微生物学通报 Microbiology China tongbao@im.ac.cn

生物实验室

黄曲霉和米曲霉的多相鉴定方法

白飞荣 姚粟* 凌空 程池

(中国食品发酵工业研究院中国工业微生物菌种保藏管理中心 北京 100015)

摘 要:【背景】黄曲霉(Aspergillus flavus)和米曲霉(Aspergillus oryzae)形态特征相近,基因组高度相似,较难区分。【目的】旨在总结一套准确鉴别二者的分类方法。【方法】利用 22 株标准菌株对传统形态学、产毒培养基、酶联免疫毒素检测、系统发育分析、产毒基因检测等 5 种鉴别方法分别进行验证。【结果】各鉴定方法的结果存在异同,单一的鉴定方法容易出现假阴性或假阳性结果。【结论】利用单一方法区分黄曲霉和米曲霉具有潜在风险,多相鉴定方法可以准确鉴别 二者。

关键词:黄曲霉,米曲霉,多相鉴定

The polyphasic taxonomy for distinguishing Aspergillus flavus and A. oryzae

BAI Fei-Rong YAO Su^{*} LING Kong CHENG Chi

(China Center of Industrial Culture Collection, China National Research Institute of Food and Fermentation Industries, Beijing 100015, China)

Abstract: [Background] The morphology and genome between *Aspergillus flavus* and *A. oryzae* were highly similar, which made it very difficult to distinguish with each other. [Objective] The aim of this study was to establish an accurate method for distinguishing *A. flavus* with *A. oryzae*. [Methods] Twenty-two standard strains were used to study the five traditional identification methods of *A. flavus* and *A. oryzae*, including the traditional morphological identification method, enzyme linked immunosorbent assay (ELISA), the toxin-secreting culture medium method, the phylogenetic tree method and the detection methods. [Conclusion] A single method used to distinguish the two species would have a potential risk, while a polyphasic approach could resolve this problem.

Keywords: Aspergillus flavus, Aspergillus oryzae, Polyphasic taxonomy

Foundation item: National Key Research and Development Program of China (2016YFD0400500) ***Corresponding author:** Tel: 86-10-53218308; Fax: 86-10-53218307; E-mail: milly@china-cicc.org

Received: January 09, 2017; Accepted: September 15, 2017; Published online (www.cnki.net): October 23, 2017 基金项目: 国家重点研发计划(2016YFD0400500)

^{*}通信作者: Tel: 86-10-53218308; Fax: 86-10-53218307; E-mail: milly@china-cicc.org

收稿日期: 2017-01-09; 接受日期: 2017-09-15; 网络首发日期(www.cnki.net): 2017-10-23

黄曲霉(*Aspergillus flavus* Link et al., 1809)容易 污染农产品,可产生强致癌、致畸的黄曲霉毒 素;米曲霉(*Aspergillus oryzae* Cohn et al., 1884)可 产生多种酶类,广泛应用于食品、饲料、酿酒等 发酵工业,是具有上千年安全应用历史的生产菌 种^[1]。二者均与生产和生活紧密相关。

Christensen 提出米曲霉是野生黄曲霉种的 驯化种^[2], Chang 等认为米曲霉是黄曲霉的形态 学变种^[3], 二者同属于曲霉属黄绿组, 形态相 近、基因组高度相似^[2-4], 传统的分类鉴定方法 较难区分二者, 很容易出现假阴性或假阳性结 果, 因此对生产应用的菌种进行准确鉴定至关 重要。

目前的研究发现黄曲霉(A. flavus)、寄生曲霉(A. parasiticus)、集蜂曲霉(A. nomius)、A. pseudotamarii、

A. bombycis、A. toxicarius、A. parvisclerotigenus、A. minisclerotigenes、A. arachidicola、A. pseudonomius、 A. pseudocaelatus 等 11 种曲霉属黄绿组的真菌可产 生黄曲霉毒素^[5],准确鉴别这些菌种对实际生产及 人类健康至关重要。本研究以包括模式菌株在内 的 22 株标准菌株为研究对象,旨在建立一种准确 鉴定黄曲霉和米曲霉的多相分类方法。

1 材料与方法

1.1 菌株

共22株,其中2株模式菌株(米曲霉CBS10025, 黄曲霉CBS10027)购自于荷兰皇家文理学院真菌多 样性研究中心(CBS-KNAW);20株标准菌株选取 自中国工业微生物菌种保藏中心(CICC),具体编 号和学名见表1。

表 1 菌株的编号、CICC 保藏号、学名和 GenBank 登录号

Table I	The number of the strain	In this study, the preservation	number, scientific name and v	Jendank accession number
编号	CICC 保藏号	菌种学名	ITS 序列登录号	B-Tubulin 序列登录号
No.	Preservation No.	Scientific name	ITS GenBank accession No.	BenA GenBank accession No.
1	CICC 2014	米曲霉 Aspergillus oryzae	KX462757	KX462736
2	CICC 2022	米曲霉 Aspergillus oryzae	KX462758	KX462737
3	CICC 2102	米曲霉 Aspergillus oryzae	KX462759	KX462738
4	CICC 2024	黄曲霉 Aspergillus flavus	KX462760	KX462739
5	CICC 2195	米曲霉 Aspergillus oryzae	KX462761	KX462740
6	CICC 2066	黄曲霉 Aspergillus flavus	KX462762	KX462741
7	CICC 2071	黄曲霉 Aspergillus flavus	KX462763	KX462742
8	CICC 2074	米曲霉 Aspergillus oryzae	KX462764	KX462743
9	CICC 2079	米曲霉 Aspergillus oryzae	KX462765	KX462744
10	CICC 2120	黄曲霉 Aspergillus flavus	KX462766	KX462745
11	CICC 2385	黄曲霉 Aspergillus flavus	KX462767	KX462746
12	CICC 2402	黄曲霉 Aspergillus flavus	KX462768	KX462747
13	CICC 2412	黄曲霉 Aspergillus flavus	KX462769	KX462748
14	CICC 40015	黄曲霉 Aspergillus flavus	KX462770	KX462749
15	CICC 40083	黄曲霉 Aspergillus flavus	KX462771	KX462750
16	CICC 40183	黄曲霉 Aspergillus flavus	KX462772	KX462751
17	CICC 40186	黄曲霉 Aspergillus flavus	KX462773	KX462752
18	CICC 40188	黄曲霉 Aspergillus flavus	KX462774	KX462753
19	CICC 40866	黄曲霉 Aspergillus flavus	KX462776	KX462755
20	CICC 41205	黄曲霉 Aspergillus flavus	KX462777	KX462756
21	CBS 100925 ^T	米曲霉 Aspergillus oryzae	MF324888	MF324894
22	CBS 100927 ^T	黄曲霉 Aspergillus flavus	MF324887	MF324893

注: ^T:模式菌株.

