微生物学通报 Microbiology China tongbao@im.ac.cn

表面自由能在环境微生物粘附研究中的应用进展

黄翔峰 林兰娜 彭开铭*

(同济大学环境科学与工程学院 污染控制与资源化研究国家重点实验室 上海 200092)

摘 要: 在环境领域中,对微生物粘附的利用和控制越来越受到研究者的关注。其中, 微生物的 表面自由能作为细胞表面重要特性, 对微生物的粘附行为有重要影响。本文总结了微生物粘附过 程中涉及的热动力学理论、Derjaguin-Landau-Verwey-Overbeek (DLVO)以及扩展 DLVO 理论, 阐 述了微生物表面自由能在该过程的重要性。基于此,介绍了接触角表征微生物表面自由能的方法 体系及影响因素; 分析了微生物表面自由能及其分量的分布特征、与物质组成的关系。最后根据 被粘附对象的不同,总结了环境微生物表面自由能在固体基质、液体基质或者微生物相互之间粘 附中的应用;指出未来研究发展的方向应关注环境微生物表面自由能的标准化表征及其在复杂环 境中的应用。

关键词:环境微生物,表面自由能,生物粘附,DLVO理论

Progress on the application of surface free energy to the adhesion of environmental microorganisms

HUANG Xiang-Feng LIN Lan-Na PENG Kai-Ming*

(College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China)

Abstract: The use and control of microbial adhesion in environmental area have been received greater attention from researchers. Microbial cell surface free energy, as one of cell surface properties, has important influence on adhesion behavior of microorganisms. This article highlights the role of surface free energy on microbial adhesion through thermodynamic approach, Derjaguin-Landau-Verwey-Overbeek (DLVO) theory and extended DLVO (XDLVO). Based on these theories, the characterization method of microbial surface free energy calculated from contact angle and its influencing factors are introduced. Besides, it analyses the distribution feature of microbial surface free energy, its components and its relationship with substances composition. Finally, this review summarizes the application of surface free energy in environmental microorganisms according to adhesion substrates. Feature research should pay more attention to the standard characterization method of environmental microorganisms' surface free energy and its application in complex circumstances.

*Corresponding author: Tel: 86-21-65982399; E-mail: kai878@sina.com

Foundation item: National Natural Science Foundation of China (No. 51478326)

Received: July 31, 2015; **Accepted:** December 04, 2015; **Published online** (www.cnki.net): January 07, 2016 基金项目: 国家自然科学基金项目(No. 51478326)

^{*}通讯作者: Tel: 86-21-65982399; E-mail: kai878@sina.com

收稿日期: 2015-07-31; 接受日期: 2015-12-04; 优先数字出版日期(www.cnki.net): 2016-01-07

Keywords: Environmental microorganisms, Surface free energy, Microbial adhesion, DLVO theory

在环境领域中,微生物粘附可强化废水生物处 理,利于微生物对土壤中有害物质的降解,发挥其 有益的一面[1-2];但同时,微生物粘附也产生了很多 环境问题,如膜反应器的微生物污染与腐蚀^[3]、供 水管道的生物污染与堵塞^[4]等。微生物粘附的研究 具有两个相反的目标:强化促进微生物粘附和预防 控制微生物粘附。因此,对微生物粘附机制的研究 显得尤为必要。微生物粘附主要受到微生物、环境 介质、基质等方面的影响,其中微生物作为粘附行 为的主体在该过程中的作用比较显著。早期,对微 生物粘附机制的研究主要局限在探究微生物表面 性质与微生物粘附效果的相关性,如细胞表面疏水 性和带电性与微生物粘附量的关系^[5]。随着热动力 学理论和胶体理论的引入,研究者从微生物表面自 由能出发研究微生物与基质间的作用力,从而深入 揭示微生物粘附的机制。在粘附理论的研究中微生 物的表面自由能作为细胞表面特性对粘附行为有 着重要作用。因此,基于粘附理论考察表面自由能 在环境领域微生物粘附的研究越来越受到关注。

