微生物学通报 Microbiology China tongbao@im.ac.cn

May 20, 2018, 45(5): 1007–1015 http://journals.im.ac.cn/wswxtbcn DOI: 10.13344/j.microbiol.china.170480

流式细胞仪检测纳帕海高原湿地浮游病毒和浮游细菌丰度

张中耀 王爽 孙策 魏云林 林连兵 张琦 季秀玲*(昆明理工大学生命科学与技术学院 云南 昆明 650500)

摘 要:【背景】浮游病毒是水体微生物群落中重要的组成成分,深入研究浮游病毒的时空分布有 助于更好地保护和开发当地的微生物资源。【目的】对采集到的纳帕海高原湿地水样中的浮游病 毒和浮游细菌进行计数,揭示纳帕海高原湿地浮游病毒的分布规律。【方法】采用流式细胞仪检 测2013年12月和2014年9月纳帕海高原湿地7个水样的浮游病毒与浮游细菌丰度,并对影响 浮游病毒丰度的因素,如细菌丰度、叶绿素 a 含量以及其他环境因子进行了相关性分析。【结果】 季节分布上,雨季浮游病毒和浮游细菌丰度高于旱季;水平分布上,原水样品的浮游病毒高于湿 地水和淤泥水。旱季水样的浮游病毒丰度受到细菌丰度及叶绿素 a 浓度的影响较大;雨季水样的 浮游病毒丰度受到水体的 pH 值和温度的影响较大。【结论】纳帕海高原湿地的浮游病毒和浮游细 菌是比较活跃的。浮游病毒丰度在不同季节、不同采样点受到细菌丰度和叶绿素 a 浓度等因素的 不同影响。在旱季噬菌体而非噬藻体或浮游植物病毒是纳帕海高原湿地中浮游病毒的优势种群。

关键词: 浮游病毒, 浮游细菌, 流式细胞仪, 叶绿素 a

Determination of virioplankton and panktonic bacteria abundance in the Napahai plateau wetland by flow cytometry

ZHANG Zhong-Yao WANG Shuang SUN Ce WEI Yun-Lin LIN Lian-Bing ZHANG Qi JI Xiu-Ling^{*}

(Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China)

Abstract: [Background] Virioplankton is one of the most important components of microbial communities. The study on the temporal and spatial distribution of the virioplankton contributes to the protection and development of local microbial resources. [Objective] Virioplankton and planktonic bacteria of water samples were counted, aiming to investigate the virioplankton distribution in the Napahai plateau wetland. [Methods] Water samples from seven sites were obtained in December 2013 and September 2014. Virioplankton and planktonic bacteria abundance were determined using flow

Foundation items: National Nutural Science Foundation of China (31700324); Department of Education Science Research Fund Project of Yunnan Province (2017ZZX132); Personnel Training Fund by the Kunming University of Science and Technology (KKZ3201526010)

Received: July 03, 2017; Accepted: October 12, 2017; Published online (www.cnki.net): November 02, 2017

基金项目:国家自然科学基金(31700324); 云南省教育厅科学研究基金(2017ZZX132); 昆明理工大学校人培基金(KKZ3201526010)

收稿日期: 2017-07-03;接受日期: 2017-10-12;网络首发日期(www.cnki.net): 2017-11-02

^{*}Corresponding author: Tel: 86-871-65920148; E-mail: jixiuling1023@126.com

^{*}通信作者: Tel: 86-871-65920148; E-mail: jixiuling1023@126.com

cytometry. Here we reported on virioplankton relationships with environmental factors, such as bacterial abundance, chlorophyll a concentration and other environmental factors. **[Results]** Virioplankton and planktonic bacteria abundance in rainy season was higher than that of in dry season at the seasonal distribution. Virioplankton abundance in dry season was influenced by bacteria abundance and chlorophyll a concentration; whereas virioplankton abundance in the rainy season was influenced by pH and temperature. **[Conclusion]** We found high virioplankton and planktonic bacteria abundance values. Virioplankton abundance was correlated with bacterioplankton abundance and chlorophyll a concentration in different seasons and sampling points. The phage, rather than the algal or phytoplankton viruses, was the dominant population in dry season of the Napahai plateau wetland.