Note: T: The type strain.

1.2 培养基

察氏酵母膏琼脂培养基CYA (g/L): NaNO₃ 3.0, K₂HPO₄ 1.0, KCl 0.5, MgSO₄·7H₂O 0.5, FeSO₄·7H₂O 0.01, 酵母膏 5.0, 蔗糖 30.0, 琼脂 15.0。

产毒培养基 AFPA (g/L):蛋白胨 10.0,酵母粉 20.0,柠檬酸铁 0.5,四氯醌 0.002,氯霉素 15.0, 琼脂 15.0。

1.3 主要试剂和仪器

真菌基因组 DNA 提取试剂盒购自 OMEGA Bio-Tek 公司; GoldView 购自北京赛百盛基因技术 有限公司; 溶菌酶购自美国 Sigma-Aldrich 公司; 蛋白酶购自默克化工技术(上海)有限公司; *Taq* DNA 聚合酶、dNTPs、Marker 购自天根生化科技有 限公司; 黄曲霉毒素总量(Aflatoxin total) ELISA 检 测试剂盒购自普瑞邦(Pribo)北京科技有限公司。光 学显微镜, 尼康公司。

1.4 方法

1.4.1 传统形态学鉴定方法

将试验菌株三点接种于 CYA 培养基上, 25 ℃ 培养 7-15 d,观察菌落培养特征并记录; CYA 培 养基上 25 ℃ 培养 3-5 d,利用光学显微镜进行显 微形态的观察。

根据菌落颜色的变化区分黄曲霉和米曲霉(产 泡结构持久黄绿色或深绿色为黄曲霉;产孢结构初 始为绿色,老后为淡褐色或深褐色为米曲霉^[6])。通 过产孢结构的差异进行区分二者(黄曲霉特征:孢 梗茎壁厚、长度通常小于1000 μm,分生孢子球形 或近球形,壁具明显小刺,直径3.5 μm-4.5 μm,产 孢结构单层或双层,小顶囊上一般为单层,罕见 同一顶囊上单层和双层同时存在;米曲霉特征: 孢梗茎壁薄、很长,通常大于2 500 μm,分生孢 子近球形或椭圆形,壁平滑或稍粗糙,长轴直径 4.5 μm-8.0 μm,产孢结构单层或双层,同一顶囊 上单层和双层可能同时存在^[7-10])。

1.4.2 产毒培养基(AFPA)检测方法

将试验菌株三点接种于 AFPA 固体培养基上,

30 ℃ 培养 2-3 d,观察 AFPA 培养基上的培养特征 并记录。产毒的黄曲霉在 AFPA 培养基上,菌落反 面呈明显橙黄色(Bright orange yellow),区别于米曲 霉的黄褐色或浅黄色^[11]。

1.4.3 酶联免疫毒素测定方法

将试验菌株在 CYA 培养基培养 7 d,利用无菌 解剖刀在菌落四周和中心切 5 块约 5 mm×5 mm 的 菌落小块,置于 1.5 mL 灭菌离心管中,加 600 μL 甲醇-二氯甲烷-乙酸乙酯(1:2:3,体积比),再加 60 μL 甲酸,利用超声提取 60 min,提取完成后转 移提取液至新的离心管中,12 000×g 离心 5 min, 真空旋转仪旋干液体,收集毒素沉淀物进行后续 试验^[12]。

采用竞争酶联免疫方法,在微孔板上预包被 黄曲霉毒素抗原,加入样本(或黄曲霉毒素标准品 溶液)以及辣根过氧化物酶标记的黄曲霉毒素抗 体。样本或标准品溶液中的黄曲霉毒素与预包被 在板孔上的黄曲霉毒素抗原竞争结合辣根过氧化 物酶标记的黄曲霉毒素抗原竞争结合辣根过氧化 物酶标记的黄曲霉毒素抗体。与样本或标准品溶 液中的黄曲霉毒素结合的酶标抗体在洗涤时被除 去。再加入显色液,读取吸光值。样本的吸光值 与其所含残留物黄曲霉毒素抗原的含量成负相 关。对照标准曲线即可得出相应残留物黄曲霉毒 素的含量。试验设置双孔重复对照。

1.4.4 基于 ITS rDNA、β-Tubulin (*BenA*)基因序 列分析的系统发育方法

利用真菌基因组 DNA 提取试剂盒提取试验菌 株的基因组 DNA,具体步骤参见试剂盒说明书。 利用引物 ITS5 (5'-GGAAGTAAAAGTCGTAACAA GG-3')和 ITS4 (5'-TCCTCCGCTTATTGATATGC-3') 扩增 ITS rDNA 序列;引物 Bt2a (5'-GGTAACCAAA TCGGTGCTGCTTTC-3')和 Bt2b (5'-ACCCTCAGTG TAGTGACCCTTGGC-3')扩增β-Tubulin 基因^[5]。PCR 反应体系:10×PCR Buffer 5 μL,dNTPs (2.5 mmol/L) 4 μL,模板 2 μL,*Taq* DNA 聚合酶(2.5 U/μL) 1 μL, 正、反向引物(10 μmol/L)各 1 μL,补充去离子水至 50 μL。PCR 反应条件: 94 °C 5 min; 94 °C 50 s, 55 °C 50 s, 72 °C 50 s, 33 个循环; 72 °C 7 min^[13]。PCR 产物送北京诺赛进行测序,并将测 序序列上传至 NCBI 数据库,序列登录号见表 1。

