μg/10 μg)	-	0.50±0.000
苯唑西林 Oxacillin (1 μg)	-	0.50±0.000
拉氧头孢 Moxalactam (30 μg)	+	1.28±0.005
美罗培南 Meropenem (10μg)	+	1.37±0.005
美洛西林 Mezlocillin (75μg)	-	0.50±0.000
哌拉西林/他唑巴坦 Piperacillin-tazobactam (100 μg/10 μg)	+	1.33±0.021
青霉素 Penicillin (10 U)	-	0.50 ± 0.000
替卡西林-克拉维酸 Ticarcillin-clavulanic acid (75 μg/10 μg)	-	0.50±0.000
头孢氨苄 Cephalexin (30 μg)	-	0.50±0.000
头孢吡肟 Cefepime (30 μg)	+	0.88 ± 0.005
头孢呋辛 Cefuroxime (30 μg)	+	1.10±0.012
头孢噻肟/棒酸 Cefotaxime/clavulanic acid (30 µg/10 µg)	+	0.68±0.000
头孢克洛 Cefaclor (30 μg)	+	1.28±0.000
头孢克肟 Cefixime (5 μg)	+	0.88 ± 0.000
头孢拉定 Cefradine (30 μg)	-	0.50 ± 0.000
头孢美唑 Cefmetazole (30 μg)	-	0.50 ± 0.000
头孢孟多 Cefamandole (30 µg)	-	0.50 ± 0.000
头孢哌酮/舒巴坦 Cefperazone/sulbactam (75 μg/75 μg)	+	1.43±0.005
头孢哌酮 Cefperazone (75 μg)	-	0.50 ± 0.000
头孢曲松 Ceftriaxone (30 µg)	+	1.78±0.014
头孢噻吩 Cephalothin (30 μg)	+	1.50±0.005
头孢噻肟 Cefotaxime (30 µg)	+	0.63 ± 0.005
头孢他啶 Ceftazidime (30 μg)	+	$0.58 {\pm} 0.005$
头孢他啶/棒酸 Ceftazidime/ clavulanic acid (30 µg/10 µg)	+	$0.68 {\pm} 0.000$
头孢西丁(美福仙) Cefoxitin (30 μg)	+	$0.82{\pm}0.008$
头孢唑林 Cefazolin (30 μg)	+	1.20 ± 0.012
头孢唑肟 Ceftizoxime (30 μg)	+	2.05±0.014
亚胺培南 Imipenem (10 μg)	+	1.73±0.014
氨基糖苷类 Amnioglycosides		
大观霉素 Spectinomycin (100 μg)	-	0.50 ± 0.000
丁胺卡那(阿米卡星) Amikacin (30 µg)	+	1.18±0.005
卡那霉素 Kanamycin (30 μg)	+	1.10 ± 0.031
链霉素 Streptomycin (10 µg)	+	0.68±0.029
庆大霉素 Gentamicin (120 μg)	+	0.95 ± 0.005
妥布霉素 Tobramycin (10 µg)	+	1.00±0.016
新霉素 Neomycin (30 µg)	+	1.07±0.017
奈替米星 Netilmicin (30 μg)	-	0.50 ± 0.000

