微生物学通报

Feb. 20, 2021, 48(2): 437–448 DOI: 10.13344/j.microbiol.china.200244

Microbiology China tongbao@im.ac.cn http://journals.im.ac.cn/wswxtbcn

基于转录组学分析的丙酸钙对酿酒酵母的抑菌机制

叶晗¹李啸^{*1,2}张小龙²肖泽涛¹许超群¹黄聪²
1中国轻工业酵母功能重点实验室 三峡大学生物与制药学院 湖北 宜昌 443002
2湖北省酵母功能重点实验室 安琪酵母股份有限公司 湖北 宜昌 443003

摘 要:【背景】丙酸钙作为在面包等食品中添加的防腐剂,具有一定的抑菌作用,但目前对其的研究大多聚焦于生化、群体层次。【目的】在分子水平上探究丙酸钙对酵母起抑菌作用的机制。【方法】取实验组和对照组中对数生长期的耐高糖酵母 BH1 进行转录组测序及分析,并进行实时荧光定量 PCR 验证。【结果】与6h 对照组(无丙酸钙处理; Control Group, CG)相比,6h 实验组(丙酸钙处理 2h; Calcium Propionate 2h Group, CP2G)中有 1438 个差异表达基因,其中 643 个基因上调,795 个基因下调。然而与4h 实验组(丙酸钙处理0h; Calcium Propionate 0h Group, CP0G)相比, CP2G 中共有 1921 个差异表达基因,其中 1438 个基因上调,483 个基因下调。差异表达基因涉及 MAPK (Mitogen-Activated Protein Kinase)信号途径、细胞周期途径及减数分裂途径等多条途径,细胞壁合成过程也受到影响。【结论】探究了丙酸钙对酵母产生抑菌作用的分子机制,为进一步揭示丙酸钙的抑菌作用机理提供了理论基础。

关键词:转录组,丙酸钙,耐高糖酵母,抑菌机制

Antimicrobial mechanism of calcium propionate on Saccharomyces cerevisiae based on transcriptomics analysis

YE Han¹ LI Xiao^{*1,2} ZHANG Xiaolong² XIAO Zetao¹ XU Chaoqun¹ HUANG Cong²

1 China Light Industry Key Laboratory of Yeast Function, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China

2 Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Company Limited, Yichang, Hubei 443003, China

Abstract: [Background] As a preservative added in bread and other foods, calcium propionate has a certain antimicrobial effect, but most of its current researches focus on biochemical and group levels. [Objective] To explore the mechanism of antimicrobial effect of calcium propionate on *Saccharomyces cerevisiae* at the molecular level. [Methods] Transcriptome sequencing and analysis were performed on logarithmic growth period of high-glucose resistant yeast BH1 in experimental group and control group, and real-time fluorescent quantitative PCR was performed for verification. [Results] Compared with the 6 h control group (no calcium propionate treatment; control group, CG), there were 1 438 differentially

Foundation item: Natural Science Foundation of Hubei Province (2015CFA150) ***Corresponding author:** E-mail: lx 6910@163.com

Received: 16-03-2020; **Accepted:** 02-04-2020; **Published online:** 01-06-2020 基金项目: 湖北省自然科学基金(2015CFA150)

^{*}通信作者: E-mail: lx_6910@163.com

收稿日期: 2020-03-16; 接受日期: 2020-04-02; 网络首发日期: 2020-06-01

expressed genes (DEGs) in the 6 h experimental group (calcium propionate 2 h group, CP2G), of which 643 genes were up-regulated and 795 gene down-regulation. Compared with the 4 h experimental group (calcium propionate 0 h group, CP0G), there were 1 921 differentially expressed genes in CP2G, of which 1 438 genes were up-regulated and 483 genes were down-regulated. Among them, DEGs involved in multiple pathways, including the mitogen-activated protein kinase (MAPK) signal pathway, cell cycle pathway, and meiotic pathway. In addition, genes involved in cell wall synthesis also differentially express. **[Conclusion]** The molecular mechanism of calcium propionate's antimicrobial effect on yeast was explored, which provided a theoretical basis for further revealing the mechanism of calcium propionate's antimicrobial effect.

Keywords: transcriptome, calcium propionate, high-glucose resistant yeast, antimicrobial mechanism

耐高糖酵母是一种能够在高浓度糖含量条件 下生长并进行发酵作用的酿酒酵母,被广泛应用在 烘焙等食品生产领域。丙酸钙作为一种安全的防腐 剂常被用于面包等食品中以延长其保质期,而丙酸 钙的添加除了起到抑制霉菌等杂菌生长的作用,对 酵母的增殖也造成了一定的影响^[1-2]。有研究报道, 丙酸钙主要是通过在酸性条件下产生游离丙酸,丙 酸活性分子穿过霉菌等的细胞壁,抑制胞内酶活 性,起到抗菌作用^[3]。细胞周期即细胞的增殖过程, 细胞周期延滞则细胞增殖被抑制,乙酸毒性能导致 酵母细胞内 DNA 损伤, 而 DNA 损伤会诱导一系 列信号转导触发细胞周期延滞^[4-5];丙酸钙对洋葱 根尖细胞分裂有抑制作用,能改变有丝分裂期的频 率,降低细胞内核 DNA 含量^[6]。然而,对于丙酸 及丙酸盐等防腐剂对酿酒酵母作用的研究大多聚 焦在细胞水平、生理生化水平或群体水平,缺乏对 其更深层次的研究。因此,从分子层面上研究丙酸 钙的抑菌机制,可为构建及优化耐丙酸钙菌株提供 科学依据和理论指导。

转录组,即特定细胞在某一状态下所能转录的 所有 RNA 的总和,包括信使 RNA 和非编码 RNA, 转录组学分析已被广泛用于揭示特定生物学过程 的分子机理^[7]。本文利用高通量测序技术对耐高糖 酵母 BH1 进行转录组测序分析,并用实时荧光定 量 PCR (qRT-PCR)对结果进行验证,以期在分子水 平上探究丙酸钙抑菌作用的机制。转录组测序原始 数据保存在 NCBI 的 Sequence Read Archive (SRA) 数据库中,序列号为 SRP225499。

1 材料与方法

1.1 菌种及培养基

耐高糖酵母 BH1,由安琪酵母股份有限公司 研发中心菌种与分子生物技术研究室提供。菌种活 化及发酵液体培养基(g/L): 蔗糖 100.0,酵母浸粉 20.0,KH₂PO₄ 1.0,MgSO₄·7H₂O 1.0。