将测序结果在 GenBank 数据库中进行比对分析,以确定其与已知序列的同源关系。确定并下载各菌株的有效序列后,采用 ClustalX 1.83 进行多序列比对^[14],再用 MEGA 5.0 进行邻接法(Neighbor-Joining)聚类系统发育及分子进化分析 1 000 次 (Bootstrap value)重复自检分析^[15]。

1.4.5 产毒基因检测方法

黄曲霉毒素合成基因簇包含 25 个基因,长度 大约为 70 kb^[16]。米曲霉菌株部分不含有产毒基 因;部分含有产毒基因,但基因发生突变、缺失 或碱基替换,不能正常表达。黄曲霉菌株含有产 毒基因,大部分正常表达,产黄曲霉毒素;部分 菌株因产毒基因发生突变,不能正常表达产生黄 曲霉毒素^[3]。

选取 3 个黄曲霉毒素合成的关键基因进行 PCR 扩增检测, 三者在黄曲霉毒素合成通路中缺 一不可,包括调控基因 *af1R*、柄曲霉素转甲氧 基酶基因 *af1O*、杂色曲霉素 A 脱氢酶基因 *af1M*, 扩增引物详见 Gallo 等^[17]。扩增β-Tubulin 基因序 列作为基因组和 PCR 条件的阳性对照,根据上述 3 个产毒基因的扩增结果,判断该菌株是否产黄 曲霉毒素,扩增结果为阴性证明该菌株不产毒; 若扩增结果为阳性,需进一步证明该菌株是否 产毒^[17-19]。

2 结果与分析

2.1 形态学方法鉴定结果

菌株在 CYA 培养基上生长的菌落颜色及产孢 结构见图 1,形态学描述见表 2,形态学鉴定结果 见表 3。模式菌株 CBS 100925 具有孢梗茎长、产 孢结构少等米曲霉典型的形态特征,模式菌株 CBS 100927 具有孢梗茎较短、产孢结构多、持久 黄绿色、产生菌核等黄曲霉典型的形态特征。标 准菌株 CICC 2024、2066、2120、40866、41205 均 为黄曲霉,但形态学观察符合米曲霉特征,鉴定 结果出现 5 个假阴性。

2.2 产毒培养基检测结果

菌株在 AFPA 培养基上 30 ℃ 生长 2-3 d 后, 菌落反面颜色及描述分别见图 1 和表 2, 检测结果 见表 3。米曲霉模式菌株 CBS 100925 菌落反面颜 色为浅黄色(阴性),黄曲霉模式菌株 CBS 100927 菌落反面颜色为亮橙黄色(阳性)。其中菌株 CICC 2024 和 CICC 2066 在 AFPA 培养基上颜色反应不明 显,结果无法判定;菌株 CICC 40015 为黄曲霉, 但其 AFPA 培养基检测结果为阴性。

2.3 酶联免疫方法(ELISA)毒素测定结果

菌株的酶联免疫方法毒素测定结果见表 3。 结果显示米曲霉模式菌株 CBS 100925 未产毒 素,黄曲霉模式菌株 CBS 100927 产生毒素,其 余米曲霉标准菌株均未检测到黄曲霉毒素;除菌 株 CICC 40015 外,所有黄曲霉标准菌株都检测 到一定量的黄曲霉毒素,结合 2.2 中产毒培养基 检测结果,判定 CICC 40015 为不产黄曲霉毒素的 黄曲霉菌种。

2.4 系统发育分析结果

试验菌株 ITS rDNA、β-Tubulin 基因序列与相 关近缘菌种的系统发育树分别见图 2 和图 3。系统 发育结果显示,包括模式菌株在内的 22 株标准菌 株聚为同一系统发育支,序列相似性大于 99%。 由系统发育结果可知, ITS rDNA 序列分析可把黄 曲霉和米曲霉鉴定为曲霉属黄绿组(*Aspergillus* section *Flavi*),β-Tubulin 基因序列分析结果可鉴定 为黄曲霉(*Aspergillus flavus*)或米曲霉(*Aspergillus oryzae*),系统发育分析结果见表 3。

2.5 产毒基因检测结果

3 个产毒基因 PCR 扩增的检测结果见图 4,分析结果见表 3。

所有试验菌株 BenA 基因(阳性对照) PCR 扩增 产物均有条带,大小约 600 bp; 菌株 2、3 号 aflR

产毒基因 PCR 扩增没有产物条带,其余都有大小约 1 000 bp 的条带; 菌株 1、2、3、21 号 *aflM* 产 毒基因 PCR 扩增没有产物条带,其余都有大小约 500 bp 的条带; 菌株 2、3 号 *aflO* 产毒基因 PCR 扩

增没有产物条带,其余都有大小约 800 bp 的条带。据文献[17-19]可知,菌株1、2、3、21号产毒为阴性,其余菌株 PCR 为阳性,是否产毒需进一步进行产毒试验验证。

12 10 mm		20 µm	lo mm
13 10 mm		20 µm	
14 10 mm		20 jum	10 mm
15 10 mm		20 µm	
16 10 mm		20 µm	10 mm
17 10 mm	10 mm	20 µm	10 mm
18		20 µm	
19 10 mm	10 mm	20 µm	
20 10 mm		20	
21 10 mm		20 µm	10 mm
22 10 mm		20 jum	

图 1 菌株形态学和 AFPA 培养特征

Figure 1 The characteristics of morphological and AFPA

注:图片上的数字 1-22 代表菌株编号(表 1).图片从左到右依次为:CYA 培养基上 25 ℃ 培养 7 d 的菌落宏观形态;CYA 培养基 上 25 ℃ 培养 7 d 的菌落反面照片;CYA 培养基上 25 ℃ 培养 3-5 d 的显微产孢结构;AFPA 培养基上 30 ℃ 培养 2-3 d 的菌落反面 颜色.