1 微生物粘附的理论

微生物粘附的理论基础主要包括: 热动力学理 论(Lifshitz-van der Waals/Lewis acid-base, LW-AB)^[6] 和胶体理论(Derjaguin-Landau-Verwey-Overbeek, DLVO)^[7]、Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO)^[8]。

LW-AB 法是基于微生物、环境介质、基质三者 相互作用的界面作用能计算粘附过程的吉布斯自 由能变(*dG*^{LW-AB}),如公式(1)所示:

$$\Delta G^{\rm LW-AB} = \gamma_{\rm bs} - \gamma_{\rm bl} - \gamma_{\rm sl} \tag{1}$$

其中,γ_{bs}、γ_{bl}、γ_{sl}分别代表微生物-基质、微生物-环境介质、基质-环境介质的界面自由能。当 ΔG^{LW-AB}<0,说明在热动力学理论上微生物可以粘 附在基质上,反之则不可以发生粘附^[4,9]。虽然该理 论并没有考虑微生物与基质的接触距离对微生物 粘附的影响,但其阐明了疏水性的微生物易粘附在 疏水基质上,而亲水性微生物易粘附在亲水基质上 的普遍现象,是简单判断微生物是否能够发生粘附 的有效手段。

由于大多数微生物的直径为0.5 μm-2.0 μm^[10], 接近胶体颗粒的尺寸,可以采用胶体稳定理论 DLVO来分析微生物粘附过程。传统的DLVO理论认 为微生物的粘附过程受微生物与基质间范德华作 用力和静电作用力(Electrical double layer, EL)的相 互制约。当微生物与基质之间的距离相近时, 范德 华力起主导作用,促进微生物的粘附;当两者相距 较远时,范德华力迅速下降,此时静电力是控制微 生物粘附的主导力。但对于疏水性粒子, 传统的 DLVO理论并不能很好地解释粒子在水合作用下与 基质间的疏水作用力^[8]。在水媒介质中,微生物与 基质间疏水性作用的主要驱动力是酸碱作用力,其 是以介质中电子受体和电子供体两部分的相互作 用为基础。基于此, van Oss提出了XDLVO理论^[8](图 1),将胶体颗粒之间相互作用力分为非极性的利弗 席兹-范德华力(Lifshitz-van der Waals interaction, LW)、极性的路易斯酸碱电子作用力(Lewis acid-base interaction, AB)以及静电作用力(EL), 如 公式(2)所示。XDLVO理论是发展较为完善的理论, 它结合了LW-AB法和DLVO理论,可以较好地判断 微生物、基质的表面性质和介质的离子强度对微生 物粘附的影响。

ΔG^{XDLVO} = ΔG^{LW} + ΔG^{AB} + ΔG^{EL} (2) 在利用粘附理论研究微生物粘附机制中,对微 生物与基质间相互作用参数的准确估算是关键。静 电作用力是根据微生物和基质的电势,利用 Smoluchowsk方程计算得到^[10];而酸碱作用力、范 德华力以及界面作用自由能则是要根据微生物和 基质的表面自由能来计算。微生物作为粘附过程中 的主体,其表面自由能和带电性对于粘附过程具有 显著影响。大部分微生物带负电,对粘附的影响相 对稳定;而微生物表面自由能的差异性是影响微生

图 1 微生物在基质上的粘附过程 Figure 1 Process of microbial adhesion on substrates

物粘附结果的来源。

2 微生物的表面自由能

微生物的表面自由能是微生物表面分子间作 用力的体现,反映了微生物的固有本质特征。对微 生物表面自由能的表征、分布特征及其物质基础的 深入研究有助于揭示影响微生物粘附的根源。

2.1 微生物表面自由能的表征

根据 van Oss 理论,微生物的表面自由能可以 分为非极性分量(γ_b^{LW})和极性分量(γ_b^{AB}),其中, γ_b^{AB} 又分为电子受体分量(γ_b^+)和电子供体分量(γ_b^-),各 分量关系如公式(3)所示:

 $\gamma_{\rm b} = \gamma_{\rm b}^{\rm LW} + \gamma_{\rm b}^{\rm AB} = \gamma_{\rm b}^{\rm LW} + 2\sqrt{\gamma_{\rm b}^+ \gamma_{\rm b}^-} \tag{3}$

目前,用于微生物表面自由能的测定方法有接触角法^[11]、反气相色谱法^[12]以及分光光度法^[13]。其中,接触角法操作方法简便,有一定的理论基础,被广泛应用于表面自由能的表征。该方法是基于Young 平衡方程与 van Oss 理论建立的,采用接触角计算微生物的表面自由能,如公式(4)所示:

 $\gamma_1 \left(1 + \cos \theta \right) = 2\left(\sqrt{\gamma_1^{\text{LW}} \gamma_b^{\text{LW}}} + \sqrt{\gamma_1^+ \gamma_b^-} + \sqrt{\gamma_1^- \gamma_b^+} \right) \quad (4)$

其中下标 1 表示探针液体; θ 表示探针液体对 微生物的接触角。通过测定 3 种不同的探针液滴在 微生物表面的接触角计算出微生物表面自由能的 3 个分量 γb^{LW}、γb⁺、γb⁻,从而得到微生物的表面自 由能。探针液体一般包括两种极性和一种非极性液 体^[14]。其中,水常作为极性探针液体,甲酰胺、甘 油和乙二醇也是极性探针液体的选择之一;对于非 极性探针液体,主要采用 1-溴代萘和二碘甲烷。各 个探针液体的表面自由能及其分量如表 1 所示。其 中,水、甲酰胺和二碘甲烷常用于测定微生物的表 面自由能。

微生物对探针液体接触角的准确测定是计算 表面自由能的前提。在微生物接触角的测定过程

表 1 常用探针液体的表面张力成分 Table 1 Surface tension of some diagnostic liquids (20 °C, mJ/m ²) ^[14]					
类别 Category	γ_1 Surface free energy	γ_l^{LW} Apolar component	γ_l^{AB} Polar component	γ_1^+ Electron acceptor parameter	γ_1^{-} Electron donor parameter
水 Water	72.8	21.8	51.0	25.50	25.5
甲酰胺 Formamide	58.0	39.0	19.0	2.28	39.6
甘油 Glycerol	64.0	34.0	30.0	3.92	57.4
乙二醇 Ethylene glycol	48.3	29.3	19.0	1.92	47.0
1-溴代萘 1-Bromonaphthalene	44.4	44.4	0	0	0
二碘甲烷 Diiodomethane	50.8	50.8	0	0	0

中,首先需要将分散的微生物细胞制备成均匀稳定 的"细胞层",即将一定浓度的微生物细胞悬液在孔 径为 0.45 μm 的醋酸纤维素膜上进行负压过滤^[15], 控制细胞层密度为 10⁸ 个/mm²或厚度在 800-900 层 左右^[16]。其次,将制备得到的细胞层膜置于有盖琼 脂平板上一段时间使其保持相同的湿度。经过一定 的干燥时间后,利用接触角仪测定 3 种不同探针液 滴在细胞层上某时刻的接触角。

微生物膜的干燥程度和探针液体在膜上的停 留时间是影响接触角准确测定的两个主要影响因 素。在细胞层的制备过程中,不同干燥程度的细胞 层可能使微生物表面的聚合物和官能团发生重组 或者改变^[17],影响液滴在细胞层上的存在形态。因 此,选取合适的干燥时间和干燥温度使细胞层表面 水分蒸发且不影响细胞结合水的存在形式是关 键^[18]。在接触角测定过程中,探针液滴在细胞层上 不同停留时间的接触角值存在一定差异,选择停留 时间过短的接触角会因为液滴滴加过程中的弹跳 形变而引起误差;但当液滴停留时间过长时,由于 探针液滴在细胞层上的渗透和扩散作用,导致接触 角的读取结果受到影响^[15,19-20]。一般来说,液滴在 细胞层上停留第2 s对应的接触角相对比较稳定,常 被研究者选用^[19-20]。