			(续表 2)
庆大霉素 Gentamicin (10 μg)	+	0.88 ± 0.000	
大环内酯类 Macrolides			
阿奇霉素 Azithromycin (15 μg)	-	0.50 ± 0.000	
红霉素 Erythromycin (15 µg)	+	1.34 ± 0.012	
吉他霉素 Kitasamycin (15 μg)	-	0.50 ± 0.000	
克拉霉素 Clarithromycin (15 µg)	+	1.13 ± 0.014	
罗红霉素 Roxithromycin (15 μg)	+	1.25 ± 0.005	
麦迪霉素 Midecamycin (30 μg)	+	$0.62{\pm}0.005$	
乙酰螺旋霉素 Acetylspiramycin (30 µg)	-	0.50 ± 0.000	
喹诺酮类 4-quinolones			
吡哌酸 Pipemidic acid (30 µg)	+	1.52 ± 0.149	
恩诺沙星 Enrofloxacin (10 µg)	+	1.90 ± 0.005	
氟罗沙星 Fleroxacin (5 µg)	+	1.93 ± 0.005	
环丙沙星 Ciprofloxacin (5 µg)	+	2.37 ± 0.005	
加替沙星 Gatifloxacin (5 µg)	+	1.45 ± 0.005	
洛美沙星 Lomefloxacin (10 μg)	+	1.37 ± 0.012	
萘啶酸 Nalidixic acid (30 µg)	+	2.12 ± 0.022	
诺氟沙星 Norfloxacin (10 µg)	+	2.15 ± 0.005	
氧氟沙星 Ofloxacin (5 µg)	+	0.70 ± 0.005	
依诺沙星 Enoxacin (10 µg)	+	1.85 ± 0.005	
左氧氟沙星 Levofloxacin (5 μg)	+	2.35±0.017	
其他类 Others			
多西环素 Doxycycline (30 µg)	-	0.50 ± 0.000	
多粘菌素 B Polymyxin B (300 IU)	+	0.61 ± 0.008	
呋喃妥因 Nitrofurantoin (300 µg)	+	1.25 ± 0.005	
呋喃唑酮(痢特灵) Furazolidone (300 µg)	+	$0.80 {\pm} 0.005$	
呋喃唑酮 Furazolidone (100 µg)	+	$0.74{\pm}0.005$	
氟苯尼考 Florfenicol (30 μg)	-	0.50 ± 0.000	
复方新诺明 Compound sulfamethoxazole (23.75/1.25 μg)	+	1.76 ± 0.005	
杆菌肽 Bacitracin (0.04 U)	-	0.50 ± 0.000	
磺胺异噁唑 Sulfafurazole (300 µg)	-	0.50 ± 0.000	
甲硝唑 Metronidazole (5 µg)	-	0.50 ± 0.000	
甲氧苄胺嘧啶 Trimethoprim (5 μg)	-	0.50 ± 0.000	
克林霉素 Clindamycin (2 μg)	+	$0.95 {\pm} 0.005$	
米诺环素 Minocycline (30 μg)	+	1.10 ± 0.000	
四环素 Tetracycline (30 µg)	+	1.38 ± 0.005	
替考拉宁 Teicoplanin (30 μg)	-	0.50 ± 0.000	
万古霉素 Vancomycin (30 μg)	+	0.56 ± 0.005	
新生霉素 Novobiocin (30 µg)	+	0.70 ± 0.013	
新生霉素 Novobiocin (5 µg)	+	0.55 ± 0.014	
制霉菌素 Nystatin (100 µg)	+	1.03 ± 0.005	
两性霉素 B Amphotericin B (30 μg)	-	0.50 ± 0.000	
林可霉素 Lincomycin (2 µg)	-	0.50 ± 0.000	
磷霉素 Fosfomycin (200 µg)	+	1.66 ± 0.005	
氯霉素 Chloramphenicol (30 µg)	+	2.45 ± 0.005	
利福平 Rifampin (5 µg)	+	1.20±0.012	

注:+:产生抑菌圈,-:不产生抑菌圈。纸片直径 0.50 cm

Note: +: A bacteriostatic circle is produced, -: No bacteriostatic circle is produced. The diameter of paper is 0.50 cm.