1.2 主要试剂和仪器

总 RNA 提取试剂盒, 生工生物工程(上海)股 份有限公司; PrimeScriptTM RT-PCR 试剂盒, 宝生 物工程(大连)有限公司; SYBR Green RT-PCR 试剂 盒,南京诺唯赞生物科技有限公司。紫外可见分光 光度计,上海光谱仪器有限公司; FUS-50 L (A)发 酵罐,上海国强生化工程装备有限公司; HiSeq X Ten 高通量测序仪, Illumina 公司; 实时荧光 PCR 检测系统, Bio-Rad 公司。

1.3 种子活化和批次发酵

将斜面中保存的耐高糖酵母 BH1 接种到初始 pH 4.8 的液体培养基中,30°C、180 r/min 培养 24 h,随后按照接种量 10%、30°C、200 r/min、 0.035 kPa、通气量 400 mL/h 条件下培养 18 h 得到 二级种子。50 L 发酵罐中批次发酵条件:接种量 10%、30°C、200 r/min、0.035 kPa、通气量 2.4 L/h、 初始 pH 4.8,在对数期(4 h)向实验组加入丙酸钙后 (实验组丙酸钙质量分数为 0.25%),控制实验组和 对照组 pH 维持在 4.35。用紫外可见分光光度计测 定 600 nm 波长下菌液的吸光值(*OD*₆₀₀),并进行活细 胞计数。实验重复 3 次,文中数据为 3 次的平均值。

1.4 丙酸钙胁迫条件下酵母转录组数据测序及 分析

在 50 L 发酵罐中培养耐高糖酵母 BH1,取对 照组 6 h、实验组 4 h 及 6 h 时的菌液 1.5 mL,在 液氮中速冻 10 min, −80 °C 保存备用。实验重复 3 次,共计 9 个样品用于测序。转录组测序工作委 托生工生物工程(上海)股份有限公司高通量测序 部完成。质量合格的总 RNA 和 mRNA 用于后续建 库测序,测序结果的原始数据经进一步过滤后得到 Clean Reads,将 Clean Reads 比对到参考序列酿酒 酵母模式菌株 S288c 的基因组序列上,并进行统计 分析得到样品间差异表达基因等数据。

1.5 实时荧光定量 PCR (qRT-PCR)验证

β-Actin 作为内参基因^[8]。采用 PrimeScript[™] RT-PCR 试剂盒对 RNA 进行反转录合成 cDNA, 进而采用实时荧光定量 PCR 检测系统和 SYBR Green RT-PCR 试剂盒进行后续实验,此过程具体 反应条件及相对定量结果分析参考文献[9]。随机 选取 9 个基因,其引物序列见表 1。

表 1 实时荧光定量 PCR 引物 Table 1 Real-time fluorescent quantitative PCR primers

Primers name	Primers sequence $(5' \rightarrow 3')$
SPO24-F	ACTTCTGACGTTTCTCAACCT
SPO24-R	GAGTGTGAGCGGCTTGAAG
DAK2-F	GGAAACATCGTTACTCCCTACC
DAK2-R	CACCTCCAGAAACCAATGAAAC
PGI1-F	TGTCTGGTCGGCTATTGGTT
PGI1-R	TAGGCTGGGAATCTGTGCAA
TDH1-F	CAACCGTCGATGTTTCCGTT
TDH1-R	AATCAGAGGAGACAACGGCA
ENO1-F	TTCTACCGGTGTCCACGAAG
ENO1-R	AAGCAGCCAAAGAAACACCC
CWP2-F	CGTTGCTTTCGTCGCTTTG
CWP2-R	TTCGGTGCTGGATGGAGAAA
PIR3-F	CTATGCTCCAAAGGACCCGT
PIR3-R	CAGTAGTAGTGGCAGCCTGT
OPT2-F	AGGTACTGTTGATTACGCCG
OPT2-R	GAGTGCGATTTTCATAACCCAG
HSP10-F	ACCGTGTCCTTGTCCAAAG
HSP10-R	ACTTCTCCACGTTCTTTTCAGG
β-actin-F	ACTTTCAACGTTCCAGCCTTC
β-actin-R	CGTAAATTGGAACGACGACGTGAGTA

2 结果与分析

2.1 丙酸钙对耐高糖酵母 BH1 生长的影响

在摇瓶实验中,向已发酵 4 h 的酵母菌液中 加入不等量的丙酸钙,通过比对不同丙酸钙质量 分数下耐高糖酵母 BH1 的生长情况,发现丙酸钙 对耐高糖酵母的生长繁殖具有一定的抑制作用; 随着丙酸钙质量分数的提高,其抑制作用略微增 强,结果见图 1A。丙酸钙的添加也会引起培养基 中渗透压的升高,由图 1B 可知,丙酸钙质量分 数为 0.25%时培养基中的渗透压为 0.604 Osm/kg, 综合考虑,最终选择 0.25%作为丙酸钙质量分数 进行后续实验。

实验中耐高糖酵母 BH1 在 50 L 发酵罐中的生 长曲线如图 2A 所示,在空白对照组(Control Group) 中,酵母在 10 h 左右达到稳定期,此前生物量一 直保持较快增长;在4h前,对照组和实验组在生 物量上基本持平,4h时实验组(CP Group)中添加 了丙酸钙,可以看到实验组中 *OD*₆₀₀(细胞数)的增 长明显放缓,达到稳定时的生物量几乎仅为对照组 的一半,丙酸钙对酵母增殖具有明显的抑制作用。

不过,尽管丙酸钙抑制了酵母的增殖,但其并 未导致酵母细胞的死亡,对照组和实验组中细胞死 亡率并未表现出明显差异,可见丙酸钙对酵母的毒 害作用有限,或者说酵母细胞能够通过自身的调节 适应丙酸钙带来的胁迫,但其生长繁殖却一直受到 抑制。为了探究丙酸钙对酵母的抑菌机制,将经过 丙酸钙处理2h的实验组酵母与未经过处理的对照 组酵母和经过丙酸钙处理0h的实验组酵母进行转 录组测序,比较各组间的基因表达差异。

