微生物学通报 Microbiology China tongbao@im.ac.cn

研究报告

Dec. 20, 2018, 45(12): 2552–2562 http://journals.im.ac.cn/wswxtbcn DOI: 10.13344/j.microbiol.china.171059

巨大芽孢杆菌 β-淀粉酶在枯草芽孢杆菌中 诱导表达及碳代谢去阻遏

郭瑞^{1,2} 李由然^{1,2} 王均华^{1,2} 石贵阳^{1,2*}
(1. 江南大学粮食发酵工艺与技术国家工程实验室 江苏 无锡 214122)
(2. 江南大学生物工程学院 江苏 无锡 214122)

摘 要:【背景】β-淀粉酶在食品和医疗领域应用广泛。目前工业上使用的 β-淀粉酶主要从植物中提取,生产成本高,限制了 β-淀粉酶的应用。微生物生产的 β-淀粉酶尽管早有报道,但由于产酶水平低下,因而一直未能实现工业化。【目的】实现巨大芽孢杆菌 β-淀粉酶在枯草芽孢杆菌中的高效诱导表达,缓解碳分解代谢物阻遏(Carbon catabolite repression, CCR)对该重组酶表达的影响,并研究其酶学性质。【方法】克隆枯草芽孢杆菌木糖诱导启动子,构建木糖诱导表达载体以介导巨大芽孢杆菌 1514 的 β-淀粉酶编码基因 amyM 在枯草芽孢杆菌中的异源表达。定点突变位于 amyM 信号肽编码区的分解代谢物响应元件(Catabolite responsive element, CRE),降低碳源代谢对重组 β-淀粉酶施加的阻遏。【结果】构建了诱导表达 β-淀粉酶基因的重组枯草芽孢杆菌菌株。同义替换 amyM-CRE 保守碱基在不同程度上缓解了碳源所施加的 CCR 效应,重组酶的表达水平得到显著提高。重组酶的分子量为 57 kD,水解可溶性淀粉主要生成麦芽糖和少量葡萄糖,其中麦芽糖含量为 72%。该酶最适作用温度为 50 °C,最适反应 pH 为 6.0。Co²⁺、Ca²⁺对重组 β-淀粉酶具有激活作用。【结论】通过木糖诱导表达系统和碳代谢去阻遏实现了 β-淀粉酶在枯草芽孢杆菌中的高效表达,酶活最高可达 97.16 U/mL 发酵液,比 amyM 基因来源菌巨大芽孢杆菌 1514 的 β-淀粉酶产量提高了 440 倍,为 β-淀粉酶发酵生产的工业化提供了支撑。

关键词:枯草芽孢杆菌,木糖诱导启动子,β-淀粉酶,碳分解代谢物阻遏,分解代谢物响应元 件,酶学性质

Foundation items: National Natural Science Foundation of China (31401674); Autonomous Program of Jiangnan University (JUSRP51503)

- *Corresponding author: Tel: 86-510-85918229; E-mail: gyshi@jiangnan.edu.cn
- **Received:** December 17, 2017; **Accepted:** March 13, 2018; **Published online** (www.cnki.net): July 02, 2018 基金项目: 国家自然科学基金(31401674); 江南大学自主重点项目(JUSRP51503)
- *通信作者: Tel: 86-510-85918229; E-mail: gyshi@jiangnan.edu.cn

收稿日期: 2017-12-17;接受日期: 2018-03-13;网络首发日期(www.cnki.net): 2018-07-02

Inducible heterologous expression and carbon catabolite repression of β-amylase from *Bacillus megaterium* in *Bacillus subtilis*

GUO Rui^{1,2} LI You-Ran^{1,2} WANG Jun-Hua^{1,2} SHI Gui-Yang^{1,2*}

(1. National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, Jiangsu 214122, China)
 (2. School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China)

Abstract: [Background] β -Amylases have been widely used in food and medical fields. Most industrial β -amylases are extracted from plants, hampering the application of β -amylase due to high costs. Microbial production of β -amylase has been reported before but has not been industrialized because of the low yields. [Objective] To achieve an efficient inducible expression of a β -amylase from Bacillus megaterium in Bacillus subtilis, relieve carbon catabolite repression (CCR) exerted on the expression of recombinant β -amylase and characterize the recombinant enzyme. [Methods] A xylose-induced vector was constructed to mediate the expression of the amyM gene from Bacillus megaterium 1514 encoding a β -amylase in *Bacillus subtilis*. CCR of the recombinant β -amylase was studied by site-directed mutagenesis of the catabolite responsive element (CRE) located within the signal peptide-encoding region of amyM. [Results] The recombinant Bacillus subtilis that inductively expressed the β -amylase was obtained. The yield of the recombinant enzyme was significantly improved by silent mutagenesis of conserved nucleotide within amyM-CRE. The recombinant β -amylase had a molecular size of 57 kD and hydrolyzed soluble starch to yield 72% maltose and a little glucose. The enzyme was optimally active at pH 6.0 and 50 °C. Co^{2+} and Ca^{2+} increased the efficiency of enzymatic hydrolysis. [Conclusion] Highly efficient expression of β -amylase was achieved to provide experimental support for the industrial production of β -amylase from fermentation.