诺酮类抗生素中, VsFA2 对诺氟沙星、左氧氟 沙星则表现出了高度的敏感性。在其他种类抗 生素中, VsFA2 对多粘菌素 B 敏感性很低。 VsFA2可以耐受多西环素, 但对四环素、米诺环 素都表现出很高的敏感性。磺胺类抗生素中, VsFA2对复方新诺明的敏感性极高, 而对磺胺异 噁唑则并不敏感。除此之外, VsFA2对氯霉素、 磷霉素的敏感性非常高, 而对新生霉素、林可 霉素的敏感性较低。可以看出 VsFA2 的抗生素 耐受谱较广。

根据基因组注释分析结果(表 3),基因组 中至少有 18 个耐药性相关基因,包括 10 个多 药耐药外排泵基因及四环素、喹诺酮类、内酰 胺类抗性基因,这与 VsFA2 表现出的多种抗生 素耐药性相吻合。

从以上耐药表型及耐药基因预测来看, VsFA2 对几种 β-内酰胺类抗生素都有较强的耐 受性。氨苄西林是一种广谱青霉素,在临床医

表3	VsFA2 基因组由耐药性相关预测信息
AX J	VSFA2 本凶组中时约住怕大坝测向芯

基因	基因 ID	基因功能描述
Gene	Gene ID	Gene function description
mepA_1	fig 691.73.peg.222	青霉素不敏感的胞壁内肽酶 Penicillin-insensitive murein endopeptidase
mepA_2	fig 691.73.peg.2061	多药耐药外排泵:多药和毒性化合物外排(MATE)家族
		Multi antimicrobial extrusion protein: MATE family of MDR efflux pumps
mepA_3	fig 691.73.peg.4720	多药耐药外排泵: MATE 家族
		Multi antimicrobial extrusion protein: MATE family of MDR efflux pumps
$mdtK_1$	fig 691.73.peg.2476	多药耐药外排泵: MATE 家族
		Multi antimicrobial extrusion protein: MATE family of MDR efflux pumps
emrE	fig 691.73.peg.980	多药耐药外排泵:小多重耐药(SMR)家族
		Multi antimicrobial extrusion protein: small multidrug resistance family (SMR) protein
sugE	fig 691.73.peg.4449	多药耐药外排泵:SMR 家族
		Multi antimicrobial extrusion protein: small multidrug resistance family (SMR) protein
czcA_l	fig 691.73.peg.785	吖啶黄素抗性蛋白 Acriflavin resistance protein
czcA_2	fig 691.73.peg.3183	耐药结节分化(RND)家族,吖啶黄素抗性蛋白
		RND Multidrug efflux transporter, acriflavin resistance protein
czcA_3	fig 691.73.peg.4397	吖啶黄素抗性蛋白 Acriflavin resistance protein
mdtB	fig 691.73.peg.2084	RND 家族, 吖啶黄素抗性蛋白 RND
		Multidrug efflux transporter, acriflavin resistance protein
gyrA	fig 691.73.peg.1541	氟喹诺酮类耐药性: DNA 促旋酶亚基 A (EC 5.99.1.3)
		Fluoroquinolone resistance: DNA gyrase subunit A (EC 5.99.1.3)
gyrB	fig 691.73.peg.2697	氟喹诺酮类耐药性: DNA 促旋酶亚基 B (EC 5.99.1.3)
		Fluoroquinolone resistance: DNA gyrase subunit B (EC 5.99.1.3)
tet	fig 691.73.peg.743	四环素抗性,易化因子超家族(MFS)外排泵
		Tetracycline resistance, MFS efflux pump
bcr	fig 691.73.peg.814	双环霉素耐药蛋白 Bicyclomycin resistance protein Bcr
arnC	fig 691.73.peg.1593	多粘菌素抗性蛋白,糖基转移酶
		Polymyxin resistance protein ArnC, glycosyl transferase
carB6	fig 691.73.peg.3930	A 类 β-内酰胺酶 (EC 3.5.2.6) Class A beta-lactamase (EC 3.5.2.6)
ampC2	fig 691.73.peg.4407	B3 亚类 β-内酰胺酶(EC 3.5.2.6) Subclass B3 beta-lactamase (EC 3.5.2.6)
ampC1	fig 691.73.peg.4639	C 类 B-内酰胺酶(EC 3.5.2.6) Class C beta-lactamase (EC 3.5.2.6)