Keywords: Virioplankton, Planktonic bacteria, Flow cytometry, Chlorophyll a

浮游病毒是指浮游于水体中的一切病毒的总称,主要包括噬菌体、噬藻体和浮游植物病毒,由于其能裂解宿主,变有机质为无机质,所以在调节水体中微生物物种多样性、参与地球物质循环和介导微生物之间的基因水平转移等方面具有重要作用^[1-10]。因此,浮游病毒是水体微生物群落中重要的组成成分。目前浮游病毒的研究越来越受到国内外学者的重视,关于其研究主要集中在浮游病毒的 丰度、分布及其与浮游细菌和环境的相关性研究、 浮游病毒的多样性研究这几个方面^[11-13]。但大多数 研究集中在海洋、河流入海口及近海区域,关于湿 地尤其是高原湿地的研究鲜有报道^[14-15]。

纳帕海高原湿地地处青藏高原的东南延伸部 分,是金沙江流域云南西北高原低纬度高海拔的季 节性沼泽湿地,为中国湿地的独特类型。作为我国 少有的低纬度高海拔湿地,具有很高的科学研究价 值。目前已经有很多学者相继对纳帕海湿地开展了 湿地季节性景观格局动态变化及其驱动^[16]、湖滨带 优势植物生物量及其凋落物分解^[17]、土壤有机碳密 度及碳储量特征^[18],以及气候变化对纳帕海湿地的 影响^[19]等方面的研究,但关于纳帕海湿地浮游病毒 与浮游细菌丰度及其与其他环境因子相关性研究 尚未见报道。本研究拟通过流式细胞仪来检测纳帕 海湿地不同季节浮游病毒与浮游细菌丰度并分析 其与叶绿素 a (Chl-a)等环境因子的相关性。

1 材料与方法

1.1 样品采集、固定及保存

分别于 2013 年 12 月(旱季)和 2014 年 9 月(雨

季)采集纳帕海高原湿地(E99°37′22″-E99°38′16″, N27°50′01″-N27°53′35″)的7个水样样品。其中, YW代表原水;YNW代表淤泥水;SDW代表湿地 水。采集到的水样分别加入DNase I和RNase A至 终浓度为1g/mL,37°C消化30min,加25%的戊二 醛至终浓度为0.5%(体积比),4°C避光固定15min 后迅速放入液氮冷冻,于-80°C长期保存。

1.2 主要试剂和仪器

SYBR Green I 染料,上海安妍生物有限公 司;0.45 μm (硝酸纤维素,16541-K)滤膜、0.22 μm (硝酸纤维素,16553-K)滤膜、0.45 μm (醋酸纤维 素,11104-13-N)滤膜,Sartorius 公司。流式细胞 仪,美国贝克曼库尔特公司;等离子体发射光谱质 谱仪,Perkinelmer 公司;荧光显微镜,尼康公司。

1.3 分析方法

现场测定样品温度和 pH。

元素测定由农业部农产品质量监督检测测试 中心(昆明)完成。采用等离子体发射光谱质谱仪测 定水样中的元素含量:水样经 0.45 μm (硝酸纤维素, 16541-K)滤膜抽滤后用 HNO3 酸化,贮存于 PET 塑料瓶中。将水样分成两份,其中一份加入一定量 的标准溶液,分别测定两份水样中各元素的浓度, 计算其加标回收率。用 Sc、Ge、In、Tb、Bi 作内 标,浓度为 50 ng/L。

采用丙酮提取法测定叶绿素 a (Chl-a)的含量^[20]: 取 40 mL 水样 经 0.45 μm (醋酸纤维素 ,11104-13-N) 滤膜过滤,抽滤浓缩藻类于滤膜上,将滤膜对折装 袋,避光保存。先置于-20 °C 冰冻 12 h,室温下

解冻 5 min,直至滤膜变软。然后在-20 °C 冰冻约 20 min,室温下解冻,反复冻融 3-5 次后,放入盛 有 10 mL 90%丙酮的避光离心管中,上下颠倒 1 min 混匀,直至滤膜完全溶解。将离心管于 4 °C 中浸提 20 h,浸提过程中需振摇 1-2 次。浸提后离心管于 4 000 r/min 离心 15 min。分别在 630、645、663 和 750 nm 波长处测定离心管上清液的吸光度,通过 公式: Chl-a 浓度=12.7 A_{663} -2.69 A_{645} 计算叶绿素 a (Chl-a)的浓度(mg/L)。

1.4 流式细胞仪测样品中浮游病毒和浮游细菌 丰度

将用 0.22 μm (硝酸纤维素, 16553-K)的滤膜 抽滤过的 pH 8.0 的 TE 缓冲液作为稀释液,分别将 样品和 SYBR Green I 10 000×稀释到 100×。稀释过 的每个样品取 400 μL,向其中加 100×染液至终浓 度为 0.5×。常温避光染色 5 min,80 °C 水浴孵育 10 min 后避光冷却至室温,样品从侧向角 SSC 和 通道 FL1 经流式细胞仪检测浮游病毒和浮游细菌 丰度。同一样点样品,用 0.22 μm 滤膜(硝酸纤维 素,16553-K)过滤前后分别上样检测。