2.2 微生物表面自由能的分布特征

不同微生物的表面自由能分量具有一定的特 征范围,对其分布规律的分析有助于揭示微生物表 面自由能的差异以及影响微生物粘附过程的关键 因素。对环境粘附领域中的 52 株不同微生物的表 面自由能分量进行统计分析(图 2),分别从非极性分 量(^{w^{LW}})、极性分量(^{x^{AB}})考察环境微生物表面自由 能的分布特征。

对于微生物的非极性分量(y_b^{LW}),研究者从 147 株细菌对非极性探针液体二碘甲烷接触角的总 结发现其平均值为 37°±9.3°,其中 95%的二碘甲烷 接触角落在 36°-72°之间;这表明不同微生物表面 的 y_b^{LW}差异并不大,主要分布在 30-40 mJ/m^{2[16]}。 环境领域中微生物的非极性分量分布范围也在此 范围左右(图 2)^[4,21-23],如淡水中的藻类 ^{yb}^{LW}分布在 28.3-37.8 mJ/m^{2[23]},饮用水中分离的 25 株菌株 ^{yb}^{LW} 分布在 11.7-36.9 mJ/m^{2[4]}。

对于微生物的极性分量(ybAB),微生物对极性探 针液体的接触角分布比较分散,水的接触角分布在 17°-105°, 甲酰胺的接触角分布在 10°-91°; 对应 微生物的 y_b^{AB}分布范围为 0.06-70 mJ/m²,其中超 过 97%分布在 0.06-30 mJ/m^{2[16]}。极性分量中 y_b+ 和 ッь 的分布则具有较大差异, ッь 的分布范围为 0-15 mJ/m², 其中 90%集中在 1.8×10⁻⁵-5 mJ/m²; 而 ½-分布较为分散,范围为 0.03-105 mJ/m^{2[16]}。由 此可见, %-是引起微生物表面自由能差异的最主要 体现者。对于大多数微生物而言, $\gamma_b^- > \gamma_b^+$ (图 2),说 明微生物具有路易斯碱的性质,更倾向于电子供体 性质,这是因为大气中氧的存在和生物细胞的水合 作用使得生物表面呈现出电子供体的性质^[9,24]。一 般而言,亲水性微生物的 yb⁻大, yb⁺较小; 疏水性 微生物 yb⁻以及 yb⁺均较小^[25-26]。在对疏水性物质降 解的环境微生物中,假单胞菌属的 n⁺分布在 0.19-1.29 mJ/m², 而 %⁻则分布在 0.02-56.9 mJ/m^{2[26-30]};

图 2 环境微生物表面自由能各分量(γ_b^{LW} 、 γ_b^{AB} 、 γ_b^+ 、 γ_b^-)的分布

Figure 2 Distribution of different components of environmental microorganisms' surface free energy $(\gamma_b^{LW}, \gamma_b^{AB}, \gamma_b^+, \gamma_b^-)$

红球菌属的 γ_b ⁺分布在0.13-3.64 mJ/m², γ_b -则分布在 0.56-28.0 mJ/m^{2[26,31]}。可见,环境微生物表面自由能 的分布规律与一般微生物的分布一致(图2)。

综上所述,微生物的γb^{LW}与γb⁺分布范围较为集 中,而γb⁻分布范围则较为广泛,是反映微生物表面 自由能差异的关键分量。

2.3 微生物表面自由能的物质基础研究

由于微生物菌株类型、培养条件、生长周期的 差异,微生物表面自由能及其分量的分布特征各 异。究其本质,微生物表面自由能的差异主要是因 为细胞表面物质组成和官能团的不同^[32]。