Note: The number 1 to 22 in the picture represents the number of the strain (Table 1). From left to right: Colonies in 7 days at 25 °C on CYA; Reverse of colonies in 7 days at 25 °C on CYA; Microscopic characteristics in 3–5 days at 25 °C on CYA; Reverse colour in 2–3 days at 30 °C on AFPA.

表 2 菌株形态学特征描述

Table 2 Morphological description of the strain

促盡遍早	安加形太	德加形太(产功生坊)	AFPA 上菌落反
不 <u></u> 限 ^细 与	ム 秋川 かぶ Macroscopic characteristics	视观形态() 把串码) Microscopic characteristics	面颜色
No	$(CYA 25 \circ C 7 d)$	(sporogenous structure)	Reverse colour of
140.	(0111, 25 ° 0, 7 ° 0)	(sporogenous structure)	clones (AFPA)
CICC 2014	菌落白色,直径 61 mm-64 mm,质 地丝绒状,表面平坦,无渗出液和可 溶性色素产生,反面浅黄色	泡梗茎壁稍粗糙, (1000-3000) μm×(2.0-6.0) μm; 分生孢子头辐射状, 直径为15 μm-30 μm; 顶囊柱状或退化, 直径 4.0 μm-15.0 μm, 表面部分可育; 产孢结构单层, 瓶梗(4.0-11.0) μm×(2.3-3.5) μm; 分生孢子近球形或椭圆形, 长轴直径为 3.0 μm-6.0 μm, 壁稍粗糙	黄褐色
CICC 2022	菌落黄绿色,直径 53 mm-55 mm, 质地丝绒状,表面具放射状皱纹, 无渗出液和可溶性色素产生,反面 浅黄色	泡梗茎壁稍粗糙,(2000-4000)μm×(7.0-18.0)μm;分生孢子 头辐射状,直径为30μm-110μm;顶囊球形或烧瓶形,直径 16μm-35μm,表面全部可育或3/4可育;产孢结构双层或单层, 梗基(4.0-8.0)μm×(2.5-3.8)μm,瓶梗(4.0-12.0)μm×2.8-3.8μm; 分生孢子近球形或椭圆形,长轴直径为4.0μm-5.0μm,壁粗糙	黄褐色
CICC 2102	菌落黄褐色,直径 66 mm-69 mm, 质地丝绒状,表面具放射状皱纹, 无渗出液和可溶性色素产生,反面 黄褐色	孢梗茎壁稍粗糙,(1500-3000)μm×(7.0-11.0)μm;分生孢子 头辐射状,直径为45μm-100μm;顶囊球形或烧瓶形,直径 13μm-35μm,表面全部可育或3/4可育;产孢结构双层或单层, 梗基(4.0-9.0)μm×(2.5-3.8)μm,瓶梗(5.0-11.0)μm×(2.8-3.5)μm; 分生孢子近球形或椭圆形,长轴直径为4.0μm-6.0μm, 壁粗糙	黄褐色
CICC 2024	菌落黄绿色,直径 53 mm-55 mm, 质地丝绒状,中央凸起,无渗出液 和可溶性色素产生,反面黄色	孢梗茎壁稍粗糙,(1 500-3 500) μm×(8.0-13.0) μm;分生孢 子头辐射状,直径为 45 μm-80 μm;顶囊球形或烧瓶形,直 径 25 μm-45 μm,表面全部可育或 3/4 可育;产孢结构主要为 单层,瓶梗(4.0-13.0) μm×(2.5-3.5) μm;分生孢子近球形,直径为 4.0 μm-5.0 μm, 壁粗糙	周围黄色,中央 橙黄色
CICC 2195	菌落黄绿色,直径 61 mm-64 mm, 质地丝绒状,表面具放射状皱纹, 产生少量褐色渗出液,无可溶性色 素产生,反面黄色	孢梗茎壁稍粗糙, (2 000-4 000) μm×(6.0-15.0) μm; 分生孢 子头辐射状, 直径为 35 μm-80 μm; 顶囊球形或烧瓶形, 直 径 15 μm-45 μm, 表面 3/4 可育; 产孢结构双层或单层, 梗基 (6.0-9.0) μm×(2.8-4.0) μm, 瓶梗(6.0-17.0) μm×(2.8-4.0) μm; 分 生孢子近球形或椭圆形, 长轴直径为 4.0 μm-6.5 μm, 壁粗糙	黄褐色
CICC 2066	菌落黄绿色,直径 61 mm-64 mm, 质地丝绒状,表面平坦,无渗出液和 可溶性色素产生,反面浅黄色	泡梗茎壁粗糙, (2 000-5 000) μm×(8.0-14.0) μm; 分生孢子头辐射状, 直径为 30 μm-80 μm; 顶囊球形或烧瓶形, 直径 14 μm-30 μm, 表面全部可育或 3/4 可育; 产孢结构双层或单层, 梗基 (4.0-8.0) μm×(2.5-3.8) μm, 瓶梗(4.0-11.0) μm×(2.8-3.8) μm; 分 生孢子椭圆形, 长轴直径为 4.0 μm-6.0 μm, 壁粗糙	周围黄色,中央 橙黄色
CICC 2071	菌落黄绿色,直径 64 mm-67 mm, 质地丝绒状,表面平坦,无渗出液和 可溶性色素产生,反面浅黄色	泡梗茎壁粗糙,(500-1 500) μm×(5.0-15.0) μm;分生孢子头辐射状, 直径为 30 μm-110 μm;顶囊球形或烧瓶形,直径 17 μm-35 μm, 表面 全部可 育或 3/4 可 育;产孢结构 双层或单层,梗基 (4.0-8.0) μm×(2.5-3.5) μm,瓶梗(5.0-10.0) μm×(2.5-3.8) μm;分 生孢子近球形或椭圆形,长轴直径为 4.0 μm-5.0 μm,壁粗糙	橙黄色
CICC 2074	菌落淡黄色,直径 51 mm-55 mm, 质地丝绒状,表面平坦,无渗出液 和可溶性色素产生,反面橄榄黄色	泡梗茎壁稍粗糙,(1500-3000)μm×(8.0-12.0)μm;分生孢子头辐射状,直径为40μm-80μm;顶囊球形或烧瓶形,直径20μm-35μm,表面3/4可育;产孢结构双层或单层,梗基(4.0-7.0)μm×(2.5-3.5)μm,瓶梗(5.0-13)μm×(2.5-3.8)μm;分生孢子近球形或椭圆形,长轴直径为3.0μm-6.0μm, 壁粗糙	黄褐色
CICC 2079	菌落浅黄褐色, 直径 57 mm-62 mm, 质地丝绒状,表面平坦,无渗出液和可溶性色素产生,反面浅黄色	孢梗茎壁平滑或稍粗糙, $(2\ 000-4\ 000)$ µm× $(8.0-19.0)$ µm; 分生 孢子头辐射状, 直径为 45 µm-125 µm; 顶囊球形或烧瓶形, 直 径 20 µm-40 µm, 表面全部可育或 3/4 可育; 产孢结构单层, 瓶梗(7.0-12.0) µm× $(3.0-4.0)$ µm; 分生孢子近球形, 长轴直径 为 4.0 µm-6.0 µm, 壁粗糙	黄褐色
			(待续)