1.5 浮游病毒丰度与浮游细菌丰度、Chl-a 及环 境因子相关性分析

采用 SPSS 17.0 软件用 Pearson 相关系数分析 纳帕海湿地环境因子之间、浮游病毒与环境因子之

间的关系。采用 R 语言 1.7 分析旱雨两季水样浮游 病毒丰度与浮游细菌及环境因素线性回归。

2 结果与分析

2.1 水样旱季和雨季各元素的测定

旱季和雨季水样元素由农业部农产品质量监督 检验测试中心(昆明)测定。由表 1 和表 2 可知:在进 行元素含量测定过程中,有一些元素未检测出来, 可能是水体元素检测要尽可能早地进行测定,否则 水体中的生物作用可能会对某些元素的含量造成影 响(中华人民共和国国家环境保护标准,HJ 493-2009《水质采样样品的保存和管理技术规定》)。 因此只针对检测出的水样元素进行统计学分析。

2.2 水样 pH、温度情况

如表 3 所示,纳帕海湿地具有典型的高原气候 特征,太阳辐射强,气温年较差小(平均 16 °C), 而日较差大(平均可达 20 °C,旱季时可达 30 °C), 年均温为 5.4 °C。纳帕海湿地雨季和旱季采样样品 温度差异较大,雨季温度较高。

2.3 叶绿素 a 含量

分别对旱季和雨季的水样中的 Chl-a 含量进行 测定。由表 4 可知,样品中雨季 Chl-a 的含量明显 高于旱季。YNW (淤泥水)样品中的 Chl-a 的含量要 远高于 YW (原水)和 SDW (湿地水)样品。

Table 1 Determining	nation of ele	ements in d	ry season (1	mg/L)						
样品	氮	磷	锌	铁	锰	镁	钙	铜	钠	钾
Samples	Ν	Р	Zn	Fe	Mn	Mg	Ca	Cu	Na	K
SDW-1	6.74	1.430	0.265	33.00	0.625	8.87	41.3	0.068 0	7.73	24.80
SDW-2	1.35	0.158	0.033	8.31	0.238	6.92	34.1	0.008 0	3.14	3.30
YNW-1	4.04	0.773	0.032	7.99	0.430	6.00	22.8	0.011 0	17.80	6.14
YNW-2	33.70	9.190	0.912	123.00	3.970	23.00	92.4	0.412 0	7.20	1.83
YW-5	0	-	-	-	-	5.90	45.7	0.035 4	9.90	3.04
YW-6	0	-	-	-	-	5.00	45.6	0.004 0	9.80	3.47
YW-7	0	-	-	-	_	6.12	44.9	0.006 0	9.85	2.88

表1 旱季水样元素检测结果

注:YW:原水;SDW:湿地水;YNW:淤泥水;-:未检出元素,单位均为 mg/L.

Note: YW: Raw water; SDW: Wetland water; YNW: Silt water; -: No elements detected, units are mg/L.

Table 2 Determina	tion of eleme	ints m i	amy seas	on (mg/L)						
样品	氮	磷	锌	铁	锰	镁	钙	铜	钠	钾
Samples	Ν	Р	Zn	Fe	Mn	Mg	Ca	Cu	Na	Κ
SDW-1	1.34	-	-	0.838	-	3.45	29.5	-	2.32	0.790
SDW-2	2.67	-	-	0.552	-	4.14	43.0	-	1.41	0.592
YNW-1	0.00	-	-	-	-	4.45	34.4	-	9.08	5.120
YNW-2	0.00	-	-	-	-	5.20	33.2	-	7.20	1.830
YW-5	0.00	-	-	-	-	4.86	26.0	-	4.62	2.660
YW-6	2.67	-	-	-	-	5.04	23.1	-	4.40	2.110
YW-7	0.00	_	_	0.074	_	4.78	28.2	_	4.56	2.660

表 2 旱季水样元素检测结果

 Table 2
 Determination of elements in rainy season (mg/L)

表 3 早、雨季水样 pH、温度 Table 3 Temperature and pH of water samples in dry and rainy season

样品	旱	季 Dry season	雨季 Rainy season			
1+44 Samples	酸碱度	温度	酸碱度	温度		
Samples	pН	Temperature (°C)	pН	Temperature (°C)		
SDW-1	5.5	9.0	7.0	27		
SDW-2	6.0	9.0	7.0	27		
YNW-1	6.6	7.5	6.0	19		
YNW-2	5.5	6.0	6.0	19		
YW-5	6.0	8.0	6.0	23		
YW-6	5.5	9.0	6.0	25		
YW-7	6.0	5.0	6.0	22		