2.2 差异表达基因的筛选

6 h 对照组(Control Group, CG)、4 h 实验组 (Calcium Propionate 0 h Group, CP0G)和 6 h 实验 组(Calcium Propionate 2 h Group, CP2G) 3 组中均 含有 3 个重复,共计 9 组转录组测序数据。由表 2 样本间相关性分析统计表可知,样本间重复性良 好, CP2G 与其他 2 组差异相对较大。

图 1 摇瓶实验中不同丙酸钙质量分数下耐高糖酵母 BH1 的生长曲线(A)及对应培养基中的渗透压(B) Figure 1 Growth curve of high-glucose resistant yeast BH1 under different mass fractions of calcium propionate in shake flask experiments (A) and osmotic pressure in corresponding medium (B)

注: CP (Calcium Propionate)表示丙酸钙; 4h时向摇瓶中加入丙酸钙,使酵母处于不同浓度的丙酸钙环境中

Note: CP means calcium propionate; At 4 h, add calcium propionate to the flask to keep the yeast in the environment of calcium propionate with different concentrations

图 2 50 L 发酵罐中耐高糖酵母 BH1 的生长曲线及细胞死亡率

Figure 2 Growth curve and cell mortality of high-glucose resistant yeast BH1 in 50 L fermentation tank

注:A:耐高糖酵母 BH1 在 50 L 发酵罐中的生长曲线(*OD*₆₀₀ 和细胞数);Control group:对照组;CP group (calcium propionate group): 4 h 时添加丙酸钙的实验组(丙酸钙质量分数为 0.25%)。B: 细胞死亡率

Note: A: Growth curve (OD_{600} and cell counts) of high-sugar resistant yeast BH1 in a 50 L fermenter, and the CP group (calcium propionate group) is the experimental group with 0.25% calcium propionate added at 4 h; B: Cell mortality

表 2	29	个	丶丙酸钙转	表组测序	样本间	的相关	性指
14 4	<u> </u>	- 1	1.1 HX 1 144	(水山が川	···+ +• [1]		11115

Table 2	Pearson correlation in 9	samples related with	calcium pro	pionate in transcr	iptome sequence

I ubic 2	i cui son co	i i ciacion in j	> sumpres re	iacea mitin ca	renam propre	mate in tran	ser prome se	quenee		
Samples	CG1	CG2	CG3	CP0G1	CP0G2	CP0G3	CP2G1	CP2G2	CP2G3	
CG1	1.000	0.891	0.976	0.882	0.881	0.861	0.763	0.836	0.708	
CG2	0.891	1.000	0.930	0.965	0.926	0.971	0.638	0.781	0.581	
CG3	0.976	0.932	1.000	0.914	0.904	0.904	0.736	0.827	0.681	
CP0G1	0.882	0.965	0.914	1.000	0.981	0.987	0.734	0.832	0.683	
CP0G2	0.881	0.926	0.904	0.981	1.000	0.954	0.816	0.871	0.776	
CP0G3	0.861	0.971	0.904	0.987	0.954	1.000	0.682	0.810	0.625	
CP2G1	0.763	0.638	0.736	0.734	0.816	0.682	1.000	0.942	0.986	
CP2G2	0.836	0.781	0.827	0.832	0.871	0.810	0.942	1.000	0.897	
CP2G3	0.708	0.581	0.681	0.683	0.776	0.625	0.986	0.897	1.000	

为了得到显著差异的基因,对样本采用 DESeq 进行分析,筛选条件设为: Q Value<0.05 且基因差 异表达量倍数在 2 倍以上(|Log₂(Fold Change)|>1)。 如图 3 所示,与 CG 相比, CP2G 中有 1 438 个差异 表达基因(Differentially Expressed Genes, DEGs), 其中 643 个基因上调,795 个基因下调。然而与 CP0G 相比, CP2G 中共有 1 921 个 DEGs,其中 1 438 个基因上调,483 个基因下调。

图 3 差异基因韦恩图

表 3	丙酸钙对 MAPK 信	号途径基因转录水平的影响
-----	-------------	--------------

Table 3	Effect of calcium	propionate on	gene transcription	level of MAPK	signal pathway
I abic o	Lincer of carefulli	propronate on	cone transeription	ICTOL OF THEFT	signal pathway

2.3 涉及 MAPK 信号途径及细胞壁相关的差异 表达基因分析

通过 KEGG 功能富集分析发现,丙酸钙会使 细胞内 MAPK 信号途径发生显著变化,即丙酸钙 胁迫条件下,细胞内一系列信号被激活转导,如 表 3 所示。酿酒酵母细胞中至少存在 5 个 MAPK 级联系统,它们由 5 种 MAPK 蛋白激酶控制,分 别与孢子分化、菌丝形成和浸入生长、高渗透压甘 油形成、细胞壁完整性及细胞结合过程有关^[10]。

在 MAPK 信号途径中,与细胞结合过程相关的 *STE4、SKM1、FUS3* 和 *BNI1* 等基因的表达发生显著变化。其中,编码 G 蛋白 β 亚基的 *STE4* 下调表达,该亚基与 Ste18p 形成二聚体激活交配信号通路,与 Gpa1p 和 Ste18p 形成异源三聚体抑制信号传导,而且其可能在交配期间将 Rho1p 募集到极化的生长部位,在趋化性中起关键作用^[11-12]。此外, *SKM1、FUS3* 和 *BNI1* 基因均上调表达,Skm1p 作为 PAK 丝氨酸/苏氨酸蛋白激酶家族成员,与Ste20p 类似,能够通过磷酸化激活 Ste11p 进行信号

Gene ID	Result	MeanTPM (CP2G)	MeanTPM (CG)	Log ₂ (Fold change)	Q value
FUS3	Up	6.281 74	1.645 03	1.933 05	2.87×10^{-8}
BNI1	Up	33.243 86	8.964 49	1.890 80	1.57×10 ⁻⁹
MTL1	Up	160.752 16	45.878 96	1.808 93	3.15×10 ⁻⁶
ROM2	Up	22.383 99	8.691 38	1.364 81	1.78×10^{-10}
MIH1	Up	28.311 19	12.031 53	1.234 55	3.48×10^{-10}
MID2	Up	86.036 61	36.767 45	1.226 52	5.66×10 ⁻⁵
SKM1	Up	34.022 86	15.142 27	1.1679 23	4.49×10^{-8}
KDX1	Down	5.892 33	15.296 11	-1.376 26	1.15×10^{-5}
STE4	Down	3.520 30	9.768 31	-1.472 41	3.87×10^{-9}
CLB5	Down	3.959 05	12.456 83	-1.653 71	8.15×10^{-8}
CLB2	Down	8.659 02	31.639 47	-1.869 45	1.56×10^{-9}
CLB1	Down	8.280 04	39.216 71	-2.243 76	4.51×10^{-6}
CLB6	Down	1.520 54	7.860 30	-2.370 00	4.29×10 ⁻⁴
MSB2	Down	7.848 16	43.478 07	-2.469 86	1.62×10^{-8}
CLN1	Down	7.229 71	48.032 25	-2.731 99	1.91×10^{-14}
CLN2	Down	7.366 67	58.052 74	-2.978 28	2.53×10 ⁻⁹