Keywords: *Bacillus subtilis*, Xylose promoter, β -amylase, Carbon catabolite repression, Catabolite responsive element, Enzymatic properties

 β -淀粉酶(β -amylase), 全称为 α-1,4-葡聚糖-4-麦芽糖水解酶(α-1,4-D-glucan maltohydrolase, EC 3.2.1.2),能够从淀粉的非还原末端水解相隔的 α-1,4-葡萄糖苷键,产生β旋光性的麦芽糖,最早 被发现于高等植物中,但许多微生物也能产生该 酶^[1-5]。β-淀粉酶在食品加工、医药和纺织等领域具 有重要的应用价值,例如水解淀粉生产麦芽糖浆和 酿造啤酒等^[6]。利用微生物发酵生产 β-淀粉酶不受 气候和原料的影响,产物性质稳定均一,可以实现 自动化生产。然而,野生型菌株发酵困难、产酶量 低,难以大规模工业化生产^[7]。枯草芽孢杆菌 (Bacillus subtilis)是目前工业酶制剂生产中应用最 广泛的菌株之一,优点包括蛋白合成量高、安全性 高且发酵技术成熟,其木糖诱导启动子因调控严 谨、诱导物安全无毒且诱导强度高,被广泛用于外 源蛋白的大规模发酵生产^[8-9]。

微生物来源的 β-淀粉酶表达量低与受到碳分 解代谢物阻遏(Carbon catabolite repression, CCR) 有关。碳分解代谢物阻遏是指微生物在混合碳源 发酵时优先利用速效碳源 (通常为葡萄糖),且该 碳源的代谢产物会抑制其他非速效碳源代谢相关 的基因表达和蛋白活性,从而影响非速效碳源利 用的现象^[10]。枯草芽孢杆菌等低 G+C mol%含量 革兰氏阳性菌的 CCR 效应中起主要作用的调节 蛋白是分解代谢物控制蛋白(Catabolite control protein A, CcpA)^[11], 该蛋白在 DNA 上的顺式作 用元件被称为分解代谢物响应元件(Catabolite responsive element, CRE)^[12], 为 14 bp 的回文序 列,其共同序列(CRE consensus sequence)为: TGWNANCGNTNWCA (W: A/T; N: A/G/C/T). CcpA 通常需要先与辅助蛋白 HPr-Ser46-P 或 CPr-Ser46-P 形成调节蛋白复合物,再结合 CRE 以阻遏相关基因的转录^[13]。细胞内 HPr-Ser46-P 和 CPr-Ser46-P 的水平间接反映葡萄糖的存在和 水平^[14]。对 CRE 的研究发现,利用定点突变等方 式使其偏离 CRE 共同序列, CCR 效应将得到有 效缓解^[15-16]。

本研究构建的木糖诱导表达载体首次实现了 巨大芽孢杆菌 β-淀粉酶基因 *amyM* 在枯草芽孢杆菌 中的功能表达,并研究了重组酶的酶学性质。通过 同义替换 *amyM*-CRE 保守碱基,缓解了该基因在枯 草芽孢杆菌中受到的 CCR 效应,为微生物发酵生 产β-淀粉酶打下了基础。

1 材料与方法

1.1 菌种、质粒和引物

巨大芽孢杆菌(Bacillus megaterium) 1514、枯草 芽孢杆菌(Bacillus subtilis) WB600、大肠杆菌 (Escherichia coli) JM109、大肠杆菌-芽孢杆菌穿梭 质粒 pHY300-PLK 由中国高校工业微生物资源和

表1 实验菌株和质粒

Table 1 Strains and plasmids used in this study

信息中心(CICIM)保藏。表达宿主菌枯草芽孢杆菌 A610 是枯草芽孢杆菌 WB600 淀粉酶基因 *amyE* 缺 陷菌株,由江南大学粮食发酵工艺与技术国家工程 实验室保藏。实验涉及的菌株和质粒见表 1。

研究中所用的引物及其序列见表 2。引物设计 使用 Primer Premier 5.0 软件。引物由金唯智生物科 技有限公司(苏州)合成。

1.2 培养基、主要试剂和仪器

LB 培养基(g/L):酵母粉 5.0,蛋白胨 10.0, NaCl 10.0。抗性筛选时补加终浓度为 100 mg/L 的 氨苄青霉素或 30 mg/L 的四环素。

HisTrap 亲和层析结合缓冲液: 20 mmol/L Na₂HPO₄-NaH₂PO₄ (pH 7.4), 0.5 mol/L NaCl, 20 mmol/L 咪唑;洗脱缓冲液: 20 mmol/L Na₂HPO₄-NaH₂PO₄ (pH 7.4), 0.5 mol/L NaCl, 150 mmol/L 咪唑,洗脱流速为 1 mL/min。

DNA 聚合酶、T4 DNA 连接酶, 宝生物工程(大

Table 1 Strains and plasmids	useu in tins study	
菌株和质粒	特性	来源
Strains and plasmids	Characteristics	Sources
Strains		
B. subtilis A610	B. subtilis $WB600(\Delta amyE)$	Laboratory stock
BAX	B. subtilis A610 harboring pX	This study
BAXMH0	B. subtilis A610 harboring pXMH0	This study
BAXMH1	B. subtilis A610 harboring pXMH1	This study
BAXMH2	B. subtilis A610 harboring pXMH2	This study
BAXMH3	B. subtilis A610 harboring pXMH3	This study
BAXMH4	B. subtilis A610 harboring pXMH4	This study
Plasmids		
pHY300-plk	Shuttle vector for E. coli and B. subtilis	Laboratory stock
pХ	pHY300-PLK carrying xylR-P _{xyl} of B. subtilis	This study
pXMH0	pX carrying amyM-6*His fusion gene	This study
pXMH1	pXMH0 mutation in <i>amyM</i> -CRE(7C \rightarrow T)	This study
pXMH2	pXMH1 mutation in <i>amyM</i> -CRE(10T \rightarrow C)	This study
pXMH3	pXMH2 mutation in <i>amyM</i> -CRE(13C \rightarrow T)	This study
pXMH4	pXMH3 mutation in <i>amyM</i> -CRE(1T \rightarrow C)	This study