 Table 3
 Predictive information related to drug resistance in VsFA2 genome

学和畜牧养殖中广泛应用^[29],是被广泛关注的 重要抗生素。另一方面,氨苄西林等抗生素的 耐受基因的大量排放,最后会通过基因水平转 移传播到动物或人类的致病菌中^[30],对生命健 康造成危害。同时,氨苄西林常作为质粒上的 抗生素筛选标记运用于各种基于基因工程的改 造,底盘微生物携带该抗性基因会影响基因操 作工具的可用性。根据已知的基因注释结果, β-内酰胺酶相关抗性基因有 *carB6、ampC2* 和 *ampC1*,其在基因组上的位置如图 1 所示。因 此选取氨苄西林为研究对象,通过敲除 *carB6、ampC2* 和 *ampC1* 基因,以期消除 VsFA2 的氨

2.2 耐药基因的消除

苄西林耐受性。

通过扩增 *carB6、ampC1、ampC2* 基因的 上、下游片段并进行融合,与质粒 pKR6K 通过 无缝克隆成功构建 pKR6K-*carB6、*pKR6K*ampC1*和 pKR6K-*ampC2*共3种无痕敲除载体。

将含无痕敲除载体的 S17-1 菌株与 VsFA2 通过结合转移使重组质粒转移至 VsFA2 内,同 VsFA2 染色体发生同源重组,经过单、双交换 得到了 VsFA2 关于 3 个基因的敲除突变体,分 别命名为 FA2 Δ ampC2、FA2 Δ ampC2 Δ carB6 和 FA2 Δ ampC2 Δ carB6 Δ ampC1,敲除验证结果见 图 2。

2.3 β-内酰胺类抗生素敏感性验证结果

4 株菌对不同抗生素产生的抑菌圈直径变 化如图 3 所示。

(1) 敲除 *ampC2* 和 *carB6* 的 VsFA2 对于氨 苄西林的敏感性无明显的改变,而敲除 *ampC1* 后 VsFA2 对于氨苄西林的敏感性有一定提升。

(2) *ampC2* 对于氨曲南、头孢噻肟/棒酸、 头孢哌松/舒巴坦、哌拉西林/他唑巴坦的敏感 性提高有一定作用, *carB6* 对于氨苄西林/舒巴 坦、美洛西林、替卡西林-克拉维酸、头孢氨 苄、头孢呋辛、头孢克肟、头孢吡肟的敏感性 提高有一定作用, *ampC1*则会影响菌株对阿洛 西林、阿莫西林、美罗培南、氨苄西林/舒巴 坦、美洛西林、替卡西林-克拉维酸以及头孢氨 苄、头孢吡肟、头孢克洛、头孢孟多、头孢哌 酮、头孢噻肟/棒酸、头孢唑肟敏感性的提高。

(3) FA2ΔampC2 对哌拉西林/他唑巴坦、头 孢噻肟/棒酸、头孢哌松/舒巴坦的敏感性最 高,对于氨苄西林、阿洛西林、阿莫西林、氨 苄西林/舒巴坦、苯唑西林、美洛西林、替卡 西林-克拉维酸、头孢拉定、头孢哌酮、青霉 素等抗生素则不敏感。FA2ΔampC2ΔcarB6 也 是对哌拉西林/他唑巴坦、头孢噻肟/棒酸、头 孢哌松/舒巴坦的敏感性最高,而对于氨苄西 林、阿洛西林、阿莫西林、苯唑西林、头孢拉 定、头孢哌酮、青霉素等抗生素则不敏感。 FA2ΔampC2ΔcarB6ΔampC1 也是对哌拉西林/ 他唑巴坦、头孢噻肟/棒酸、头孢哌松/舒巴 坦、头孢哌酮、头孢唑肟和美洛西林的敏感性 最高,而对于苯唑西林、头孢拉定以及青霉素