传导,Stel1p 会进一步激活 Ste7p,Fus3p 会被 Ste7p 磷酸激活,FUS3 编码促分裂原活化蛋白激酶,介导信息素诱导的信号转导级联反应中的转录和 G1 阻滞,被激活的 Fus3p 能够激活 Bni1p 以促进极化和细胞融合,Bni1p 是线状肌动蛋白丝形成的关键,参与需要极化肌动蛋白簇的细胞过程,如出芽和有丝分裂纺锤体定向^[13-16]。

Rho1p 同样能够激活 Bni1p,其生成量并无显 著差异,而 Rom2p 作为 Rho1p 和 Rho2p 的鸟嘌呤 核苷酸交换因子能激活 Rho1p^[17-18], *ROM2、MID2* 及 *MTL1* 均上调表达。*MID2* 编码的 O-糖基化质膜 蛋白充当细胞壁完整性信号传导的传感器并激活 该途径,且与 Rom2p 以及 Zeo1p (细胞完整性途径 蛋白)相互作用^[19-20]。Mtl1p 与 Mid2p 具有相似的 结构和功能,与细胞壁完整性信号及胁迫(饥饿胁 迫和氧化胁迫)响应相关^[21-22],推断丙酸钙对细胞 壁造成了一定影响。在细胞壁完整性过程中,下调 表达的 *KDX1* 基因编码的蛋白激酶能够与许多成 分相互作用,其与 Rlm1 相互作用还能激活酿酒酵 母中响应胁迫反应的 *RCK1* 基因的表达^[23-24],不过 其下调表达似乎并没有影响到编码调控 1,3-β-葡 聚糖合酶的 *FKS1、GSC2* 和 *FKS3* 等基因的表达。

酵母细胞壁的主要成分为 1,3-β-葡聚糖、甘露 糖蛋白和几丁质,由表 4 可知与细胞壁相关的 *CCW12、CWP2*和 *TOS6*等基因下调表达,*YPS3、 PIR3*和 *YGP1*等上调表达,其中 *CCW12* 编码细胞 壁甘露糖蛋白,在维持新合成的细胞壁区域中发挥 作用,定位于小芽的周围和大芽的隔膜区域^[25-26]; *CWP2*同样编码共价连接的细胞壁甘露糖蛋白,在 稳定细胞壁方面发挥作用,还参与抵御低 pH 环 境^[27-28];*TOS6*编码糖基磷脂酰肌醇依赖性细胞壁 蛋白,该基因表达量是周期性变化的,并且在麦角 固醇扰动或进入稳定期时减少,消耗 Tos6p 能为细 胞提供应对乳酸的抵抗力^[29-32]。*YPS3* 编码的天冬 氨酸蛋白酶,通过糖基磷脂酰肌醇连接到质膜上,

表 4 丙酸钙对细胞壁差异表达基因转录水平的影响 Table 4 Effect of calcium propionate on the transcription level of DEGs in cell wall

Gene	Result	MeanTPM	MeanTPM	Log ₂	Q value
ID		(CP2G)	(CG)	(Fold change)	1
CCW12	Down	7 643.055	19 654.644	4-1.362 65	1.64×10^{-2}
CWP2	Down	1 179.574	6 537.521	-2.470 48	4.49×10^{-4}
TOS6	Down	22.048	443.400	-4.329 84	4.08×10^{-14}
YPS3	Up	213.484	48.211	2.146 67	1.90×10^{-9}
PIR3	Up	402.357	32.945	3.610 321	1.86×10^{-17}
YGP1	Up	10 700.351	1 860.335	2.524 024	1.92×10^{-4}

参与细胞壁的生长和维持^[33-34]; PIR3 编码的 O-糖 基化共价结合的细胞壁蛋白,是维持细胞壁稳定性 所需,其表达受细胞周期调节,并且还受到细胞完 整性途径的调节^[35-36]; YGP1 编码细胞壁相关的分 泌糖蛋白,在酵母生长停滞时会被诱导表达,可能 参与了细胞进入稳定期之前的适应[37-39]。值得注意 的是, CCW12 和 CWP2 基因在 CP2G 比 CG 间及 CP2G 比 CP0G 间均极显著下调表达,这2个基因 或在丙酸钙抑菌作用中起重要作用。结合细胞壁完 整性途径中的差异基因表达情况,推断在丙酸钙胁 迫条件下,细胞壁完整性受到了一定程度的威胁甚 至破坏, Mtl1p与 Mid2p 感受到此信号并将信号往 后传导,合成甘露糖蛋白的基因表达受到严重抑 制,细胞增殖受到极大抑制,而 YGP1 等细胞壁蛋 白基因则参与维持细胞壁的稳定,保证细胞的正常 生命活动不受到严重影响。

在高渗透性甘油促分裂原活化蛋白激酶 (HOG-MAPK)途径中,信号粘蛋白*MSB2*基因下调 表达, Msb2p 在 HOG 途径中起渗透传感器的作 用^[40-42],推测丙酸钙并未引起高渗透压胁迫来影响 细胞的正常生命活动。

2.4 涉及细胞周期途径的差异表达基因分析

从 MAPK 信号途径中也可以发现细胞周期蛋 白 CLN2、CLB1 和 CLB2 等基因下调表达。细胞 周期蛋白是一类呈细胞周期特异性或时相性表达、 累积与分解的蛋白质,其与细胞周期蛋白依赖性激 酶共同影响细胞周期的运行。由图 4 可见,与对照