表 4 旱季和雨季水样 Chl-a 含量变化

Table 4Chlorophyll a content of water samples in dry andrainy season

	Chl-a	含量					
样品	Chlorophyll a content (mg/L)						
Samples	旱季	雨季					
	Dry season	Rainy season					
SDW-1	0.098	0.121					
SDW-2	0.010	0.075					
YNW-1	0.768	1.056					
YNW-2	1.732	1.875					
YW-5	0.105	0.263					
YW-6	0.207	0.162					
YW-7	0.144	0.190					

2.4 流式细胞仪检测浮游病毒与浮游细菌丰度

2.4.1 对样品成分在图中的确定

对采集到的样品和经 0.22 μm 滤膜(硝酸纤维 素 ,16553-K)过滤的浮游病毒的样品分别利用流式 细胞仪确定浮游病毒与浮游细菌区域。 由图 1 可知, 经 0.22 μm 滤膜(硝酸纤维素, 16553-K)过滤后,在 FL1 10²-10³ 荧光级别上的 颗粒物明显减少,因此推断此区域为细菌所在 区域;由于浮游病毒颗粒小,核酸量相对也少, 所以推测荧光级别 FL1 10⁰-10²为浮游病毒所在 区域。

2.4.2 流式细胞仪检测浮游病毒与浮游细菌丰度

采用 SYBR Green I 染料对纳帕海湿地采集 的样品进行染色 ,用流式细胞仪对旱季和雨季浮游 病毒和浮游细菌进行计数(图 1),同时在荧光显微 镜下计数浮游细菌和浮游病毒(图 2)。无论在雨季 还是旱季 ,浮游病毒丰度变化趋势和浮游细菌丰度

图 2 纳帕海高原湿地浮游病毒与浮游细菌的荧光照片

Figure 2 The fluorescence picture of virioplankton and planktonic bacteria in the Napahai plateau wetland

注:A:旱季 SDW-1 浮游细菌;B:旱季 SDW-1 浮游病毒;C:雨季 SDW-2 浮游病毒;D:雨季 SDW-2 浮游细菌. Note: A: Planktonic bacteria of SDW-1 in dry season; B: Virioplankton of SDW-1 in dry season; C: Virioplankton of SDW-2 in

rainy season; D: Planktonic bacteria of SDW-2 in rainy season.

趋于一致 ,所以初步断定浮游细菌丰度是影响浮游 病毒丰度变化的重要因素之一。

水样浮游病毒与浮游细菌丰度计数结果见 表 5。旱季和雨季水样的浮游病毒丰度范围分别为 1.35×10⁶-8.46×10⁶ 个/mL和6.86×10⁷-2.91×10⁸ 个/mL; 浮游细菌丰度范围分别为 2.57×10⁵-4.63×10⁵ 个/mL 和 1.14×10⁶-8.75×10⁶ 个/mL。旱季和雨季水样浮 游病毒和浮游细菌变化情况如图 3-5 所示。在季 节分布上,雨季水样的浮游病毒丰度明显高于旱 季。旱季淤泥-1 水样(YNW-1)与原水-7 (YW-7)之 间浮游病毒丰度是呈现增长趋势的,而雨季增加 的尤其明显。这可能是由于雨季降水量增多从而 导致样品水样温度、pH 值等理化性质发生变化。 原水-5 (YW-5)、原水-6 (YW-6)和原水-7 (YW-7) 旱、雨两季的浮游病毒丰度较高。由图 4 和图 5 比 较可得,雨季测得的浮游病毒和浮游细菌的丰度 明显要比旱季的浮游病毒和浮游细菌的丰度高出 10 倍。其中,原水-5 (YW-5)、原水-6 (YW-6)和原 水-7 (YW-7)这 3 个区域雨季的浮游病毒和浮游细 菌丰度要比旱季高得多,可能是由于附近存在着 大批水域。

2.5 水样样品 pH、温度及元素含量相关性分析 利用 SPSS 17.0 软件对水样样品 pH、温度及元 素含量作相关性分析,结果如表 6 和表 7 所示,旱 季各元素之间 N 与 Mg 的相关性为正相关 0.992;
Mg 与 Cu 的相关性达到正相关 0.993 Ca 与 Cu 的相 关性是正相关 0.925; Na、K 与其他元素的相关性不 是很高; pH 与 Ca 具有较高的负相关性,而与 Na 有较高的正相关性;温度与其他元素的相关性不高。 而针对于雨季而言, N 与 Na、K、pH 及温度具有