因此, 敲除株的 β-内酰胺类耐药谱及生长 情况说明 FA2Δ*ampC2*Δ*carB6*Δ*ampC1*已不再具 备氨苄西林抗性,可用于后续以氨苄西林为筛 选标记的底盘细胞的开发。

2.4 生长测试结果

对 4 株菌 0-48 h 内的 OD_{600} 值和时间绘制 生长曲线,结果如图 4 所示。关于 FA2 的 4 株 菌在不同的生长时期均表现出了差异: 2-12 h 内, FA2 WT、FA2 Δ ampC2 的生长趋势保持一 致, FA2 Δ ampC2 的 OD_{600} 值一直略高于 FA2 WT,而 FA2 Δ ampC2 Δ carB6 在 12 h 之前的 OD_{600} 值在 1.0 以下,表明菌株的生长明显受到

VsFA2有2条染色体,其中, carB6、 ampC1、 ampC2 这3个基因都位于染色体2上 Schematic diagram of the location of the lactamase genes of VsFA2. There are two chromosomes in VsFA2, carB6, ampC1, and VSFA2 的 3 个内酰胺酶基因位置示意图 ampC2 are all located on chromosome 2. Figure 1 冬1

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

图 2 敲除突变体的基因敲除验证

Figure 2 Gene knockout verification of knockout mutant strains. M: Marker III; 1, 3, 5: FA2 WT; 2, 4, 6: FA2 $\Delta ampC2\Delta carB6\Delta ampC1$; 1–2 primers: carB6-F & carB6-R; 3–4 primers: ampC1-F & ampC1-R; 5–6 primers: ampC2-F & ampC2-R. 了抑制; 12-36 h, FA2Δ*ampC2ΔcarB6* 以极快的 生长速率达到了同 FA2 和 FA2Δ*ampC2* 这 2 株菌 相近的 *OD*₆₀₀ 范围。36-48 h, 进入衰亡期的 3 株 菌的 *OD*₆₀₀ 值都开始下降,并且降至 4.0-6.0 的范 围内。然而 FA2Δ*ampC2ΔcarB6ΔampC1* 的 *OD*₆₀₀ 一直处于极低的水平, 菌株无法正常生长。

3 讨论与结论

细菌抗生素耐药性已成为备受关注的科学问题。本研究揭示了全新的基因工程操作平台 Vibrio sp. FA2 对多种抗生素的耐药情况,并根 据基因组注释总结出与之相关的耐药基因,为 弧菌耐药基因的定位提供了参考。其中,VsFA2 基因组中含有 3 个 β-内酰胺类抗生素耐药基因

图 3 FA2 野生型以及敲除株的 β-内酰胺类抗生素敏感性

Figure 3 β -lactam antibiotic susceptibility of FA2 wild type and knockout strains. The diameter of the paper is 0.50 cm.

图 4 FA2 野生型及敲除株在氨苄西林培养条件 下的生长情况

Figure 4 The growth of FA2 wild type and knockout strains under ampicillin condition.

carB6、ampC2 和 ampC1, 通过基因敲除等操 作删除了这3个基因,获得关于3个基因的敲 除株,并且验证了敲除前后对 β-内酰胺类抗生 素的变化。抑菌圈结果与生长情况显示敲除3个 基因后 VsFA2 对氨苄西林的耐受性降低,可以 用于底盘细胞的开发。其中, ampC2 作为 B3 亚类 β-内酰胺酶基因,能水解碳青霉烯类抗生 素, 敲除该基因之后 VsFA2 对此类抗生素的敏 感性变化结果与之前提出的观点相符[31],但是 敲除 ampC2 基因之后菌株对于氨曲南的抗性变 化与之前的报道有所不同^[32],而氨曲南的抗性 变化一般与细菌的青霉素结合蛋白相关,提示 我们在弧菌中单个基因的功能并不是完全与其 他菌株中保持一致的,这有待进一步研究。 carB6 作为 A 类 β-内酰胺酶基因, 编码羧苄青 霉素水解 β-内酰胺酶。与副溶血弧菌中关于 carB家族基因的研究^[33]所不同的是,本研究中 该基因的敲除对氨苄西林的敏感性变化影响不 大, 而对 β-内酰胺类抗生素/β-内酰胺酶抑制剂的 组合敏感性影响较大。ampCl 作为 C 类 β-内酰 胺酶基因,在敲除之后菌株对于氨基青霉素及 其加酶抑制剂及脲基青霉素的敏感性提高,其 对第一至第三代头孢菌素的敏感性也有增强, 这与之前研究阐述的 AmpC 酶特征一致^[34]。另 外,本研究中揭示的关于 VsFA2 基因组中不同 种类的多药耐药外排泵的存在,能够很大程度 上减少抗生素对细菌的压力^[35-36],从而使细菌 表现出较强的抗生素耐受性。因此,后续关于 弧菌的耐药性研究中,外排泵是一个不可忽视 的影响因素。