Tel: 010-64807511; E-mail: tongbao@im.ac.cn; http://journals.im.ac.cn/wswxtbcn

组 CG 相比, 丙酸钙处理 2 h 的 CP2G 中大多细胞 周期相关基因下调表达,如 PCL1、CLN1、CLN2、 CDC5, CDC6, CLB1, CLB5, CLB6, MCD1, IRR1, SMC3、BUB2、PDS1 等。PCL1 编码参与细胞周 期调控的 G1/S 期特异性周期蛋白,与细胞周期蛋 白依赖性激酶 Pho85p 相互作用,参与细胞生长过 程中的极化生长及形态发生和进展的调控,其下调 表达意味着细胞由 G1 期向 S 期转换的过程受到抑 制^[43-44]。细胞周期蛋白 CLNI 和 CLN2 基因的下调 表达意味着其激活 Cdc28p 激酶,促进 G1 到 S 期 转变的作用减弱;此外,Clb5p和Clb6p能够激活 Cdc28p以促进DNA合成启动,在与Clb3p和Clb4p 一起形成有丝分裂纺锤体中起作用, Clb1p (细胞 周期蛋白)能够激活 Cdc28p 以促进从 G2 到 M 相 的转变^[45-46]。CDC5 在有丝分裂期间调节细胞核的 形状和核膜的扩张,而且与线粒体完整性及细胞活 力有关[47-49],有丝分裂细胞中姐妹染色单体凝聚所 需的粘着蛋白复合物(由 MCD1、IRR1 等基因编码) 及多蛋白凝聚素复合物(由 SMC3 编码)的合成均减 少^[50-52]。另外,细胞周期阻止蛋白(由 BUB2 编码) 参与形成的由 GTPase 激活的 Bfa1p-Bub2p 复合物 在有丝分裂后期前可响应纺锤体和动粒体损伤,结 合 Tem1p 和纺锤体阻断细胞周期进程^[53], 分离酶 抑制蛋白(由 PDS1 基因编码)通过结合分离蛋白 Esp1p 能够抑制有丝分裂后期行为,形成细胞周期 阻滞^[54], BUB2 和 PDSI 二者的下调表达似乎意味 着进入有丝分裂中后期的细胞能够顺利甚至更快 速地进入细胞周期下一阶段,参与后期核分裂的 Ser/Thr 激酶(由 DBF20 基因编码)的合成增多[55]或 许也支持这一观点。值得注意的是,作为细胞周期 检查点蛋白基因的 MEC1 上调表达, Mec1p 作为 细胞周期停滞和对受损或未复制 DNA 转录反应所 需的信号转导子,其上调表达常常意味着 DNA 损伤^[56]。

通过比较 CP2G 与 CP0G 的细胞周期相关基因 表达情况,发现仅 CLB1、CLB2、CLN2 及 MCD1 下调表达,大部分基因为上调表达。结合图 1A 中 酵母生长曲线判断,在丙酸钙胁迫刚出现时,细 胞迅速反应,与细胞增殖相关基因显著下调表 达,尤其是细胞周期中起到相间转换关键作用的 细胞周期蛋白,而在后续过程中,细胞会逐步适 应丙酸钙胁迫,细胞周期相关基因的表达量有所 提升,但 CLB1、CLB2、CLN2 及 MCD1 等基因的 下调表达还是限制了细胞增殖的过程。

2.5 涉及减数分裂途径的差异表达基因分析

减数分裂作为一种特殊的细胞增殖方式,其对 细胞增殖也有一定影响,与细胞周期共用一些基 因,但也有其特异性的基因。MATALPHA2 和 HMLALPHA2 均编码同源盒结构域蛋白,该蛋白能 够抑制单倍体特异性基因的转录表达, HMRA2 能 够抑制 HO 内切核酸酶的表达以抑制酵母细胞交 配型转化, MATALPHA2、HMLALPHA2及HMRA2 均上调表达,这可能意味着单倍体孢子的合成及转 化过程受到抑制^[57-59]。MEKI 编码减数分裂特异性 丝氨酸/苏氨酸蛋白激酶,在减数分裂检查点起作 用,该蛋白激酶可通过抑制姐妹染色单体之间的双 链断裂修复而促进同源染色体之间的重组,也可稳 定 Hop1-Thr318 磷酸化以促进减数分裂过程中的 同源重组和检查点反应, HOPI 编码染色体联会所 需的减数分裂特异性蛋白^[60]。MNDI 编码重组和 减数分裂核分裂所需的蛋白质^[61],与 Hop2p 形成 复合物,后者参与染色体配对和减数分裂双链断裂 的修复^[62]。减数分裂特异性调节亚基(由 GIP1 编 码)合成增多, 孢子壁和隔膜蛋白的形成受到调 节^[63]。由 SPO24 编码的小蛋白质参与孢子形成, 定位于孢子膜,在减数分裂过程中被磷酸化^[64]。 这些基因均上调表达。不过, SPS4 编码不需要孢 子形成但能在孢子形成过程中被诱导表达的蛋白 质,其在大肠杆菌中异源表达会引起 SOS 反应(对 DNA 损伤的响应)^[65], SSP1 合成参与减数分裂核 分裂控制的蛋白质,参与减数分裂与孢子形成的协 调^[66], SPS4 和 SSP1 略微下调表达。在这些差异

表达基因中,最值得注意的是 SPO24,其表达量 变化极显著。综合分析减数分裂途径中的差异表达 基因,推断在丙酸钙条件下,减数分裂检查点作用 增强,细胞内的联会同源重组过程略有增强,孢子 壁的形成或有所增强。

2.6 实时荧光定量 PCR (qRT-PCR)验证结果

随机选取的 9 个差异显著的基因中,包括 6 个 上调表达基因和 3 个下调表达基因。C_t (β-Actin, 对照)=19.214 006±0.052 520 083, C_t (β-Actin, 实 验)=19.716 068 860±0.108 304 549,内参基因表达 相对稳定。差异表达基因的 qRT-PCR 结果如图 5 所示,与 RNA-Seq 的结果在基因表达幅度上有一 定差异,但表达趋势是一致的,说明转录组测序的 结果是可信的。