			(续表 2)
CICC 2120	菌落黄绿色,直径 68 mm-72 mm, 质地丝绒状,表面有放射状皱纹, 无渗出液和可溶性色素产生,反面 黄色	泡梗茎壁粗糙, (1 000-2 800) μm×(8.0-14.0) μm; 分生孢子 头辐射状, 直径为 40 μm-100 μm; 顶囊球形或烧瓶形, 直径 20 μm-40 μm, 表面全部可育或 3/4 可育; 产孢结构双层或单层, 梗基(4.0-8.0) μm×(2.5-4.8) μm,瓶梗(8.0-25.0) μm×(3.0-4.0) μm; 分生孢子近球形或椭圆形,长轴直径为 4.0 μm-5.0 μm, 壁粗糙	橙黄色	
CICC 2385	菌落黄绿色,直径 62 mm-65 mm, 质地丝绒状,表面具放射状皱纹, 无渗出液和可溶性色素产生,反面 浅黄色	抱梗茎壁粗糙, (2 000-4 000) μm×(8.0-11.0) μm; 分生孢子头辐射 状, 直径为 40 μm-75 μm; 顶囊球形或烧瓶形, 直径 15 μm-30 μm, 表面 全部可育或 3/4 可育; 产孢结构双层或单层, 梗基 (4.1-7.9) μm×(2.5-3.5) μm, 瓶梗(5.0-9.0) μm×(2.5-3.5) μm; 分生 孢子近球形或椭圆形, 长轴直径为 3.0 μm-4.0 μm, 壁粗糙	橙黄色	
CICC 2402	菌落深黄绿色,直径 70 mm-75 mm, 质地丝绒状,表面平坦,无渗出液和 可溶性色素产生,反面浅黄色	孢梗茎壁粗糙,(400-1500)μm×(5.0-11.0)μm;分生孢子头 辐射状,直径为35μm-75μm;顶囊球形或烧瓶形,直径 15μm-30μm,表面全部可育或3/4可育;产孢结构双层或单层, 梗基(4.0-8.0)μm×(2.8-3.8)μm,瓶梗(5.0-9.0)μm×(2.5-3.5)μm; 分生孢子近球形或椭圆形,长轴直径为3.0μm-5.0μm,壁粗糙	橙黄色	
CICC 2412	菌落黄绿色,直径 70 mm-73 mm, 质地丝绒状,表面具放射状皱纹, 无渗出液和可溶性色素产生,反面 浅黄色	孢梗茎壁粗糙,(500-1 500) μm×(6.0-12.0) μm;分生孢子头 辐射状,直径为 40 μm-85 μm;顶囊球形或烧瓶形,直径 20 μm-48 μm,表面全部可育或 3/4 可育;产孢结构双层或单层, 梗基(4.2-8.1) μm×(2.5-3.5) μm,瓶梗(5.0-11.0) μm×(2.5-3.8) μm; 分生孢子近球形或椭圆形,长轴直径为 3.0 μm-4.0 μm, 壁粗糙	亮橙黄色	
CICC 40015	菌落黄绿色,直径 74 mm-76 mm, 质地丝绒状,表面有凸起的白色菌 丝团,无渗出液和可溶性色素产生, 反面浅黄色	孢梗茎壁粗糙,(400-1 300)μm×(6.0-9.0)μm;分生孢子头 辐射状,直径为 38 μm-90 μm;顶囊球形或烧瓶形,直径 13 μm-30 μm,表面全部可育或 3/4 可育;产孢结构双层或单层, 梗基(4.0-8.0)μm×(2.5-3.5)μm,瓶梗(5.0-15.0)μm×(2.0-3.3)μm; 分生孢子近球形或椭圆形,长轴直径为 3.0 μm-5.0 μm, 壁粗糙	黄褐色	
CICC 40083	菌落黄绿色,直径 70 mm-75 mm, 产生少量白色菌核,质地丝绒状, 表面据放射状皱纹,无渗出液和可 溶性色素产生,反面浅黄褐色	泡梗茎壁粗糙,(1800-3500)μm×(8.0-14.0)μm;分生孢子头辐射状,直径为45μm-110μm;顶囊球形或烧瓶形,直径20μm-38μm,表面全部可育或3/4可育;产孢结构双层或单层,梗基(4.0-8.0)μm×(2.5-3.5)μm,瓶梗(5.0-14.0)μm×(2.5-3.5)μm;分生孢子近球形或椭圆形,长轴直径为3.0μm-4.0μm,壁粗糙	亮橙黄色	L
CICC 40183	菌落黄绿色,直径 70 mm-73 mm, 质地丝绒状,表面具放射状皱纹, 无渗出液和可溶性色素产生,反面 浅黄色	孢梗茎壁平滑或稍粗糙,(1000-2500)μm×(5.0-15.0)μm;分生 孢子头辐射状,直径为40μm-110μm;顶囊球形或烧瓶形,直 径20μm-40μm,表面全部可育或3/4可育;产孢结构双层或单层, 梗基(4.0-8.0)μm×(2.5-3.5)μm,瓶梗(5.0-15.0)μm×(2.5-3.8)μm;分 生孢子近球形或椭圆形,长轴直径为3.0μm-5.0μm,壁稍粗糙	亮橙黄色	ŗ
CICC 40186	菌落黄绿色,直径 75 mm-78 mm, 质地丝绒状,表面平坦、中央产生 褐色菌核,无渗出液和可溶性色素 产生,反面浅棕色	孢梗茎壁粗糙,(150-500) μm×(4.5-10.0) μm;分生孢子头 辐射状,直径为 40 μm-70 μm;顶囊球形或烧瓶形,直径 11 μm-30 μm,表面全部可育或 3/4 可育;产孢结构双层或单层, 梗基(4.0-8.0) μm×(2.5-3.5) μm,瓶梗(4.0-9.0) μm×(2.8-3.8) μm; 分生孢子近球形或椭圆形,长轴直径为 3.0 μm-4.8 μm,壁粗糙	橙黄色	
CICC 40188	菌落深黄绿色,直径 70 mm-73 mm, 质地丝绒状,表面具放射状皱纹, 无渗出液和可溶性色素产生,反面 棕黄色	孢梗茎壁粗糙,(200-800)μm×(10-18)μm;分生孢子头辐射状,直径为40μm-90μm;顶囊近球形,直径15μm-45μm, 表面全部可育或3/4可育;产孢结构双层或单层,梗基 (5.0-13.0)μm×(2.8-4.0)μm,瓶梗(6.0-11.0)μm×(2.8-4.0)μm;分 生孢子椭圆形,长轴直径为4.0μm-5.0μm,壁粗糙	橙黄色	
CICC 40866	菌落浅黄绿色,直径 73 mm-75 mm, 质地丝绒状,表面平坦,无渗出液 和可溶性色素产生,反面黄色	孢梗茎壁粗糙, (2 000-4 000) μm×(9.5-17.0) μm; 分生孢子 头辐射状, 直径为 50 μm-100 μm; 顶囊球形或烧瓶形, 直径 18 μm-40 μm, 表面全部可育或 3/4 可育; 产孢结构大多为双层, 梗基(4.0-9.0) μm×(2.5-3.5) μm, 瓶梗(4.0-14.0) μm×(2.8-3.0) μm; 分生孢子椭圆形, 长轴直径 3.0 μm-4.0 μm, 壁粗糙	亮橙黄色	(待续)