另一方面, VsFA2 极有潜力成为工业开发 的下一代底盘细胞并进行应用。优良的生长特 点使其充分具备了成为底盘细胞的能力, 菌株 对碳源利用范围之广可为后续工业生产中底物 的成本投入带来巨大的经济效益并且提高产品 产量,丰富的生理生化机能也为后续能够利用 这些代谢途径并对其进行代谢工程的改造以合 成其他多种化学品奠定了生理基础。然而,由 于其对多种抗生素的耐受性,导致适合在 VsFA2 中进行改造利用的质粒载体选择范围缩 小,也可能对基因工程的顺利操作增加难度。 因此,本研究消除了 VsFA2 对于氨苄西林的耐 受性,拓宽了质粒选取范围,为VsFA2底盘细 胞的开发奠定了基础,同时为其他菌株通过消 除抗生素耐受性来开发底盘细胞的研究提供了 有效参考。

REFERENCES

- Thompson FL, Iida T, Swings J. Biodiversity of Vibrios[J]. Microbiology and Molecular Biology Reviews, 2004, 68(3): 403-431
- [2] Weinstock MT, Hesek ED, Wilson CM, Gibson DG. Vibrio natriegens as a fast-growing host for molecular biology[J]. Nature Methods, 2016, 13(10): 849-851
- [3] Eagon RG. Pseudomonas natriegens, a marine bacterium with a generation time of less than 10 minutes[J]. Journal of Bacteriology, 1962, 83(4): 736-737
- [4] Dalia TN, Hayes CA, Stolyar S, Marx CJ, McKinlay JB, Dalia AB. Multiplex genome editing by natural

transformation (MuGENT) for synthetic biology in *Vibrio natriegens*[J]. ACS Synthetic Biology, 2017, 6(9): 1650-1655