3 讨论与结论

食品防腐剂的作用机理主要分3种:对细胞壁 和细胞膜系统起作用;对遗传物质或遗传微粒结构 起作用;对酶或功能蛋白起作用。然而酸型防腐剂 主要靠未电离形式的分子聚集在细胞膜表面或进 入细胞抑制胞内酶活使微生物正常代谢受阻,目前 普遍认为丙酸钙对微生物的抑菌作用主要是通过 丙酸抑制胞内酶活性^[3]。丙酸解离常数(pKa)为 4.87,在低 pH 条件下,丙酸进入细胞会造成胞内 酸化抑制细胞生长。pH 4.0-5.0 范围为酵母适宜生

长条件, 4 h 后实验组与对照组培养基中 pH 均维 持在 4.35 左右, 丙酸钙抑制酵母生长的主要原因 或不在于胞内酸化。转录组结果显示,在丙酸钙胁 迫条件下, 耐高糖酵母 BH1 细胞内一系列基因的 表达发生变化,差异基因较多集中在信号转导机 制、细胞周期和减数分裂等方面。丙酸钙对 DNA 合成具有抑制作用,而且能够改变有丝分裂的时 相^[6],这与我们的结果一致。我们发现细胞周期蛋 白基因 CLB1、CLB2 及 CLN2 等的下调表达使细 胞周期更多地延滞在细胞间期(G1、S和G2期), 尤其是 G1 期, G1 到 S 期转变过程受阻使得 DNA 复制也受到极大抑制,这些变化均限制了细胞的 增殖,起到了一定的抑菌作用;除此之外,合成 细胞壁主要成分甘露糖蛋白的基因 CCW12、 CWP2 等的表达受到严重抑制, CCW12 和 CWP2 或在丙酸钙抑制酵母增殖中起到重要作用,细胞 壁完整性传感器 Mtl1p 与 Mid2p 感受到内外界环 境刺激并进行信号转导, YGP1 等细胞壁蛋白基因 上调表达以维持细胞壁的稳定,保证细胞的正常 生命活动不受到严重影响。除细胞壁完整性途径 外,其他信号转导相关基因的差异表达也调控着 细胞内的代谢过程,例如碳水化合物转运代谢、 氨基酸运输代谢等,细胞内酶活性也受到影响, 这或许意味着丙酸钙可能作为信号分子调控酵母

图 5 实时荧光定量 PCR (qRT-PCR)验证 Figure 5 Real-time quantitative PCR (qRT-PCR) verification

的增殖过程,而对于丙酸钙的抑菌作用的更深入 探究,还有待进一步分析挖掘转录组数据及开展 对关键基因作用的验证。

REFERENCES

- O'Connell CA, Dollimore D. A study of the decomposition of calcium propionate, using simultaneous TG-DTA[J]. Thermochimica Acta, 2000, 357-358: 79-87
- [2] Olson Jr JC, Macy H. Propionic acid, sodium propionate and calcium propionate as inhibitors of mold growth. I. Observations on the use of pro-pionate-treated parchment in inhibiting mold growth on the surface of butter[J]. Journal of Dairy Science, 1945, 28(9): 701-710
- [3] Wang JB, Gao XM, Li P, Wang XL. Inhibitory effect of calcium propionate on mold growth in foods[J]. Food and Fermentation Industries, 1984(6): 6-13 (in Chinese) 汪锦邦,高学敏,李平,王秀玲. 丙酸钙对食品中霉菌生长的抑制作用[J]. 食品与发酵工业, 1984(6): 6-13
- [4] Ribeiro GF, Côrte-Real M, Johansson B. Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock[J]. Molecular Biology of the Cell, 2006, 17(10): 4584-4591
- [5] Amoussouvi A, Teufel L, Reis M, Seeger M, Schlichting JK, Schreiber G, Herrmann A, Klipp E. Transcriptional timing and noise of yeast cell cycle regulators: a single cell and single molecule approach[J]. npj Systems Biology and Applications, 2018, 4: 17
- [6] Türkoğlu Ş. Evaluation of genotoxic effects of sodium propionate, calcium propionate and potassium propionate on the root meristem cells of *Allium cepa*[J]. Food and Chemical Toxicology, 2008, 46(6): 2035-2041
- [7] Costa V, Angelini C, De Feis I, Ciccodicola A. Uncovering the complexity of transcriptomes with RNA-Seq[J]. Journal of Biomedicine and Biotechnology, 2010, 2010: 853916
- [8] Bian J, Guo YF, Zhang Z, Zhang SH, Zhao XJ. Selection of reference genes in *Saccharomyces cerevisiae* under nickel stress[J]. Journal of Inner Mongolia University of Science and Technology, 2018, 37(1): 11-14,75 (in Chinese) 边金, 郭艳飞, 张治, 张淑慧, 赵秀娟. 重金属镍胁迫下 酿酒酵母实时荧光定量 PCR 内参基因的筛选[J]. 内蒙古 科技大学学报, 2018, 37(1): 11-14,75
- [9] Wei XW, Ma C, Xiong L, Zhang MM, Zhao XQ, Bai FW. Effect of vacuolar proteinase B on high temperature ethanol fermentation of *Saccharomyces cerevisiae*[J]. Microbiology China, 2015, 42(10): 1841-1846 (in Chinese) 魏小文,马翠,熊亮,张明明,赵心清,白凤武. 液泡蛋 白酶 B 对酿酒酵母高温乙醇发酵效率的影响[J]. 微生物 学通报, 2015, 42(10): 1841-1846
- [10] Chen RE, Thorner J. Function and regulation in MAPK signaling pathways: lessons learned from the yeast

Saccharomyces cerevisiae[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2007, 1773(8): 1311-1340