表 2 本实验所用引物

Table 2 List of primers in this study

引物	序列	长度
Primers	Sequences $(5' \rightarrow 3')$	Size (bp)
Xyl-F ^a	CCC <u>AAGCTT</u> TTACATTGTAATCATGTCCA	29
Xyl-R	GCC <u>AGATCT</u> GTGATTTCCCCCTTAAAAAT	29
MH0-F	GCC <u>AGATCT</u> ATGAAACAGCTATGTAAAAA	29
MH0-R ^b	CGC <u>GTCGAC</u> TTAATGGTGATGGTGATGATGCCAATTATCTGTATAAGTCGT	51
$MH1-F^{c}$	GCTTTCGTTTTGATGTTCATTTTTGTTAATGCTTTCATTTTGAATCCACTTA	52
MH1-R	TAAGTGGATTCAAAATGAAAGCATTAACAAAAATGAACATCAAAACGAAAGC	52
MH2-F	GATTGGCTTTCGTTTTGATGTTCATTTTTGGTTAATGCCTTCATTTTGAATCCACTT	56
MH2-R	AAGTGGATTCAAAATGAAGGCATTAACAAAAATGAACATCAAAACGAAAGCCAATC	56
MH3-F	ATGTTCATTTTTGTTAATGCCTTTATTTGAATCCACTTAACGGAGC	47
MH3-R	GCTCCGTTAAGTGGATTCAAAATAAAGGCATTAACAAAAATGAACAT	47
MH4-F	GGATTGGCTTTCGTTTTGATGTTCATTTT <mark>CGTTAATGCCTTTA</mark> TTTTGAAT	51
MH4-R	ATTCAAAATAAAGGCATTAACGAAAATGAACATCAAAAACGAAAGCCAATCC	51
注:":酶切位	点由下划线标注; ^b :组氨酸标签显示为斜体; ^c :矩形框内为突变型 CRE.	

Note: ^{*a*}: Underlined texts indicate restriction sites; ^{*b*}: His tag is indicated in italics; ^{*c*}: Modified CREs are indicated in rectangular boxes.

连)有限公司;各种限制性内切酶,Fermentas公司; 质粒提取试剂盒、核苷酸片段纯化试剂盒以及胶回 收试剂盒,博大泰克(北京)生物基因技术有限公司; 氨苄青霉素和四环素,生工生物工程(上海)股份有限 公司;其他试剂,国药集团(上海)有限公司。

可见分光光度计,上海美普达仪器有限公司; 凝胶水平电泳仪,北京六一仪器厂;冷冻离心机, HITACHI 公司;高速离心机,Thermo 公司;凝胶 成像系统,Bio-Rad 公司;高效液相色谱(HPLC)系 统及工作站,Dionex 公司。

1.3 基因组 DNA 的提取

枯草芽孢杆菌 WB600、巨大芽孢杆菌 1514 基因组 DNA 的提取参照 Wilson 等的方法^[17]。

1.4 木糖诱导载体 pX 的构建

根据 NCBI 上的序列信息,设计 PCR 引物 Xyl-F/Xyl-R,以枯草芽孢杆菌 WB600 染色体为模 板,使用 *Pfu* DNA 聚合酶进行扩增,经测序验 证后获得枯草芽孢杆菌木糖异构酶基因的启动 子及其调控蛋白基因片段 *xylR*-P_{xyl}。PCR 反应条 件:95 °C 10 min;94 °C 30 s,55 °C 50 s,72 °C 2 min, 29 个循环;72 °C 10 min;4 °C 保温。PCR 反应体 系(100 μL):上、下游引物(25 μmol/L)各1 μL,模 板1 μL, *Pfu* DNA 聚合酶(0.01 U/μL) 48.5 μL, ddH₂O 48.5 μL。扩增产物纯化后经 *Hind* III 和 *Bgl* II 双酶切,连接至同样酶切的载体 pHY300-PLK上, 转化大肠杆菌 JM109,经测序正确后获得木糖 诱导载体 pX。

1.5 *amyM-6*His* 融合基因的克隆及重组质粒 pXMH0 的构建

通过比对 NCBI 上已公布的巨大芽孢杆菌 β-淀 粉酶基因的序列,设计引物 MH0-F/MH0-R,以巨 大芽孢杆菌 1514 染色体为模板,扩增得到 β-淀粉 酶融合基因片段 *amyM*-6**His*。PCR 反应条件和反 应体系同 1.4。PCR 产物纯化后与木糖诱导载体 pX 连接,转化大肠杆菌 JM109,经筛选鉴定正确后获 得重组质粒 pXMH0,测序后获得 *amyM* 基因序列。

1.6 携带突变型 amyM-CRE 重组质粒的构建

使用 Super *Pfu* DNA 聚合酶,以质粒 pXMH0 为初始模板,MH1-F/MH1-R 为引物进行扩增。PCR 产物经 *Dpn* I 消化处理后转化大肠杆菌 JM109,经 筛选和测序正确后获得同义替换了 1 个 *amyM*-CRE 保守碱基的重组质粒 pXMH1,并以其作为模板进 行下一轮突变扩增。通过上述方法,依次获得了同 义替换了 2-4 个 *amyM*-CRE 保守碱基的重组质粒 pXMH2、pXMH3 和 pXMH4。PCR 反应条件:95 °C 10 min;94 °C 30 s,63 °C 30 s,72 °C 4 min,24 个 循环;72 °C 10 min。PCR 反应体系(100 μL):上、 下游引物(25 μmol/L)各 1 μL,模板 1 μL, Super *Pfu* DNA 聚合酶(0.01 U/μL)48.5 μL,ddH₂O 48.5 μL。