	(续	表 2)
CICC 41205	菌落橄榄黄色, 直径 75 mm-77 mm, 孢梗茎壁稍粗糙, (2 500-4 500) μm×(6.0-13.0) μm; 分生孢 亮橙黄色	
	质地丝绒状,表面平坦,无渗出液 子头辐射状,直径为 40 μm-80 μm;顶囊球形或烧瓶形,直径	
	和可溶性色素产生,反面黄色 20 μm-40 μm,表面全部可育或 3/4 可育;产孢结构双层或单层,	
	梗基(4.0-8.0) μm×(2.5-3.5) μm, 瓶梗(4.0-11.0) μm×(2.8-3.0) μm;	
	分生孢子近球形,长轴直径 2.5 μm-4.0 μm, 壁粗糙	
CBS100925	菌落浅黄色,产孢结构少,直径 孢梗茎壁平滑或稍粗糙, (2 000-5 500) μm×(5.0-20.0) μm; 分生 浅黄色	
	75 mm-80 mm,质地丝绒状,表面 孢子头辐射状,直径为 22 μm-65 μm;顶囊球形或烧瓶形,直	
	平坦,无渗出液和可溶性色素产生,径 13 μm-35 μm,表面 1/2 或 3/4 可育;产孢结构双层或单层,梗基	
	反面浅黄色 (5.0-10) µm×(4.0-6.0) µm, 瓶梗(5.0-13.0) µm×(3.5-5.0) µm; 分生孢	
	子近球形或椭圆形,长轴直径 3.0 μm-5.5 μm,壁稍粗糙	
CBS100927	菌落黄绿色,产孢结构多,直径 孢梗茎壁平滑或稍粗糙,(500-1 300) μm×(4.0-15.0) μm;分生 亮橙黄色	
	66 mm-69 mm,质地丝绒状,表面孢子头辐射状,直径为40 μm-80 μm;顶囊球形或烧瓶形,直	
	具放射状皱纹,产生大量灰白色的致 径 20 μm-40 μm,表面全部可育或 3/4 可育;产孢结构双层或单层,	
	密菌核,产生大量浅褐色渗出液,无梗基(4.0-8.0) μm×(2.5-3.5) μm,瓶梗(4.0-11.0) μm×(2.8-3.0) μm;分	
	可溶性色素产生,反面浅棕色 生孢子近球形,长轴直径 2.5 μm-4.0 μm, 壁粗糙	