- [11] Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant FJ, O'Hara P, MacKay VL. The *STE4* and *STE18* genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein[J]. Cell, 1989, 56(3): 467-477
- [12] Guo M, Aston C, Burchett SA, Dyke C, Fields S, Rajarao SJR, Uetz P, Wang YQ, Young K, Dohlman HG. The yeast G protein α subunit Gpa1 transmits a signal through an RNA binding effector protein Scp160[J]. Molecular Cell, 2003, 12(2): 517-524
- [13] Elion EA, Satterberg B, Kranz JE. FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1[J]. Molecular Biology of the Cell, 1993, 4(5): 495-510
- [14] Matheos D, Metodiev M, Muller E, Stone D, Rose MD. Pheromone-induced polarization is dependent on the Fus3p MAPK acting through the formin Bni1p[J]. Journal of Cell Biology, 2004, 165(1): 99-109
- [15] Yu L, Qi MS, Sheff MA, Elion EA. Counteractive control of polarized morphogenesis during mating by mitogenactivated protein kinase Fus3 and G1 cyclin-dependent kinase[J]. Molecular Biology of the Cell, 2008, 19(4): 1739-1752
- [16] Kusari AB, Molina DM, Sabbagh W, Lau CS, Bardwell L. A conserved protein interaction network involving the yeast MAP kinases Fus3 and Kss1[J]. The Journal of Cell Biology, 2004, 164(2): 267-277
- [17] Ozaki K, Tanaka K, Imamura H, Hihara T, Kameyama T, Nonaka H, Hirano H, Matsuura Y, Takai Y. Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in *Saccharomyces cerevisiae*[J]. The EMBO Journal, 1996, 15(9): 2196-2207
- [18] Krause SA, Cundell MJ, Poon PP, McGhie J, Johnston GC, Price C, Gray JV. Functional specialisation of yeast Rho1 GTP exchange factors[J]. Journal of Cell Science, 2012, 125(11): 2721-2731
- [19] Philip B, Levin DE. Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1[J]. Molecular and Cellular Biology, 2001, 21(1): 271-280
- [20] Green R, Lesage G, Sdicu AM, Ménard P, Bussey H. A synthetic analysis of the *Saccharomyces cerevisiae* stress sensor Mid2p, and identification of a Mid2p-interacting protein, Zeo1p, that modulates the *PKC1-MPK1* cell integrity pathway[J]. Microbiology, 2003, 149(9): 2487-2499
- [21] Vilella F, Herrero E, Torres J, De La Torre-Ruiz MA. Pkc1 and the upstream elements of the cell integrity pathway in *Saccharomyces cerevisiae*, Rom2 and Mtl1, are required for cellular responses to oxidative stress[J]. Journal of Biological Chemistry, 2005, 280(10): 9149-9159

- [22] Rajavel M, Philip B, Buehrer BM, Errede B, Levin DE. Mid2 is a putative sensor for cell integrity signaling in *Saccharomyces cerevisiae*[J]. Molecular and Cellular Biology, 1999, 19(6): 3969-3976
- [23] Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin ZY, Breitkreutz BJ, Stark C, Liu GM, et al. A global protein kinase and phosphatase interaction network in yeast[J]. Science, 2010, 328(5981): 1043-1046
- [24] Watanabe Y, Takaesu G, Hagiwara M, Irie K, Matsumoto K. Characterization of a serum response factor-like protein in *Saccharomyces cerevisiae*, Rlm1, which has transcriptional activity regulated by the Mpk1 (Slt2) mitogen-activated protein kinase pathway[J]. Molecular and Cellular Biology, 1997, 17(5): 2615-2623
- [25] Mrsa V, Ecker M, Strahl-Bolsinger S, Nimtz M, Lehle L, Tanner W. Deletion of new covalently linked cell wall glycoproteins alters the electrophoretic mobility of phosphorylated wall components of *Saccharomyces cerevisiae*[J]. Journal of Bacteriology, 1999, 181(10): 3076-3086
- [26] Ragni E, Piberger H, Neupert C, García-Cantalejo J, Popolo L, Arroyo J, Aebi M, Strahl S. The genetic interaction network of *CCW12*, a *Saccharomyces cerevisiae* gene required for cell wall integrity during budding and formation of mating projections[J]. BMC Genomics, 2011, 12: 107
- [27] Van Der Vaart JM, Caro LH, Chapman JW, Klis FM, Verrips CT. Identification of three mannoproteins in the cell wall of *Saccharomyces cerevisiae*[J]. Journal of Bacteriology, 1995, 177(11): 3104-3110
- [28] Skrzypek M, Lester RL, Dickson RC. Suppressor gene analysis reveals an essential role for sphingolipids in transport of glycosylphosphatidylinositol-anchored proteins in *Saccharomyces cerevisiae*[J]. Journal of Bacteriology, 1997, 179(5): 1513-1520
- [29] Hamada K, Fukuchi S, Arisawa M, Baba M, Kitada K. Screening for glycosylphosphatidylinositol (GPI)-dependent cell wall proteins in *Saccharomyces cerevisiae*[J]. Molecular and General Genetics MGG, 1998, 258(1/2): 53-59
- [30] Tu BP, Kudlicki A, Rowicka M, McKnight SL. Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes[J]. Science, 2005, 310(5751): 1152-1158
- [31] Bammert GF, Fostel JM. Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol[J]. Antimicrobial Agents and Chemotherapy, 2000, 44(5): 1255-1265
- [32] Kawahata M, Masaki K, Fujii T, Iefuji H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in *Saccharomyces cerevisiae* cultures induce expression of intracellular metal metabolism genes regulated by Aft1p[J]. FEMS Yeast Research, 2006, 6(6): 924-936
- [33] Olsen V, Cawley NX, Brandt J, Egel-Mitani M, Loh YP.

Identification and characterization of *Saccharomyces cerevisiae* yapsin 3, a new member of the yapsin family of aspartic proteases encoded by the YPS3 gene[J]. Biochemical Journal, 1999, 339(2): 407-411