微生物的细胞表面物质,如脂多糖、胞外聚合 物、胞外 DNA 和蛋白质的差异都会影响微生物的 表面自由能及其分量。对于表面自由能(yb), Das 等^[30]研究发现当变异链球菌、铜绿假单胞菌、表皮 葡萄球菌吸附最大浓度的胞外 DNA 后,对水的接 触角最大,微生物的表面自由能最低。对于非极性 表面自由能(次^{LW}), van Oss^[33]指出由于微生物细胞 表面物质组成的差异使得微生物的yblw主要分布在 20 mJ/m² (如各种碳氢化合物以及脂类)和 42 mJ/m² (如蛋白或糖类)之间。在环境领域中, Ozkan 和 Berberoglu^[23]的研究发现表面含有蛋白质和多糖层 的硅藻的 ^{LW} 平均值为 12.8 mJ/m²; 而含有纤维素 和多糖复合物的绿藻的 yb^{LW}平均值为 32.2 mJ/m²。 对于极性表面自由能分量(%^{AB}), Sheng 和 Yu^[34]发 现嗜酸红假单胞菌水AB与单位干细胞产生的胞外聚 合物质量呈正相关关系。饮用水中的食酸丛毛单胞 菌可以产生不同的表面蛋白质和胞外聚合物^[4],因 此不同菌株 γ_b^+ 分布范围为 0-3.0 mJ/m², γ_b^- 则分布 在 42.1-117.1 mJ/m²。恶臭假单胞菌随着表面脂多 糖含量的减少, γ_{b} ⁺变小, γ_{b} ⁺变大^[26]。Chen 等^[24]发 现当枯草芽孢杆菌的芽孢缺少两种主要的蛋白质 时,%⁻变小,%⁺变大。

综上所述,研究者致力于探究微生物表面自由 能及其分量与物质之间的关系,但是对于大多数微 生物而言,两者具体对应的关系暂未明晰,有待深 入的研究,以期为调控微生物粘附提供理论指导。

3 表面自由能在环境领域生物粘附研究中的应用

根据被粘附对象的不同,可将环境微生物的粘 附分为微生物在固体基质、液体基质或者微生物相 互之间的粘附。

3.1 在固体基质上的粘附

在环境领域中,微生物在固体基质上的粘附体 现在生物膜法处理废水和强化微生物对土壤污染 的修复等有利的一面;同时,微生物在固体上粘附 也体现在膜污染、饮用水输送管道的生物污染等不 利的一面。

在生物膜法处理废水中,微生物在固体基质上 粘附形成生物膜有利于强化微生物对水中有机物 质的降解。Khan等^[21]研究硝化菌、亚硝化螺菌、 埃希式杆菌属在不同膜材料上的粘附量,研究发 现,微生物体表面自由能的大小与粘附速率成正相 关,即微生物的表面自由能越大,微生物在膜上的 粘附速率越快。Nomura等^[35-36]通过表征产甲烷菌 的表面自由能和带电性,采用 LW-AB 法计算得到 微生物在竹炭上粘附的理论值与实际粘附量具有 较好的相关性,并指出相对于静电作用粘附过程中 微生物的表面自由能对粘附的贡献较大。

微生物在土壤颗粒粘附有利于微生物降解土 壤中的污染物质。Chen 等^[27]通过表征大肠杆菌、 荧光假单胞菌和枯草芽孢杆菌的表面自由能,计算 得到微生物在硅胶上粘附的 ΔG^{LW-AB} 与实验所得的 沉积系数成负相关,且枯草芽孢杆菌表面自由能最 小,ΔG^{LW-AB} 最小,沉积系数最大,微生物在基质 上的粘附量越多。链球菌属和干酪乳杆菌在石英砂 的粘附结果也是如此,ΔG^{LW-AB} 越小,实际实验时 的粘附量越大^[22]。Grasso 等^[28]发现相对于对数期和 衰亡期,处于稳定期的铜绿假单胞菌在白云石上的 粘附量最多,这是因为稳定期微生物的_{γb}-最小。