1.7 重组枯草芽孢杆菌的构建

分别将质粒 pX、pXMH0、pXMH1、pXMH2、 pXMH3 和 pXMH4 通过 Bott 等^[18]的方法转化到表 达宿主枯草芽孢杆菌 A610 中,经转化子筛选鉴定 正确后,获得重组菌株 BAX、BAXMH0、BAXMH1、 BAXMH2、BAXMH3 和 BAXMH4。

1.8 序列分析和同源性比较

采用在线 BLAST (www.ncbi.nlm.nih.gov/ BLAST/)和软件 SnapGene 2.3.2 分析序列;信号肽 序列用软件 Signal-P 3.0 分析预测^[19]。

1.9 重组 β-淀粉酶的诱导表达及粗酶液的制备

将重组菌 BAXMH0 接种于 15 mL LB 培养基 中,在 37 °C、200 r/min 振荡培养,以此作为种子 液。将培养过夜的种子液按 3% (体积比)的接种量 接种于 30 mL LB 培养基中,37 °C、200 r/min 培 养 8 h 后,加入终浓度为 1%的木糖诱导发酵 16 h。 取一定量发酵液,4 °C、12 000 r/min 条件下离心 10 min,上清液即为粗酶液。

1.10 β-淀粉酶活力检测、蛋白质测定和电泳 分析

取 0.95 mL 用 Na₂HPO₄-NaH₂PO₄ 缓冲液 (0.2 mol/L pH 6.5)配制的 1%可溶性淀粉作为底物, 于 40 °C 预热 5 min 后加入 50 μL 适当稀释的 β-淀 粉酶酶液, 40 °C 反应 30 min。取 500 μL 反应液, 加入 1.5 mL DNS 煮沸 5 min,于 540 nm 处测定吸 光值,计算产生的还原糖量。将麦芽糖烘干至恒重 后,制作梯度标样,绘制 DNS 标准曲线。β-淀粉酶 酶活单位(U)定义为:在 40 °C、pH 6.5 的反应条件 下,每分钟水解可溶性淀粉生成相当于 1 μmol 麦芽 糖的还原糖所需的酶量,定义为 1 U。 蛋白质浓度测定采用 Bradford 法^[20]。 SDS-PAGE 电泳参照 Schägger 等^[21]的方法。

1.11 重组 β-淀粉酶的纯化

利用 HisTrap 亲和层析进行重组 β-淀粉酶的 纯化。收集纯化后的酶液,利用 SDS-PAGE 鉴定 蛋白纯度及分子量大小。

1.12 重组酶水解产物的检测

色谱柱, SUGAR SH1011 糖分析柱;检测器, 示差检测器;流动相,10 mmol/L 稀硫酸;流速, 0.6 mL/min;柱温,50 °C。

2 结果与讨论

2.1 木糖诱导启动子和 β-淀粉酶基因的克隆 与分析

以枯草芽孢杆菌 WB600 基因组 DNA 为模板进行 PCR 扩增,获得大小约为 1.4 kb 的片段,如图 1 所示。经测序确认该扩增片段与 NCBI 登记的枯草芽孢杆菌木糖异构酶基因启动子及其调控蛋白基因片段 xylR-P_{xyl}的序列(GenBank 登录号为 A00033) 完全一致。

以巨大芽孢杆菌 1514 基因组 DNA 为模板进行 PCR 扩增,获得大小约为 1.6 kb 的β-淀粉酶融合基

图 1 片段 xylR-P_{xyl}和 amyM-6*His 琼脂糖凝胶电泳分析 Figure 1 Agarose gel electrophoresis of xylR-P_{xyl} and amyM-6*His

注:M:DNA marker;1:xylR-P_{xyl}扩增产物;2:amyM-6*His 扩增产物。

Note: M: DNA marker; 1: PCR product of *xylR*-P_{*xyl*}; 2: PCR product of *amyM*-6**His*.

因片段 *amyM*-6**His* (图 1)。经测序分析,融合基因 *amyM*-6**His* 全长 1 656 bp,编码 551 个氨基酸和 一个终止密码子,预计编码蛋白分子量为 61 kD, 其中氨基酸序列 1-31 位为信号肽序列,32-545 位 为结构编码区,546-551 位为组氨酸标签,成熟重 组 β -淀粉酶蛋白的分子量为 57 kD。*amyM* 基因的 GenBank 登录号为 KY744244。通过在线 BLAST 比对分析,发现 *amyM* 基因与已报道的巨大芽孢杆 菌 DSM319^[16]和蜡样芽孢杆菌(*Bacillus cereus*)^[22]的 β -淀粉酶基因分别有 94%和 72%的相似性。除此之 外,通过序列分析发现巨大芽孢杆菌 1514 β -淀粉酶 基因 *amyM* 的信号肽编码序列中存在 CRE,其序列 组成为:TGTTAACGCTTTCA,完全匹配共同序列 TGWNANCGNTNWCA(W:A/T;N:A/G/C/T)。

2.2 木糖诱导表达 β-淀粉酶重组质粒 pXMH0 的构建

将片段 xylR-P_{xyl} 克隆到大肠杆菌-芽孢杆菌穿 梭质粒 pHY300-PLK,获得木糖诱导载体 pX。将片 段 amyM-6*His 克隆到载体 pX,获得木糖诱导表达 β-淀粉酶重组质粒 pXMH0 (图 2A)。重组质粒 pXMH0 经 Bgl II 和 Sal I 双酶切后得到 6 252 bp 的 pX 载体片段和 1 662 bp 的 amyM-6*His 融合基因片 段(图 2B)。