- [34] Krysan DJ, Ting EL, Abeijon C, Kroos L, Fuller RS. Yapsins are a family of aspartyl proteases required for cell wall integrity in *Saccharomyces cerevisiae*[J]. Eukaryotic Cell, 2005, 4(8): 1364-1374
- [35] Mrsă V, Seidl T, Gentzsch M, Tanner W. Specific labelling of cell wall proteins by biotinylation. Identification of four covalently linked O-mannosylated proteins of *Saccharomyces cerevisiae*[J]. Yeast, 1997, 13(12): 1145-1154
- [36] Mrša V, Tanner W. Role of NaOH-extractable cell wall proteins Ccw5p, Ccw6p, Ccw7p and Ccw8p (members of the Pir protein family) in stability of the Saccharomyces cerevisiae cell wall[J]. Yeast, 1999, 15(10A): 813-820
- [37] Destruelle M, Holzer H, Klionsky DJ. Identification and characterization of a novel yeast gene: the YGP1 gene product is a highly glycosylated secreted protein that is synthesized in response to nutrient limitation[J]. Molecular and Cellular Biology, 1994, 14(4): 2740-2754
- [38] Riou C, Nicaud JM, Barre P, Gaillardin C. Stationary-phase gene expression in *Saccharomyces cerevisiae* during wine fermentation[J]. Yeast, 1997, 13(10): 903-915
- [39] Chang YW, Howard SC, Budovskaya YV, Rine J, Herman PK. The rye mutants identify a role for Ssn/Srb proteins of the RNA polymerase II holoenzyme during stationary phase entry in *Saccharomyces cerevisiae*[J]. Genetics, 2001, 157(1): 17-26
- [40] O'Rourke SM, Herskowitz I. A third osmosensing branch in Saccharomyces cerevisiae requires the Msb2 protein and functions in parallel with the Sho1 branch[J]. Molecular and Cellular Biology, 2002, 22(13): 4739-4749
- [41] Vadaie N, Dionne H, Akajagbor DS, Nickerson SR, Krysan DJ, Cullen PJ. Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast[J]. Journal of Cell Biology, 2008, 181(7): 1073-1081
- [42] Rodríguez-Peña JM, García R, Nombela C, Arroyo J. The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: a yeast dialogue between MAPK routes[J]. Yeast, 2010, 27(8): 495-502
- [43] Espinoza FH, Ogas J, Herskowitz I, Morgan DO. Cell cycle control by a complex of the cyclin HCS26 (PCL1) and the kinase PHO85[J]. Science, 1994, 266(5189): 1388-1391
- [44] Moffat J, Andrews B. Late-G1 cyclin-CDK activity is essential for control of cell morphogenesis in budding yeast[J]. Nature Cell Biology, 2004, 6(1): 59-66
- [45] Hadwiger JA, Wittenberg C, Richardson HE, De Barros Lopes M, Reed SI. A family of cyclin homologs that control the G1 phase in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(16): 6255-6259
- [46] Wittenberg C, Sugimoto K, Reed SI. G1-specific cyclins of

S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34^{*CDC28*} protein kinase[J]. Cell, 1990, 62(2): 225-237

- [47] Iacovella MG, Daly CN, Kelly JS, Michielsen AJ, Clyne RK. Analysis of polo-like kinase Cdc5 in the meiosis recombination checkpoint[J]. Cell Cycle, 2010, 9(6): 1182-1193
- [48] Walters AD, May CK, Dauster ES, Cinquin BP, Smith EA, Robellet X, D'Amours D, Larabell CA, Cohen-Fix O. The yeast polo kinase Cdc5 regulates the shape of the mitotic nucleus[J]. Current Biology, 2014, 24(23): 2861-2867
- [49] Mishra PK, Olafsson G, Boeckmann L, Westlake TJ, Jowhar ZM, Dittman LE, Baker RE, D'Amours D, Thorpe PH, Basrai MA. Cell cycle–dependent association of polo kinase Cdc5 with CENP-A contributes to faithful chromosome segregation in budding yeast[J]. Molecular Biology of the Cell, 2019, 30(8): 1020-1036
- [50] Guacci V, Koshland D, Strunnikov A. A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of *MCD1* in *S. cerevisiae*[J]. Cell, 1997, 91(1): 47-57
- [51] Tóth A, Ciosk R, Uhlmann F, Gálová M, Schleiffer A, Nasmyth K. Yeast Cohesin complex requires a conserved protein, Eco1p(Ctf7), to establish cohesion between sister chromatids during DNA replication[J]. Genes & Development, 1999, 13(3): 320-333
- [52] Ciosk R, Zachariae W, Michaelis C, Shevchenko A, Mann M, Nasmyth K. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast[J]. Cell, 1998, 93(6): 1067-1076
- [53] Hu FH, Elledge SJ. Bub2 is a cell cycle regulated phospho-protein controlled by multiple checkpoints[J]. Cell Cycle, 2002, 1(5): 340-344
- [54] Yamamoto A, Guacci V, Koshland D. Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s)[J]. The Journal of Cell Biology, 1996, 133(1): 99-110
- [55] Toyn JH, Johnston LH. The Dbf2 and Dbf20 protein kinases of budding yeast are activated after the metaphase to anaphase cell cycle transition[J]. The EMBO Journal, 1994, 13(5): 1103-1113

- [56] Weinert TA, Kiser GL, Hartwell LH. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair[J]. Genes & Development, 1994, 8(6): 652-665
- [57] Porter SD, Smith M. Homoeo-domain homology in yeast MATα2 is essential for repressor activity[J]. Nature, 1986, 320(6064): 766-768
- [58] Goutte C, Johnson AD. a1 protein alters the DNA binding specificity of α2 repressor[J]. Cell, 1988, 52(6): 875-882
- [59] Jensen R, Sprague Jr GF, Herskowitz I. Regulation of yeast mating-type interconversion: feedback control of HO gene expression by the mating-type locus[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(10): 3035-3039
- [60] Hollingsworth NM, Byers B. HOP1: a yeast meiotic pairing gene[J]. Genetics, 1989, 121(3): 445-462
- [61] Rabitsch KP, Tóth A, Gálová M, Schleiffer A, Schaffner G, Aigner E, Rupp C, Penkner AM, Moreno-Borchart AC, Primig M, et al. A screen for genes required for meiosis and spore formation based on whole-genome expression[J]. Current Biology, 2001, 11(13): 1001-1009
- [62] Tsubouchi H, Roeder GS. The Mnd1 protein forms a complex with Hop2 to promote homologous chromosome pairing and meiotic double-strand break repair[J]. Molecular and Cellular Biology, 2002, 22(9): 3078-3088
- [63] Tachikawa H, Bloecher A, Tatchell K, Neiman AM. A Gip1p-Glc7p phosphatase complex regulates septin organization and spore wall formation[J]. Journal of Cell Biology, 2001, 155(5): 797-808
- [64] Hurtado S, Kim Guisbert KS, Sontheimer EJ. SPO24 is a transcriptionally dynamic, small ORF-encoding locus required for efficient sporulation in Saccharomyces cerevisiae[J]. PLoS One, 2014, 9(8): e105058
- [65] Hepworth SR, Ebisuzaki LK, Segall J. A 15-base-pair element activates the SPS4 gene midway through sporulation in *Saccharomyces cerevisiae*[J]. Molecular and Cellular Biology, 1995, 15(7): 3934-3944
- [66] Nag DK, Koonce MP, Axelrod J. SSP1, a gene necessary for proper completion of meiotic divisions and spore formation in *Saccharomyces cerevisiae*[J]. Molecular and Cellular Biology, 1997, 17(12): 7029-7039