- [5] Hoffart E, Grenz S, Lange JL, Nitschel R, Müller F, Schwentner A, Feith A, Lenfers-Lücker M, Takors R, Blombach B. High substrate uptake rates empower *Vibrio natriegens* as production host for industrial biotechnology[J]. Applied and Environmental Microbiology, 2017, 83(22): e01614-17
- [6] Wu FL, Chen WJ, Peng YF, Tu R, Lin YP, Xing JM, Wang QH. Design and reconstruction of regulatory parts for fast-growing *Vibrio natriegens* synthetic biology[J]. ACS Synthetic Biology, 2020, 9(9): 2399-2409
- [7] 吴凤礼,梁艳霞,张媛媛,霍亚楠,王钦宏.新型生 长快速需钠弧菌基因组无痕编辑体系构建[J]. 生物 工程学报, 2020, 36(11): 2387-2397
 Wu FL, Liang YX, Zhang YY, Huo YN, Wang QH. Construction of seamless genome editing system for fast-growing *Vibrio natriegens*[J]. Chinese Journal of Biotechnology, 2020, 36(11): 2387-2397 (in Chinese)
- [8] Tschirhart T, Shukla V, Kelly EE, Schultzhaus Z, NewRingeisen E, Erickson JS, Wang Z, Garcia W, Curl E, Egbert RG, et al. Synthetic biology tools for the fast-growing marine bacterium *Vibrio natriegens*[J]. ACS Synthetic Biology, 2019, 8(9): 2069-2079
- [9] Peng Y, Han X, Xu P, Tao F. Next-generation microbial workhorses: comparative genomic analysis of fast-growing *Vibrio* strains reveals their biotechnological potential[J]. Biotechnology Journal, 2020, 15(5): e1900499
- [10] Inoue R, Kaito C, Tanabe M, Kamura K, Akimitsu N, Sekimizu K. Genetic identification of two distinct DNA polymerases, DnaE and PolC, that are essential for chromosomal DNA replication in *Staphylococcus aureus*[J]. Molecular Genetics and Genomics, 2001, 266(4): 564-571
- [11] Sherratt DJ, Arciszewska LK, Blakely G, Colloms S, Grant K, Leslie N, McCulloch R. Site-specific recombination and circular chromosome segregation[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1995, 347(1319): 37-42
- [12] Courcelle J, Crowley DJ, Hanawalt PC. Recovery of DNA replication in UV-irradiated *Escherichia coli* requires both excision repair and RecF protein function[J]. Journal of Bacteriology, 1999, 181(3): 916-922

- [13] Viola RE. The central enzymes of the aspartate family of amino acid biosynthesis[J]. Accounts of Chemical Research, 2001, 34(5): 339-349
- [14] Kakimoto T, Kato J, Shibatani T, Nishimura N, Chibata I. Crystalline L-aspartate beta-decarboxylase of *Pseudomonas dacunhae*. I. Crystallization and some physiocochemical properties[J]. Journal of Biological Chemistry,1969, 244(2): 353-358
- [15] Liu F, Qimuge, Hao JF, Yan HJ, Bach T, Fan LF, Morigen. AspC-mediated aspartate metabolism coordinates the *Escherichia coli* cell cycle[J]. PLoS One, 2014, 9(3): e92229
- [16] Des Soye BJ, Davidson SR, Weinstock MT, Gibson DG, Jewett MC. Establishing a high-yielding cell-free protein synthesis platform derived from *Vibrio natriegens*[J]. ACS Synthetic Biology, 2018, 7(9): 2245-2255
- [17] 朱力军. 动物大肠杆菌耐药性的变化趋势[J]. 中国 兽药杂志, 2001, 35(2): 16-18
 Zhu LJ. Changes of antimicrobial resistance of *E. coli*[J]. Chinese Journal of Veterinary Drug, 2001, 35(2): 16-18 (in Chinese)
- [18] Ottaviani D, Bacchiocchi I, Masini L, Leoni F, Carraturo A, Giammarioli M, Sbaraglia G. Antimicrobial susceptibility of potentially pathogenic halophilic *Vibrios* isolated from seafood[J]. International Journal of Antimicrobial Agents, 2001, 18(2): 135-140
- [19] Shaw KS, Rosenberg Goldstein RE, He X, Jacobs JM, Crump BC, Sapkota AR. Antimicrobial susceptibility of Vibrio vulnificus and Vibrio parahaemolyticus recovered from recreational and commercial areas of Chesapeake Bay and Maryland Coastal Bays[J]. PLoS One, 2014, 9(2): e89616
- [20] Pan JH, Zhang YJ, Jin DZ, Ding GQ, Luo Y, Zhang JY, Mei LL, Zhu MY. Molecular characterization and antibiotic susceptibility of *Vibrio vulnificus* in retail shrimps in Hangzhou, People's Republic of China[J]. Journal of Food Protection, 2013, 76(12): 2063-2068
- [21] Sudha S, Mridula C, Silvester R, Hatha AAM. Prevalence and antibiotic resistance of pathogenic *Vibrios* in shellfishes from Cochin market[J]. Indian Journal of Geo-Marine Sciences, 2014, 43(5): 815-824
- [22] Akinbowale OL, Peng H, Barton MD. Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia[J]. Journal of Applied Microbiology, 2006, 100(5): 1103-1113
- [23] 吴乃虎. 基因工程原理-下册[M]. 2 版. 北京: 科学出