2.3 重组β-淀粉酶的表达

使用化学转化的方法,将重组载体 pX 和重组 表达质粒 pXMH0 分别转入表达宿主枯草芽孢杆菌 A610 中,所得阳性转化子经提取质粒、酶切电泳 验证无误后,获得重组菌株 BAX 和 BAXMH0。

将重组菌株 BAX 和 BAXMH0 分别进行摇瓶发 酵,培养条件及诱导方法同 1.9 节,以不加诱导剂 的一组作为空白对照,发酵结束后冷冻离心发酵 液,上清即为粗酶液。酶活力检测结果显示,对照 组 BAX 以及未添加木糖诱导的 BAXMH0 发酵上清 中均未检测到重组酶活力,只有添加木糖诱导的 BAXMH0 发酵上清中检测到淀粉酶活力,表明巨 大芽孢杆菌 1514 的 β-淀粉酶基因 *amyM* 在枯草芽 孢杆菌中实现了诱导表达,并且构建的木糖诱导表 达系统调控严谨,完全受诱导剂木糖的调控。 SDS-PAGE 电泳分析结果如图 3 所示,仅添加木糖 诱导的 BAXMH0 发酵上清在分子量为 57 kD 左右 有一条明显的条带。*amyM* 基因来源菌巨大芽孢杆 菌 1514 于 37 °C、200 r/min 培养 24 h 后,发酵上 清β-淀粉酶活力仅为 0.22 U/mL。相比之下,经木 糖诱导的 BAXMH0 发酵上清中的β-淀粉酶活力达 到 10.32 U/mL,酶活力提高了 46 倍,表明该木糖 表达系统具有高效诱导表达的特性。

图 2 重组质粒 pXMH0 的构建

Figure 2 Construction of recombinant plasmid pXMH0 注:M:DNA marker;1:Bgl II +Sal I 双酶切验证重组质粒 pXMH0.

Note: M: DNA marker; 1: Recombinant plasmid pXMH0 digested by *Bgl* II and *Sal* I.

图 3 胞外粗酶液 SDS-PAGE 电泳图 Figure 3 SDS-PAGE of the extracellular β-amylase

注:M:蛋白 Marker;1:BAX 未经诱导的胞外产物;2: BAXMH0未经诱导的胞外产物;3:BAX诱导后的胞外产物; 4:BAXMH0诱导后的胞外产物.

Note: M: Protein marker; 1: BAX without induction; 2: BAXMH0 without induction; 3: BAX with induction; 4: BAXMH0 with induction.

2.4 突变 *amyM*-CRE 对重组菌利用不同碳源发酵产酶的影响

由于 *amyM*-CRE 位于信号肽编码区域,为了不影响酶蛋白分泌效率,考虑同义替换 *amyM*-CRE 的保守碱基,以考察突变 CRE 对重组酶表达受到的CCR 的影响。

以重组质粒 pXMH0 为初始模板设计引物进行 PCR 扩增,获得分别同义替换了 1-4 个 *amyM*-CRE 保守碱基的重组质粒 pXMH1、pXMH2、pXMH3 和 pXMH4,如图 4 所示。分别转化到表达宿主枯 草芽孢杆菌 A610 中,获得重组菌 BAXMH1、 BAXMH2、BAXMH3 和 BAXMH4。

将重组菌 BAXMH0、BAXMH1、BAXMH2、 BAXMH3 和 BAXMH4 分别在添加了不同碳源(葡 萄糖、果糖、蔗糖、麦芽糖、可溶性淀粉、麦芽糊 精或马铃薯淀粉)的 LB 培养基中进行摇瓶发酵,培 养条件及诱导方法同 1.9 节,发酵结束后检测重组 酶活力,以在 LB 培养基中诱导发酵作为空白对照, 结果如表 3 所示。

	(W: A/T; N: A/G/C/T)
CRE of consensus ^a	TGWNANCGNTNWCA
CRE in pXMH0 ^b	TT <u>T GTT AAC GCT TTC A</u> TT
CRE in pXMH1	TT <u>T GTT AA<mark>T</mark>GCT TTC A</u> TT
CRE in pXMH2	TT <u>T GTT AA<mark>T</mark> GCC TTC A</u> TT
CRE in pXMH3	TT <u>T GTT AAT GCC TTTA</u> TT
CRE in pXMH4	TT <mark>© GTT AAT GC© TTTTA</mark> TT
Amino acid sequence	Phe Val Asn Ala Phe Ile

图 4 CRE 共同序列、原始型 *amyM*-CRE 和突变型 *amyM*-CRE 的比较

 Figure 4 Comparison of CRE consensus, wild-type amyM-CRE and modified amyM-CREs

 注:^a: CRE 均被下划线标注;^b: 替换后的碱基被高亮显示.

Note: ^a: All CREs are underlined; ^b: Base substitutions are highlighted.

在空白对照 LB 培养基中,重组菌株之间产 β-淀粉酶的水平无明显差别。然而,无论 LB 中加入 速效碳源(葡萄糖、果糖、蔗糖和麦芽糖)还是迟效 碳源(麦芽糊精、可溶性淀粉和马铃薯淀粉),携带 突变型 *amyM*-CRE 的重组菌株发酵生产的 β-淀粉 酶活力均远高于携带原始型 *amyM*-CRE 重组菌,这 说明突变 *amyM*-CRE 保守碱基能够有效缓解重组 枯草芽孢杆菌代谢碳源过程中对重组酶表达的阻 遏。Kraus 等^[23]研究枯草芽孢杆菌木糖操纵子中的 CRE 序列,结果表明 CRE 序列与共同序列相似性 越大,抑制作用越强烈。定点突变使 CRE 序列偏 离共同序列,阻遏复合物无法有效识别和结合 CRE,从而不能在转录水平上阻遏重组酶的表达, 因此,重组 β-淀粉酶表达水平得到显著提升。