Table 5 Viriopl	Image: Table 5 Virioplankton and planktonic bacteria abundance of water samples in rainy and dry season									
	旱季 Dr	y season	雨季 Rainy season							
样品	浮游病毒丰度	浮游细菌丰度	浮游病毒丰度	浮游细菌丰度						
Samples	Abundance of virioplankton (cells/mL)	Abundance of planktonic bacteria (cells/mL)	Abundance of virioplankton (cells/mL)	Abundance of planktonic bacteria (cells/mL)						
YW-5	3.54×10^{6}	2.87×10^{5}	2.31×10 ⁸	1.14×10^{6}						
YW-6	5.78×10^{6}	3.58×10 ⁵	2.91×10 ⁸	5.68×10^{6}						
YW-7	8.46×10^{6}	4.63×10 ⁵	2.25×10^{8}	8.75×10^{6}						
SDW-1	1.65×10^{6}	2.57×10^{5}	6.86×10^{7}	3.95×10^{6}						
SDW-2	1.35×10^{6}	3.06×10 ⁵	1.07×10^{8}	6.74×10^{6}						
YNW-1	3.36×10 ⁶	2.82×10^{5}	5.46×10^{7}	3.77×10^{6}						
YNW-2	2.22×10^{6}	4.55×10 ⁵	6.67×10^{7}	3.47×10^{6}						

水样旱季和雨季浮游病毒及浮游细菌丰度 表 5

图 3 旱季和雨季浮游病毒变化情况

Figure 3 The variation curve of virioplankton abundance in dry and rainy season

图 4 旱季浮游病毒和浮游细菌丰度变化情况 Figure 4 The variation curve of virioplankton and planktonic bacteria abundance in dry season

相关性; Mg 与 pH、温度负相关, 与 Na 正相关; Ca 与 pH 正相关; Na 与 K 正相关, 与 pH、温度负 相关;K与pH、温度负相关;pH与温度正相关。 上述各水样元素及 pH、温度的正负相关性可以为 后续分析水样中各浮游病毒丰度的影响因子提供 一定参考。

用 R 语言 1.7 软件分析旱、雨季水样浮游病 2.6 毒丰度及细菌丰度与环境因素回归

分别以旱、雨两季浮游病毒丰度为因变量,以其 他各元素为自变量的前提下可以得出:旱季 Chl-a 浓 度与浮游病毒丰度有显著性差异性(P=0.0367<0.05, r^2 =0.808 4), 即旱季水样的浮游病毒丰度受到细菌

雨季浮游病毒和浮游细菌丰度变化情况 图 5 Figure 5 The variation curve of virioplankton and planktonic bacteria abundance in rainy season

Table 6 Correlat	ion matrix in	dry season						
元素	氮	镁	钙	铜	钠	钾	酸碱度	温度
Element	Ν	Mg	Ca	Cu	Na	Κ	pН	Temperature
Ν	1.000							
Mg	0.992	1.000						
Ca	0.868	0.902	1.000					
Cu	0.989	0.993	0.925	1.000				
Na	-0.176	-0.279	-0.371	-0.233	1.000			
К	-0.066	-0.086	-0.234	-0.118	-0.036	1.000		
pH	-0.398	0.443	-0.638	-0.454	0.621	-0.276	1.000	
Temperature	-0.383	-0.401	-0.445	-0.400	-0.207	0.413	-0.160	1.000

表 6	旱	季相关矩阵		
Table	6	Consolution motion in	d	

丰度及 Chl-a 浓度的影响较大;雨季 pH 值和温度 与浮游病毒丰度有显著差异性(*P*=0.008 394<0.01, *r*²=0.908 4 趋于 1),由此看出雨季水样的浮游病毒 丰度受到水体的 pH 值和温度的影响较大。

2.7 水样样品浮游病毒丰度与元素相关性分析

用 SPSS 17.0 软件对不同季节浮游病毒丰度与 元素的相关性进行分析得出:旱季浮游病毒丰度与 N、Ca、Mg 相关但不显著(r 分别为 0.490、0.586 和 0.442, P 均>0.05);旱季浮游病毒丰度与 Na 无 统计学意义(r=0.251, P>0.05);旱季浮游病毒丰度 与 K 呈负相关,但不显著(r=-0.447, P>0.05)。雨 季浮游病毒丰度与 Ca 无统计学意义(r=0.034, P>0.05);雨季浮游病毒丰度与 Mg、K 分别呈正相 关但不显著(r 分别为 0.625, 0.573, P 均>0.05);雨 季浮游病毒丰度与 N 呈负相关但不显著(r=-0.522, P>0.05);雨季浮游病毒丰度与 Na 呈显著正相关