微生物在膜材料以及饮用水输送管道上粘附 造成的污染受到研究者的关注。在对其机理探讨方

面, Feng 等^[37]基于藤黄微球菌的表面自由能,采用 XDLVO 理论分别计算微生物在不同膜材粘附时所 需的界面自由能变(ΔG^{XDLVO}),发现其数值越小,对 应的试验测试的微生物粘附量越大。Subramani 等^[3] 通过测定恶臭假单胞菌的表面自由能,采用 XDLVO 理论计算微生物在被不同有机物质污染的 聚胺膜上的粘附的 ΔG^{XDLVO} ,发现其值与单位时间 微生物在基质上的粘附量成负相关关系,即 ΔG^{XDLVO} 越小,单位时间内在基质上的粘附量越多。 而 Simões 等^[4]通过微生物表面自由能研究饮用水 中细菌在不同材质管道上的粘附时发现只有部分 细菌在基质上粘附的理论值与实际粘附量可以相 互印证,说明在对微生物粘附机理的研究上,不仅 要考虑细胞之间的物化性质,还要考虑微生物的结 构,如纤毛、菌毛等对粘附造成的影响^[38]。

多数研究表明通过对微生物表面自由能的表征,利用粘附理论可以很好地预测微生物在固体基质上的粘附,这为进一步研究微生物粘附的强化和控制生物污染提供指导。

3.2 在油水界面上的粘附

在环境领域中,微生物粘附在液体基质可用于 研究微生物在油水界面上粘附强化石油、多环芳 烃、有机溶剂等疏水性物质的降解^[5];同时,微生 物在油水界面粘附可促进生物破乳菌对乳状液的 破乳实现资源回收和含油废水处理的双重环境效 益。相对于固体基质,研究微生物在油水界面粘附 的难度更大,对粘附机理的研究相对较少。

在生物降解烷烃的研究中, Iwabuchi 等^[31]得出 红球菌在不同烷烃与水体系中的粘附行为取决于 红球菌的表面自由能成分, 且 ΔG^{LW-AB} 起主导作用。 不同碳链长度的烷烃与水体系培养下的红球菌表 面自由能发生改变, ΔG^{LW-AB} 越低, 红球菌越容易 粘附在烷烃与水的界面处。Zoueki 等^[29]分别表征了 铜绿假单胞菌和恶臭假单胞菌的表面自由能, 采用 DLVO 理论计算出微生物在碳氢化合物上粘附的 ΔG^{DLVO} , 其值越低, 微生物在碳氢化合物上的粘附 越多,与实际的碳氢吸附能力实验相吻合。但是当 在碳氢化合物中加入沥青质和树脂时,此时 DLVO 和 XDLVO 理论的结果均与实际碳氢吸附能力结果 不符,这可能是因为微生物细胞表面的脂多糖、蛋 白质以及复杂的脂质等表面分子与沥青质、树脂发 生压缩、嵌入、延展等相互作用,引起空间位阻效 应,而粘附理论没有将这些协同作用考虑在内。彭 开铭等^[5]综述细菌的粘附理论后认为应将架桥作用 也考虑在内。

在生物破乳的研究中,彭开铭^[39]发现不同表面 自由能的产碱杆菌在油水界面的粘附不同,产生的 破乳效果不同。微生物的₇₆^{AB}越低,粘附到油相或 界面的速率和粘附量越大,有利于微生物在油相中 扩散;同时低₇₆^{AB}容易使微生物聚集沉降,带动模 型乳状液滴的聚集、聚并和沉降,促进乳状液破 乳^[39]。通过 LW-AB 计算出 *dG*^{LW-AB}数值越小,微 生物粘附在油相或者油水界面的趋势越明显,理论 结果与采用碳氢吸附法表现出的微生物粘附宏观 效 果 是 一 致 的 。进 一 步 研 究 发 现 产 碱 杆 菌 *Alcaligenes* sp. S-XJ-1 的₇₆决定微生物在油水两相 界面上的行为,其值越低,细胞在油水界面上的 粘附越多,越有利于微生物的聚集,从而影响微 生物的破乳效能^[40]。