在添加相同碳源的情况下,重组菌 BAXMH2、 BAXMH3 和 BAXMH4 的产酶水平无明显差别,但 均高于重组菌 BAXMH1 的产酶水平,这表明当 *amyM*-CRE 中保守碱基同义替换个数超过1个后, 重组 β-淀粉酶表达水平并不随着保守碱基同义替

Table 3 Catabolite repr	ression of different ca	arbon sources in vai	rious mutants during	g expression of β-am	ylase
瑞酒 a			酶活		
Carbon source ^a			Enzyme activity (U/mI	L)	
	BAXMH0	BAXMH1	BAXMH2	BAXMH3	BAXMH4
None (LB)	10.41±0.52	10.78±0.85	10.95±0.57	10.68±0.70	10.74±0.80
Glucose	ND	0.45±0.05	0.65±0.22	0.68±0.14	0.66±0.12
Fructose	ND	1.22±0.14	1.63±0.17	1.69±0.13	1.69±0.15
Sucrose	0.59±0.07	1.74±0.14	2.31±0.16	2.48±0.13	2.43±0.18
Maltose	21.96±0.86	39.04±1.86	50.89±1.60	51.82±1.72	51.93±1.17
Maltodextrin	24.06±1.14	67.13±3.80	78.45±1.14	80.47±2.13	79.69±3.11
Soluble starch	25.40±0.96	69.14±3.44	82.08±2.36	83.97±1.77	85.10±1.73
Potato starch	30.29±1.34	79.16±3.19	96.93±1.38	96.30±2.80	97.16±2.94

表 3 不同碳源对重组菌株表达 β-淀粉酶的分解代谢阻遏 . f .]:ff

注:^a:碳源的添加量为终浓度1%(质量体积比);ND:未检测到重组酶活力.

Note: ^a: That is, added to the LB medium at a concentration of 1%; ND: not determined.

换个数的增加而增加,这可能是因为当 CRE 的保 守碱基替换2个后,阻遏复合物已经无法结合该突 变型 CRE,继续突变保守碱基并不会对重组酶表达 水平有明显影响。

以葡萄糖或果糖为碳源时,携带野生型 amyM-CRE 的重组菌株完全不表达 β-淀粉酶,携带 突变型 amyM-CRE 的重组菌虽然产 β-淀粉酶 ,但表 达水平十分低下,表明葡萄糖和果糖施加的 CCR 效应非常强烈,即使通过突变 amyM-CRE 缓解了 CCR 效应也无法大幅提高重组菌在含高浓度葡萄 糖或果糖培养基中的产酶水平,这可能是因为葡萄 糖和果糖施加的 CCR 效应影响更加广泛、抑制作 用更加持久,包括诱导物木糖的转运都被强烈阻 遏,无法进入胞内发挥诱导作用^[15]。Singh 等^[24]研 究表明,碳源通过 CcpA 介导的 CCR 发挥抑制作用 的能力存在明显的等级差异,其中葡萄糖的阻遏效 应最强烈,果糖次之。

重组菌株利用迟效碳源产酶的水平远高于利 用速效碳源,这可能是因为迟效碳源需要先被重组 β-淀粉酶水解成速效碳源后才能被重组菌株利用, 这一机制将培养基中速效碳源的浓度维持在相对 较低的水平,从而进一步缓解 CCR 效应并提高重 组酶的表达。以马铃薯淀粉为碳源时,重组菌株 BAXMH4 发酵上清液中 β-淀粉酶活力最高,达到 97.16 U/mL,比 amyM 基因来源菌巨大芽孢杆菌 1514 β-淀粉酶的表达水平提高了 440 倍。

2.5 重组 β-淀粉酶的纯化

重组菌表达的 β-淀粉酶经亲和层析纯化后在 SDS-PAGE 中显示出单一条带,分子量约为 57 kD (图 5),与之前推测的成熟重组酶蛋白大小相符。

图 5 纯化后的重组 β-淀粉酶 SDS-PAGE 电泳图 Figure 5 SDS-PAGE of purified recombinant β-amylase 注:M:蛋白 Marker;1:重组 β-淀粉酶粗酶液;2:重组 β-淀 粉酶纯酶

Note: M: Protein marker; 1: Crude recombinant β-amylase; 2: Purified recombinant β-amylase.

2.6 重组 β-淀粉酶的酶学性质分析

2.6.1 重组 β-淀粉酶的水解性质

以 1%可溶性淀粉为底物,加入 50 μL 纯化后 的重组酶,在 40 °C、pH 6.5 条件下反应 60 min。 运用高效液相色谱法分析反应产物,标样图谱见 图 6A,反应产物液相图谱见图 6B。结果显示,水 解产物由 72%麦芽糖及 28%葡萄糖组成,表明该重 组 β-淀粉酶水解可溶性淀粉的产物主要为麦芽 糖,还有少量葡萄糖为副产物。

2.6.2 温度对酶活力和稳定性的影响

pH 6.5 时,在不同温度下测定β-淀粉酶的活力, 以最高酶活力为 100%计算相对酶活,获得温度-酶活 力曲线,如图 7A 所示。该重组酶最适反应温度为 50 ℃,反应温度高于 55 ℃ 时酶活力骤降。将酶液在 不同温度中分别保温 60 min 后检测剩余酶活力,以

图 6 重组 β-淀粉酶水解可溶性淀粉产物分析 Figure 6 Product analysis of recombinant β-amylase reaction with soluble starch

未保温的酶液活力为100%,获得温度-稳定性曲线,如图7B所示。重组酶活力在温度不超过45°C时较稳定,50°C保温60min后酶活损失近70%,结果表明该酶热稳定性较差,在高温条件下酶活力损失严重。 2.6.3 pH 对酶活力及酶稳定性的影响