表 7 雨季相关矩阵

				•	•	
Table 1	/ Corr	elation	matrix	in	rainv	Seaso
I able		ciacion	mauna		I CILLY	buubu

(r=0.906 , P<0.05)。

3 讨论与结论

本研究采用 FC 技术对纳帕海高原湿地不同季节的浮游病毒和浮游细菌丰度进行了测量,并用 SPSS 17.0 软件和 R 语言 1.7 对影响浮游病毒丰度 的浮游细菌丰度、Chl-a 浓度等其他环境因子做了 相关性分析。

研究结果表明,纳帕海湿地浮游病毒和浮游细菌的活动都比较活跃,但是在雨季会有明显的增强,而这一结果与裴达的研究结果(东湖浮游病毒的丰度在夏季达到峰值,冬季最小;浮游细菌的丰度春夏较高,冬季最小)相一致^[21]。雨季水样的浮游病毒丰度最高可达 2.91×10⁸ 个/mL,远高于浮游细菌的丰度 10⁶ 个/mL;旱季水样的浮游病毒丰度最高可达 8.46×10⁶ 个/mL,浮游细菌丰度最高可达 4.63×10⁵ 个/mL。雨季浮游病毒和浮游细菌高于旱

Table / Correlation	/11 111ati 1x 111 1 aii	iy scasofi					
元素	氮	镁	钙	钠	钾	酸碱度	温度
Element	Ν	Mg	Ca	Na	K	pН	Temperature
Ν	1.000						
Mg	-0.288	1.000					
Ca	0.171	-0.346	1.000				
Na	-0.667	0.515	-0.119	1.000			
К	-0.589	0.343	-0.185	0.852	1.000		
pH	0.565	-0.863	0.541	-0.758	-0.707	1.000	
Temperature	0.799	-0.655	0.079	-0.915	-0.694	0.793	1.000

季的原因可能是浮游病毒主要包括噬菌体和藻类 病毒两大类^[22],他们的宿主即异氧细菌、蓝藻和 浮游植物的分布要受到 pH 值、温度、营养和光照 等因素的共同影响。夏季光照强、水温高,蓝藻、 浮游植物等的生长比较旺盛,导致浮游病毒的裂解 量也比较高;冬季光照弱、水温低,浮游植物等的 代谢比较弱,导致病毒的裂解量减少。

在浮游病毒的丰度上,纳帕海湿地旱季和 雨季的浮游病毒的丰度分别为 3.15×10⁷ 个/mL 和 1.05×10^8 个/mL, 与国内外报道^[11,15,23]相似。 Hara 等^[23] (1991)首次利用荧光显微计数法检测了 日本大阪湾和 Otsuchi Bay 两个湾域中游离病毒的 丰度,病毒直接检测量为 $1.2 \times 10^6 - 3.5 \times 10^7$ 个/mL。 卢龙飞等[11]采用流式细胞仪从水平分布和垂直分 布上测得东海、黄海(119.5°-129°E, 25°-39°N)浮 游病毒的丰度为 3.38×10⁵-2.26×10⁷ 个/mL (平均 6.24×10⁶个/mL)和 5.83×10³-1.23×10⁶个/mL (平均 1.22×10⁵ 个/mL)。刘晶晶等^[15]采用荧光显微镜计 数法测得 2006 年夏季和 2007 年冬季长江口浮游 病毒丰度分别为 2.22×10⁶-9.97×10⁷ 个/mL 和 $1.99 \times 10^{6} - 2.66 \times 10^{7}$ 个/mL。从浮游细菌的丰度来 看,纳帕海湿地的旱季和雨季的浮游细菌丰度分别 为 3.52×10⁵ 个/mL 和 2.02×10⁶ 个/mL,与张喆等^[24] 的研究结果[南海中北部海域秋季浮游细菌的丰度 (39.62±35.35)×10⁴ 个/mL]相似,但是低于姜发军等^[25] 的研究结果(大鹏湾全年浮游细菌丰度 1.40×10⁸- $24.43 \times 10^{8} \text{/mL})_{\circ}$