版社, 1998

Wu NH. Principles of Genetic Engineering-Volume 2[M]. 2nd ed. Beijing: Science Press, 1998 (in Chinese)

[24] 张惠展. 基因工程[M]. 上海: 华东理工大学出版社, 2017

Zhang HZ. Genetic Engineering[M]. Shanghai: East China University of Science and Technology Press, 2017 (in Chinese)

- [25] Aminov RI. The role of antibiotics and antibiotic resistance in nature[J]. Environmental Microbiology, 2009, 11(12): 2970-2988
- [26] Pruden A, Pei RT, Storteboom H, Carlson KH. Antibiotic resistance genes as emerging contaminants: studies in northern Colorado[J]. Environmental Science & Technology, 2006, 40(23): 7445-7450
- [27] 谭瑶,赵清,舒为群,陈浩. K-B 纸片扩散法药敏试验[J]. 检验医学与临床, 2010, 7(20): 2290-2291
 Tan Y, Zhao Q, Shu WQ, Chen H. K-B disk diffusion method for drug sensitivity test[J]. Laboratory Medicine and Clinic, 2010, 7(20): 2290-2291 (in Chinese)
- [28] 辛波. 微生物转化甘油合成 1,3-丙二醇和乳酸的应用 基础研究[D]. 济南:山东大学博士学位论文, 2016 Xin B. Applied and basic research on microbial conversion of glycerol into 1,3-propanediol and lactate[D]. Jinan: Doctoral Dissertation of Shandong University, 2016 (in Chinese)
- [29] 刘俏丽. 氨苄西林诱导志贺菌耐受的机制研究[D].
 郑州:郑州大学硕士学位论文, 2019
 Liu QL. The mechanism of ampicillin-induced tolerance of *Shigella*[D]. Zhengzhou: Master's Thesis of Zhengzhou University, 2019 (in Chinese)

- [30] Chee-Sanford JC, Aminov RI, Krapac IJ, Garrigues-Jeanjean N, Mackie RI. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities[J]. Applied and Environmental Microbiology, 2001, 67(4): 1494-1502
- [31] Felici A, Amicosante G, Oratore A, Strom R, Ledent P, Joris B, Fanuel L, Frère JM. An overview of the kinetic parameters of class B beta-lactamases[J]. The Biochemical Journal, 1993, 291 (Pt 1): 151-155
- [32] Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily[J]. Biochemical Pharmacology, 2007, 74(12): 1686-1701
- [33] Chiou JC, Li RC, Chen S. CARB-17 family of β-lactamases mediates intrinsic resistance to penicillins in *Vibrio parahaemolyticus*[J]. Antimicrobial Agents and Chemotherapy, 2015, 59(6): 3593-3595
- [34] 宋玮, 唐英春. 质粒介导的 AmpC β-内酰胺酶[J]. 中国抗生素杂志, 2004, 29(2): 72-78
 Song W, Tang YC. Plasmid-mediated AmpC β-lactamases[J]. Chinese Journal of Antibiotics, 2004, 29(2): 72-78 (in Chinese)
- [35] Ma D, Cook DN, Alberti M, Pon NG, Nikaido H, Hearst JE. Genes *acrA* and *acrB* encode a stress-induced efflux system of *Escherichia coli*[J]. Molecular Microbiology, 1995, 16(1): 45-55
- [36] Lee S, Yeom JH, Seo S, Lee M, Kim S, Bae J, Lee K, Hwang J. Functional analysis of *Vibrio vulnificus* RND efflux pumps homologous to *Vibrio cholerae* VexAB and VexCD, and to *Escherichia coli* AcrAB[J]. Journal of Microbiology, 2015, 53(4): 256-26