在温度 40 °C 条件下,测定不同 pH 条件下的重 组酶活力,最高酶活力为 100%,得到 pH-酶活力曲 线,如图 7C 所示。结果显示该酶的最适反应 pH 为 6.0 左右,pH 低于 3.5 酶活力基本丧失,pH 高于 7.0 酶活力开始明显下降。在 20 °C 条件下,将不同 pH 的酶液保温 60 min 后测定其残余酶活力,以未处理 的原酶液活力作为对照,结果如图 7D 所示。由图 7 可见,pH 4.5–5.5 之间该酶稳定性相对较好,pH 低 于 4.0 酶稳定性明显降低,pH 高于 6.0 酶活力损失 较高。

2.6.4 金属离子对重组酶活性的影响

以原酶液为对照,分别添加 KCl、MgCl₂、 ZnCl₂、CaCl₂、MnCl₂、CuCl₂、CoCl₂、FeCl₂、 FeCl₃至终浓度 1 mmol/L 和 10 mmol/L 并测定酶活 力,结果如表 4 所示。在试验浓度下,Ca²⁺和 Co²⁺ 对该重组 β-淀粉酶均具有激活作用,其中 Co²⁺对 酶激活作用最强;Zn²⁺、Mn²⁺、Cu²⁺、Fe²⁺和 Fe³⁺ 对该酶有较强抑制作用,10 mmol/L 的 Cu²⁺对酶抑 制作用最强烈。

2.6.5 重组 β-淀粉酶的底物特异性

取适当稀释后的 β-淀粉酶 50 μL 分别与 1%的 可溶性淀粉、马铃薯淀粉、麦芽糊精、β-环状糊 精、糖原和支链淀粉在 40 °C、pH 6.5 的条件下反 应 30 min,分别测定其酶活力,以 1%可溶性淀粉为 底物测得的酶活力为 100%,结果如表 5 所示。结果 表明,该重组 β-淀粉酶可以水解可溶性淀粉、马铃 薯淀粉、支链淀粉、麦芽糊精和糖原,但不能利用 β-环状糊精,这可能是由于β-环状糊精分子结构为环 状,没有非还原性末端的显露,因而重组 β-淀粉酶 无法作用于该底物。该重组酶可以作用于含有支链 的多糖,但水解效率相对较低。根据相对酶活,该 重组 β-淀粉酶的最适作用底物为可溶性淀粉。

图 7 温度和 pH 对重组 β-淀粉酶活力和稳定性的影响

Figure 7 Effects of temperature and pH on activities and stabilities of recombinant β-amylase

注:■:酶活力;▲:酶稳定性;A:温度-酶活力;B:温度-稳定性;C:pH-酶活力;D:pH-稳定性.

Note: ■: Enzyme activity; ▲: Enzyme stability; A: Temperature-Enzyme activity; B: Temperature-Enzyme stability; C: pH-enzyme activity; D: pH-enzyme stability.

表 4	金属离子对重组	B-淀粉酶活力的影响
	프레이지 기도 프	

Table 4	Effect of metal	ions on	the stability	of recombinant
β-amylase				

人日本フ	相对酶活力		
金属昺子	Relative activity (%)		
Metal ions	1 mmol/L	10 mmol/L	
K^+	99.75±2.20	98.74±1.81	
Mg^{2+}	100.35±1.27	100.30±2.01	
Zn ²⁺	79.72±2.73	64.04±2.25	
Ca ²⁺	101.06±1.14	105.51±1.14	
Mn ²⁺	94.03±2.73	67.83±2.74	
Cu ²⁺	75.22±2.46	42.55±3.22	
Co ²⁺	127.87±0.96	128.17±2.37	
Fe ²⁺	88.91±2.31	84.18±2.00	
Fe ³⁺	93.38±2.96	61.81±1.84	

表 5 重组 β-淀粉酶底物特异性

Table 5 Substrate specificity of recombinant β-amylase

1	
底物	相对酶活力
Substrate	Relative activity (%)
Soluble starch	100
Potato starch	40.79±1.60
Amylopectin	38.60±0.67
Maltodextrin	70.31±2.25
Glycogen	89.88±2.39
β-Cyclodextrin	0

3 结论

本研究利用木糖诱导表达系统首次实现了巨 大芽孢杆菌β-淀粉酶基因 *amyM* 在枯草芽孢杆菌中 高效诱导表达。通过同义替换位于 *amyM* 信号肽编 码区的分解代谢物响应元件的保守碱基,在不影响 重组酶蛋白分泌效率的前提下,缓解了碳源代谢对

重组 β-淀粉酶表达施加的阻遏,重组菌发酵上清中 β-淀粉酶活力最高达到 97.16 U/mL,比 *amyM* 基因 来源菌巨大芽孢杆菌 1514 β-淀粉酶表达量提高 了 440 倍,为β-淀粉酶发酵生产的工业化提供了 数据支撑。酶学性质分析发现,该重组酶分子量 为 57 kD,最适反应温度为 50 °C,最适反应 pH 为 6.0, Ca²⁺、Co²⁺对该重组β-淀粉酶具有激活作用, Zn²⁺、Mn²⁺、Cu²⁺、Fe²⁺和 Fe³⁺对该酶有较强抑制 作用。酶水解淀粉主要产生麦芽糖以及少量葡萄糖 为副产物。后续研究可以关注酶蛋白的改造以提高 该酶的热稳定性,并对产酶发酵条件进行优化,以 期进一步提高产量,从而推动微生物生产β-淀粉酶 的工业化。