叶绿素是浮游植物进行光合作用的主要色素。 叶绿素主要包括叶绿素 a、b 和 c。Chl-a 广泛存在 于藻类和浮游植物中,是衡量其生物量的一个重要 指标。而 Chl-a 含量的变化一定程度上可以表示藻 类与浮游植物生物量的动态变化。用 R 语言分析得 出旱季水样浮游病毒丰度与浮游细菌丰度、Chl-a 浓度有显著差异性(P=0.036 7<0.05),与浮游细菌 成正相关性,而与 Chl-a 呈负相关性,说明在旱季 噬菌体而非噬藻体或浮游植物病毒是纳帕海湿地 中浮游病毒的优势种群;雨季水样浮游病毒丰度与 pH 值、温度具有显著差异性(*P*=0.008 394<0.01); 表明在样品中 Chl-a、浮游细菌、pH 值和温度对浮 游病毒丰度有较大影响,这可能与纳帕海湿地独特 的高原气候有关。据文献报道,大多数情况下浮游 病毒丰度与 Chl-a 含量并无显著相关性,但是王海 丽等^[12]的研究结果表明 Chl-a 是象山港海域表层 海水中的浮游病毒丰度主要影响因素之一。

在水平分布上,原水水样样品中的浮游病毒要 高于湿地水和淤泥水的,尤其是原水-7 (YW-7)的 浮游病毒丰度达到了 10⁸个/mL,这可能是湿地水 和淤泥水附近在雨季和旱季容易受到牲畜和人类 活动的影响,影响了水体的 pH 和水质。具体原因 还有待进一步地研究。

本研究初步探讨了纳帕海湿地不同季节、不同 样品浮游病毒和浮游细菌的丰度,并对浮游病毒与 环境因子的相关性做了分析,对纳帕海湿地微生物 资源的开发和保护具有重要的指导意义。

REFERENCES

- [1] Fuhrman JA. Marine viruses and their biogeochemical and ecological effects[J]. Nature, 1999, 399(6736): 541-548
- [2] Bratbak G, Heldal M. Viruses rule the waves-the smallest and most abundant members of marine ecosystems[J]. Microbiology Today, 2000, 27: 171-173
- [3] Wang F, Zheng TL, Hong HS. The important role of marine viruses in microbial loop[J]. Marine Sciences, 1998(4): 41-43 (in Chinese) 王斐,郑天凌,洪华生. 海洋病毒在微生物食物环中的重要 作用[J]. 海洋科学, 1998(4): 41-43
- [4] Zhang QY. Virioplankton[J]. Acta Hydrobiologica Sinica. 2002, 26(6): 691-696 (in Chinese)
 张奇亚. 浮游病毒[J]. 水生生物学报, 2002, 26(6): 691-696
- [5] Bettarel Y, Sime-Ngando T, Amblard C, et al. Viral activity in two contrasting lake ecosystems[J]. Applied and Environmental Microbiology, 2004, 70(5): 2941-2951
- [6] Bergh Ø, Børsheim KY, Bratbak G, et al. High abundance of viruses found in aquatic environments[J]. Nature, 1989, 340(6233): 467-468
- [7] Proctor LM, Fuhrman JA. Viral mortality of marine bacteria and cyanobacteria[J]. Nature, 1990, 343(6253): 60-62
- [8] Fuhrman JA, Noble RT. Viruses and protists cause similar bacterial mortality in coastal seawater[J]. Limnology & Oceanography, 1995, 40(7): 1236-1242
- [9] Wang H, Bai SJ, Cai WW, et al. Modulating marine ecosystem by marine viruses—a review[J]. Acta Microbiologica Sinica, 2009, 49(5): 551-559 (in Chinese)

王慧,柏仕杰,蔡雯蔚,等.海洋病毒——海洋生态系统结构 与功能的重要调控者[J]. 微生物学报,2009,49(5):551-559

- [10] Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus?[J]. Trends in Microbiology, 2005, 13(6): 278-284
- [11] Lu LF, Wang M, Liang YT, et al. Distribution of virioplankton, heterotrophic bacteria in the yellow sea and east china sea[J]. Oceanologia et Limnologia Sinica, 2013, 44(5): 1339-1346 (in Chinese)

卢龙飞, 汪岷, 梁彦韬, 等. 东海、黄海浮游病毒及异养细菌的分布研究[J]. 海洋与湖沼, 2013, 44(5): 1339-1346

[12] Wang HL, Yang JF, Tu XX, et al. Spatiotemporal distribution of marine viruses with related to environmental factors in the Xiangshan Bay[J]. China Environmental Science, 2011, 31(5): 834-844 (in Chinese)

王海丽,杨季芳,屠霄霞,等.象山港海洋病毒时空分布特 征及其环境影响因素[J].中国环境科学,2011,31(5):834-844

 [13] Zhang QY. Advances in studies on biodiversity of cyanophages[J]. Microbiology China, 2014, 41(3): 545-559 (in Chinese)
 张奇亚. 噬藻体生物多样性的研究动态[J]. 微生物学通报,