表 3 试验结果

Table 3 The test results

	CICC 保藏号	标准菌株	分子玄统发育结里	形太学收宁结里	产毒基因扩	AFPA 培养基	酶联免疫毒素测定
编号	CICC	学名	力 J 永妃及肖珀木 Results of	Results of	增结果	检测结果	结果
No.	Preservation	Science	phylogenetic	Morphological	Results of	Results of	Results of toxin
	number	name			toxigenic gene	AFPA	determination
1	CICC 2014	米曲霉	米曲霉或黄曲霉	米曲霉	阴性	阴性	未产
2	CICC 2022	米曲霉	米曲霉或黄曲霉	米曲霉	阴性	阴性	未产
3	CICC 2102	米曲霉	米曲霉或黄曲霉	米曲霉	阴性	阴性	未产
4	CICC 2024	黄曲霉	米曲霉或黄曲霉	米曲霉	阳性	不明显	产毒
5	CICC 2195	米曲霉	米曲霉或黄曲霉	米曲霉	阳性	阴性	未产
6	CICC 2066	黄曲霉	米曲霉或黄曲霉	米曲霉	阳性	不明显	产毒
7	CICC 2071	黄曲霉	米曲霉或黄曲霉	黄曲霉	阳性	阳性	产毒
8	CICC 2074	米曲霉	米曲霉或黄曲霉	米曲霉	阳性	阴性	未产
9	CICC 2079	米曲霉	米曲霉或黄曲霉	米曲霉	阳性	阴性	未产
10	CICC 2120	黄曲霉	米曲霉或黄曲霉	米曲霉	阳性	阳性	产毒
11	CICC 2385	黄曲霉	米曲霉或黄曲霉	黄曲霉	阳性	阳性	产毒
12	CICC 2402	黄曲霉	米曲霉或黄曲霉	黄曲霉	阳性	阳性	产毒
13	CICC 2412	黄曲霉	米曲霉或黄曲霉	黄曲霉	阳性	阳性	产毒
14	CICC 40015	黄曲霉	米曲霉或黄曲霉	黄曲霉	阳性	阴性	未产
15	CICC 40083	黄曲霉	米曲霉或黄曲霉	黄曲霉	阳性	阳性	产毒
16	CICC 40183	黄曲霉	米曲霉或黄曲霉	黄曲霉	阳性	阳性	产毒
17	CICC 40186	黄曲霉	米曲霉或黄曲霉	黄曲霉	阳性	阳性	产毒
18	CICC 40188	黄曲霉	米曲霉或黄曲霉	黄曲霉	阳性	阳性	产毒
19	CICC 40866	黄曲霉	米曲霉或黄曲霉	米曲霉	阳性	阳性	产毒
20	CICC 41205	黄曲霉	米曲霉或黄曲霉	米曲霉	阳性	阳性	产毒
21	CBS 100925	米曲霉	米曲霉或黄曲霉	米曲霉	阴性	阴性	阴性
22	CBS 100927	黄曲霉	米曲霉或黄曲霉	黄曲霉	阳性	阳性	阳性

0.005

Figure 2 Phylogenetic tree of "the experiment strains" and other reference species, based on ITS rDNA sequence by the Neighbour-Joining method

注:图中发育树节点只显示 Bootstrap 值大于 70%数值(1 000 次重复);^T:模式菌株;括号内为 GenBank 登录号;标尺长度代表遗传距离. Note: Bootstrap values (>70 %) were shown at each branch points (1 000 replicates);^T: The type strain; GenBank accession numbers are shown in the parentheses; Scale length represented genetic distance.

图 3 基于邻位连接法构建的试验菌株与相关种的 β-Tubulin 基因序列系统发育树

Figure 3 Phylogenetic tree of "the experiment strains" and other reference species, based on β-tubulin gene sequence by the Neighbour-Joining method

注:图中发育树节点只显示 Bootstrap 值大于 70%数值(1 000 次重复);^T:模式菌株;括号内为 GenBank 登录号;标尺长度代表遗传距离. Note: Bootstrap values (>70%) were shown at each branch points (1 000 replicates);^T: The type strain; GenBank accession numbers are shown in the parentheses; Scale length represented genetic distance.

图 4 产毒素基因 PCR 扩增产物

Figure 4 PCR amplicons of aflatoxin biosynthesis genes

注: *BenA* 为提取基因组的阳性对照; *aflR、aflM、aflO* 为 3 个产毒基因; 1-22 为试验样品编号; r 为未加模板的 PCR 体系对照; M: DL2000 DNA Marker.

Note: *BenA* gene fragment as positive control for PCR reactions; *aflR*, *aflM* and *aflO* were three genes of aflatoxin biosynthesis; r: Blank control of PCR; M: DL2000 DNA Marker.

3 讨论与结论

22 株标准菌的 5 种检测方法结果见表 3, 其中 模式株 CBS 100925 和 CBS 100927 检测结果符合米 曲霉和黄曲霉的典型特征,根据表3结果可知 ITS rDNA 和β-Tubulin 基因序列系统发育分析可以排除 与黄曲霉和米曲霉相近的菌种,但无法区分黄曲 霉和米曲霉; 传统形态学鉴定方法出现 5 个假阴性 结果,判别依据主观性较强,要求操作者具有良 好的判别经验,容易出现假阴性;产毒培养基检 测结果出现3个假阴性,只能鉴别出产毒素的黄曲 霉,无法鉴别不产毒素的黄曲霉,容易出现假阴 性;产毒基因扩增结果出现3个假阳性,只能鉴别 出产毒基因缺失的米曲霉,对于基因发生突变的 米曲霉菌株不能鉴别,容易出现假阳性;毒素测 定结果出现1个假阴性,只能鉴别出产毒素的黄曲 霉,无法鉴别不产毒素的黄曲霉菌株,容易出现 假阴性。

综上分析,出现假阳性意味着米曲霉被错误 鉴定为黄曲霉,因此会损失一些功能菌株的应 用;假阴性意味着黄曲霉被错误鉴定为米曲霉, 如果产毒素的黄曲霉应用于食品或饲料生产,后 果将很严重。因此,若使用单一方法来鉴别黄曲 霉和米曲霉,容易出现假阳性或假阴性结果,风 险较高,多相分类鉴定方法是准确区分二者的必 选手段。综合本研究的分析结果,推荐使用系统 发育分析方法初步鉴定未知菌株为黄曲霉或米曲 霉,再利用形态学方法区分二者,最后利用产毒 培养基方法或毒素测定方法进行结果验证(推荐使 用 ELISA 或液相方法测定),该组合方法可以准确 区分黄曲霉和米曲霉,建议使用该多相方法来确 定应用于生产发酵菌种的分类学地位。

以上组合方法具体判定依据如下,首先利用 系统发育分析方法将待检菌株鉴定为黄曲霉或米 曲霉,再根据形态学特征区分二者,如黄曲霉判 定特征为:分离基质广泛,菌落质地丝绒状,部