REFERENCES

- Murao S, Ohyama K, Arai M. β-Amylases from *Bacillus* polymyxa No. 72[J]. Agricultural and Biological Chemistry, 1979, 43(4): 719-726
- [2] Higashihara M, Okada S. Studies on β-amylase of *Bacillus megaterium* strain No. 32[J]. Agricultural and Biological Chemistry, 1974, 38(5): 1023-1029
- [3] Siggens KW. Molecular cloning and characterization of the beta-amylase gene from *Bacillus circulans*[J]. Molecular Microbiology, 1987, 1(3): 86-91

酶基因在大肠杆菌中的克隆与表达[J]. 生物技术通报, 2014(12):161-167 [5] Kitamoto N, Yamagata H, Kato T, et al. Cloning and sequencing

- of the gene encoding thermophilic beta-amylase of *Clostridium thermosulfurogenes*[J]. Journal of Bacteriology, 1988, 170(12): 5848-5854
- [6] Dicko MH, Leeuwen SV, Beldman G, et al. Purification and characterization of β-amylase from *Curculigo pilosa*[J]. Applied Microbiology and Biotechnology, 1999, 52(6): 802-805
- [7] Zhang J, Lin TL, Qin Y, et al. Research development on β-amylase[J]. China Brewing, 2009, 28(4): 5-8 (in Chinese) 张剑,林庭龙,秦瑛,等. β-淀粉酶研究进展[J]. 中国酿造, 2009, 28(4): 5-8
- [8] Wang SY, Li YR, Gu ZH, et al. Heterologous expression of enzymes for trehalose synthesis from *Sulfolobus acidocaldarius* in *Bacillus subtilis*[J]. Food Science, 2016, 37(21): 124-130 (in Chinese)
 王珊瑛,李由然,顾正华,等.1株古细菌海藻糖合成酶系在枯 草芽孢杆菌中的诱导表达[J]. 食品科学, 2016, 37(21): 124-130
- [9] Yu XX, Tian J, Liu XQ, et al. Research progress of *Bacillus subtilis* expression system and its promoter regulatory elements[J]. Biotechnology Bulletin, 2015, 31(2): 35-44 (in Chinese)

余小霞,田健,刘晓青,等.枯草芽孢杆菌表达系统及其启动 子研究进展[J].生物技术通报,2015,31(2):35-44

- [10] Magasanik B. Catabolite repression[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1961, 26: 249-256
- [11] Wu Y, Gu Y, Ren C, et al. Recent research on catabolite control protein A in microorganisms[J]. Chinese Bulletin of Life Sciences, 2011, 23(9): 882-890 (in Chinese)
 吴艳,顾阳,任聪,等. 微生物分解代谢物控制蛋白 CcpA 的研究进展[J]. 生命科学, 2011, 23(9): 882-890
- [12] Bhavsar AP, Zhao XM, Brown ED. Development and characterization of a xylose-dependent system for expression of cloned genes in *Bacillus subtilis*: conditional complementation of a teichoic acid mutant[J]. Applied and Environmental Microbiology, 2001, 67(1): 403-410
- [13] Jones BE, Dossonnet V, Küster E, et al. Binding of the catabolite repressor protein CcpA to its DNA target is regulated by phosphorylation of its corepressor HPr[J]. Journal of Biological Chemistry, 1997, 272(42): 26530-26535
- [14] Boël G, Mijakovic I, Mazé A, et al. Transcription regulators potentially controlled by Hpr kinase/phosphorylase in Gram-negative bacteria[J]. Journal of Molecular Microbiology and Biotechnology, 2003, 5(4): 206-215
- [15] Inácio JM, Costa C, De Sá-Nogueira I. Distinct molecular mechanisms involved in carbon catabolite repression of the arabinose regulon in *Bacillus subtilis*[J]. Microbiology, 2003, 149(9): 2345-2355
- [16] Lee JS, Wittchen KD, Stahl C, et al. Cloning, expression, and carbon catabolite repression of the *bamM* gene encoding β-amylase of *Bacillus megaterium* DSM319[J]. Applied Microbiology and Biotechnology, 2001, 56(1/2): 205-211
- [17] Wilson GA, Young FE. Isolation of a sequence-specific endonuclease (*Bam* I) from *Bacillus amyloliquefaciens* H[J]. Journal of Molecular Biology, 1975, 97(1): 123-124, IN19-IN21, 125
- [18] Bott KF, Wilson GA. Development of competence in the *Bacillus subtilis* transformation system[J]. Journal of Bacteriology, 1967, 94(3): 562-570
- [19] Bendtsen JD, Nielsen H, Heijne GV, et al. Improved prediction of signal peptides: SignalP 3. 0[J]. Journal of Molecular Biology, 2004, 340(4): 783-795
- [20] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72(1/2): 248-254
- [21] Schägger H, Von Jagow G. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kD[J]. Analytical Biochemistry, 1987, 166(2): 368-379
- [22] Yamaguchi T, Matsumoto Y, Shirakawa M, et al. Cloning, sequencing, and expression of a β-amylase gene from *Bacillus cereus* var. *mycoides* and characterization of its products[J]. Bioscience, Biotechnology, and Biochemistry, 1996, 60(8): 1255-1259
- [23] Kraus A, Hueck C, Gärtner D, et al. Catabolite repression of the Bacillus subtilis xyl operon involves a cis element functional in the context of an unrelated sequence, and glucose exerts additional xylR-dependent repression[J]. Journal of Bacteriology, 1994, 176(6): 1738-1745
- [24] Singh KD, Schmalisch MH, Stülke J, et al. Carbon catabolite repression in *Bacillus subtilis*: quantitative analysis of repression exerted by different carbon sources[J]. Journal of Bacteriology, 2008, 190(21): 7275-7284