3014,41(3):545-559

- [14] Bai XG, Wang M, Ma JJ, et al. Virioplankton abundance in winter and spring in Changjiang River estuary by fluorescence microscope counting[J]. Oceanologia et Limnologia Sinica, 2007, 38(4): 367-372 (in Chinese)
 白晓歌, 汪岷, 马晶晶, 等. 冬季和春季长江口及其近海水 域浮游病毒丰度的分析[J]. 海洋与湖沼, 2007, 38(4): 367-372
- [15] Liu JJ, Zeng JN, Du P, et al. Abundance distribution of virioplankton in Yangtze River estuary and its adjacent East China Sea in summer and winter[J]. Chinese Journal of Applied Ecology, 2011, 22(3): 793-799 (in Chinese) 刘晶晶,曾江宁,杜萍,等. 长江口及邻近海域夏、冬季浮游

病毒丰度分布[J]. 应用生态学报, 2011, 22(3): 793-799

- [16] Hu JM, Li J, Yuan H, et al. Easonal landscape pattern change and its driving forces of the Napahai Wetland[J]. Geographical Research, 2010, 29(5): 899-908 (in Chinese) 胡金明,李杰,袁寒,等. 纳帕海湿地季节性景观格局动态 变化及其驱动[J]. 地理研究, 2010, 29(5): 899-908
- [17] Guo XH, Xiao DR, Tian K, et al. Biomass production and litter decomposition of lakeshore plants in Napahai wetland, Northwestern Yunnan Plateau, China[J]. Acta Ecologica Sinica, 2013, 33(5): 1425-1432 (in Chinese)

郭绪虎,肖德荣,田昆,等. 滇西北高原纳帕海湿地湖滨带

优势植物生物量及其凋落物分解[J]. 生态学报, 2013, 33(5): 1425-1432

[18] Guo XL, Tian K, Ge XX, et al. Distribution of organic carbon density and carbon storage in plateau wetland soils in Napahai[J]. Journal of Soil and Water Conservation, 2012, 26(4): 159-162 (in Chinese)

郭雪莲,田昆,葛潇霄,等.纳帕海高原湿地土壤有机碳密 度及碳储量特征[J].水土保持学报,2012,26(4):159-162

[19] Liao J, Shen CM, Yu XS. Climate changes and its influence on Napahai wetland[J]. Journal of West China Forestry Science, 2016, 45(4): 136-140,146 (in Chinese)
廖君, 沈才明, 余晓珊. 气候变化及其对纳帕海湿地的影

响[J]. 西部林业科学, 2016, 45(4): 136-140,146

[20] Ji XL. Bacteriophage diversity, abundance and its role in the production of disolved organic carbon in Napahai Plateau Wetland[J]. Kunming: Doctoral Dissertation of Kunming University of Science and Technology, 2015 (in Chinese) 季秀玲. 高原湿地纳帕海噬菌体的多样性、丰度及其与 DOC

关系初步研究[D]. 昆明: 昆明理工大学博士学位论文, 2015

 [21] Pei D. Temporal and spatial distribution of virioplankton in Donghu Lake and preliminary study on its genetic diversity[D].
 Wuhan: Master's Thesis of Huazhong Normal University, 2007 (in Chinese)

裴达. 东湖浮游病毒的时空分布调查及遗传多样性的初步研 究[D]. 武汉: 华中师范大学硕士学位论文, 2007

- [22] Contreras-Coll N, Lucena F, Mooijman K, et al. Occurrence and levels of indicator bacteriophages in bathing waters throughout Europe[J]. Water Research, 2002, 36(20): 4963-4974
- [23] Hara S, Terauchi K, Koike I. Abundance of viruses in marine waters: assessment by epifluorescence and transmission electron microscopy[J]. Applied and Environmental Microbiology, 1991, 57(9): 2731-2734
- [24] Zhang Z, Gong XY, Hu Y, et al. Abundance of bacterioplankton and virioplankton in the central and northern South China Sea in autumn[J]. South China Fisheries Science, 2016, 12(4): 9-16 (in Chinese)

张喆, 巩秀玉, 胡莹, 等. 南海中北部海域秋季浮游细菌和 病毒丰度及其影响因子[J]. 南方水产科学, 2016, 12(4): 9-16

[25] Jiang FJ, Hu ZL, Hu CQ. Correlation between spatial-temporal distribution of bacterioplankton and environmental factors in the Dapeng Bay[J]. Journal of Tropical Oceanography, 2011, 30(1): 96-100 (in Chinese)

姜发军, 胡章立, 胡超群. 大鹏湾浮游细菌时空分布与环境 因子的关系[J]. 热带海洋学报, 2011, 30(1): 96-100