分菌株产菌核,产孢结构大量,始终为黄绿色或 深绿色,孢梗茎较短(通常小于1000μm),分生孢 子近球形、壁明显粗糙;米曲霉判定特征为:主 要分离自酿造用曲,从其他自然基物中较少分离 到;菌落质地绒毛状,基本不产菌核,产孢结构 少,初为浅色(黄色或绿色),老后变为深色(棕色 或褐色),孢梗茎很长(通常大于2500μm),分生孢 子较大(长轴直径 4.5 μm-8.0 μm);根据形态学特 征区分二者后,再利用产毒培养基验证判定结 果,防止假阴性结果的产生,在AFPA培养基上, 菌落反面为浅黄色或黄褐色,则该菌株不产毒 素;在AFPA培养基上,菌落反面呈亮橙黄色,则 该菌株产毒素,为黄曲霉;最后利用液相方法或 酶联免疫法进行菌种毒素代谢测定,进一步验证 鉴定结果的准确性。

此外,目前已有研究认为一些不产黄曲霉毒素 的黄曲霉菌种可应用于工业生产,从而避免一些功 能菌种的弃用^[17]。所以,应用于生产发酵的微生物 菌种是应根据其分类学名限制,还是根据其是否产 毒素来限制,有待进一步探讨。

REFERENCES

 Zhao LF, Xu YJ. Research progress on the application of *Aspergillus oryzae*[J]. China Brewing, 2006, 25(3): 8-10 (in Chinese) 赵龙飞, 徐亚军. 米曲霉的应用研究进展[J]. 中国酿造, 2006,

赵龙飞, 禄亚华. 木曲每的应用研究近ಹ[J]. 中国酿道, 2006, 25(3): 8-10

- [2] Christensen M. A synoptic key and evaluation of species in the Aspergillus flavus group[J]. Mycologia, 1981, 73(6): 1056-1084
- [3] Chang PK, Ehrlich KC. What does genetic diversity of *Aspergillus flavus* tell us about *Aspergillus oryzae*?[J]. International Journal of Food Microbiology, 2010, 138(3): 189-199
- [4] Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae[J]. Nature, 2005, 438(7071): 1157-1161
- [5] Varga J, Frisvad JC, Samson RA. Two new aflatoxin producing species, and an overview of *Aspergillus* section *Flavi*[J]. Studies in Mycology, 2011, 69: 57-80
- [6] Qi ZT. Flora Fungorum Sinicorum: Fifth Volumes: Aspergillus and its Related Sexual[M]. Beijing: Science Press, 1997: 78-85 (in Chinese) 齐祖同. 中国真菌志: 第五卷: 曲霉属及其相关有性型[M]. 北京: 科学出版社, 1997: 78-85

- Hedayati MT, Pasqualotto AC, Warn PA, et al. *Aspergillus flavus*: human pathogen, allergen and mycotoxin producer[J]. Microbiology, 2007, 153(Pt6): 1677-1692
- [8] Cohn F. Über schimmelpilze als g\u00e4hrungserreger[J]. Jahresbericht der Schlesischen Gesellschaft f\u00fcr Vaterl\u00e4ndische Kultur, 1884, 61: 226
- [9] Zhang GZ, Jia ZZ, Ding XY, et al. The detecting of AFT B1 and the identification of AS3.870[J]. Microbiology China, 1981(5): 216-219,226 (in Chinese) 张国柱, 贾珍珍, 丁秀英, 等. 发酵菌种黄曲霉毒素 B1的测定和 AS3.870 菌株的鉴定[J]. 微生物学通报, 1981(5): 216-219,226
- [10] Luo HB, Yang XD, Li DY, et al. Isolation and identification of Aspergillus flavus from medium-high-temperature Daqu and preliminary research on its safety[J]. Liquor-Making Science & Technology, 2012(12): 37-40 (in Chinese) 罗惠波,杨晓东,李丹宇,等. 中高温大曲中黄曲霉的分离鉴 定及其安全性初步研究[J]. 酿酒科技, 2012(12): 37-40
- [11] Pitt JI, Hocking AD. Fungi and Food Spoilage[M]. 3rd ed. Dordrecht/Heidelberg: Springer, 2009: 305-310
- [12] Smedsgaard J. Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures[J]. Journal of Chromatography A, 1997, 760(2): 264-270
- [13] Bai FR, Liu Y, Li H, et al. Separation and identification of parasitic fungus from the leaves of Xiangshan Smorke tree (*Cotinus coggygria* var. *cinere*) with wilt[J]. Bulletin of Biology, 2014, 49(5): 51-53,64 (in Chinese)
 白飞荣,刘洋,李辉,等.香山黄栌枯萎病叶片真菌的分离与鉴定[J]. 生物学通报, 2014, 49(5): 51-53,64
- [14] Thompson JD, Gibson TJ, Plewniak F, et al. The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J]. Nucleic Acids Research, 1997, 25(24): 4876-4882
- [15] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods[J]. Molecular Biology and Evolution, 2011, 28(10): 2731-2739
- [16] Yu JJ, Chang PK, Ehrlich KC, et al. Clustered pathway genes in aflatoxin biosynthesis[J]. Applied and Environmental Microbiology, 2004, 70(3): 1253-1262
- [17] Gallo A, Stea G, Battilani P, et al. Molecular characterization of an Aspergillus flavus population isolated from maize during the first outbreak of aflatoxin contamination in Italy[J]. Phytopathologia Mediterranea, 2012, 51(1): 198-206
- [18] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. SN/T 2582-2010 Detection of aflatoxigenic strains of aspergillus by PCR[S]. Beijing: Standards Press of China, 2010 (in Chinese)
 国家质量监督检验检疫总局. SN/T 2582-2010 产黄曲霉毒素真 菌 PCR 检测方法[S]. 北京:中国标准出版社, 2010
- [19] Tominaga M, Lee YH, Hayashi R, et al. Molecular analysis of an inactive aflatoxin biosynthesis gene cluster in *Aspergillus oryzae* RIB strains[J]. Applied and Environmental Microbiology, 2006, 72(1): 484-490