在实际的工程应用中,碳氢化合物的成分较为 复杂,对微生物表面性质的影响也不尽相同,粘附 机理较为复杂,因此应该进一步修正和完善粘附理 论,以便更好地判断微生物的粘附。

3.3 环境微生物之间的粘附

微生物之间的粘附体现了微生物的聚集能力, 它对藻类的收集、颗粒污泥的形成、生物膜的增厚 等有很大的影响。藻类的聚集有利于藻类生物量的 获取,降低藻类收集的成本。Ozkan 和 Berberoglu^[23] 通过表征不同种类藻类的表面自由能后发现藻类 的_{7b}-越小,采用 LW-AB 法计算出的藻类自聚集的 *ΔG*^{LW-AB} 越小,藻类越易形成絮凝体,利于藻类的 收集。在厌氧发酵产氢时,颗粒污泥的形成可以减 少反应器的启动时间。Nomura^[35]基于微生物表面自 由能采用 LW-AB 法计算出产甲烷菌和产酸菌自聚 过程的 ΔG^{LW-AB} ,发现 ΔG^{LW-AB} 是影响微生物细胞 行为的一个重要因素,即只有产甲烷菌 *M. barkeri* 的 $\Delta G^{LW-AB} < 0$,发生细胞聚集,形成颗粒污泥,而 其他菌株的 $\Delta G^{LW-AB} > 0$,不能形成颗粒污泥。废水 处理中生物膜的增厚有利于反应器的稳定运行。 Das 等^[30]发现变异链球菌细胞吸附胞外 DNA 后表 面自由能降低,通过 XDLVO 理论计算出微生物自 聚集的 ΔG^{XDLVO} 降低,理论上形成的聚集体更多, 生物膜增厚,与实际微生物的聚集程度变化相一致。

对于环境领域中大多数微生物的粘附,范德华的作用相对较弱,而 *ΔG*^{AB} 在 *ΔG* 的计算中所占的比重较大,相对而言范德华力的作用较弱,酸碱作用力在该过程中发挥很重要的作用^[8]。环境领域中微生物是一个复杂的体系,微生物的表面自由能及其分量在酸碱作用力中起到重要作用。对于大多数微生物表面,⁷⁶⁻是影响环境微生物粘附行为的主要分量。它不仅可以作为表征细胞亲疏水性的半定量指标^[9],而且在微生物表面自由能的组成分量中, 不同微生物₇₆-的差异最为显著。

4 展望

通过表面自由能的表征,采用粘附理论对微生物的粘附进行研究,在环境领域中已被广泛应用。 微生物的表面自由能是影响该过程的重要因素,其中,γb⁻的影响较为显著。因此,对环境微生物表面 自由能的标准化表征以实现微生物粘附的利用和 控制是主要的研究之一,从而更好地服务于微生物 的调控以及发挥其环境效益。由于环境体系及微生 物表面的差异性和复杂性,粘附理论与实际环境效 应还存在一定差距,还需要研究者考虑更多微生物 表面物质性质、环境条件等的相互作用,进一步修 正粘附理论。

参考文献

 Vu K, Yang G, Wang BY, et al. Bacterial interactions and transport in geological formation of alumino-silica clays[J]. Colloids and Surfaces B: Biointerfaces, 2015, 125: 45-50

- [2] Khan MMT, Chapman T, Cochran K, et al. Attachment surface energy effects on nitrification and estrogen removal rates by biofilms for improved wastewater treatment[J]. Water Research, 2013, 47(7): 2190-2198
- [3] Subramani A, Huang XF, Hoek EMV. Direct observation of bacterial deposition onto clean and organic-fouled polyamide membranes[J]. Journal of Colloid and Interface Science, 2009, 336(1): 13-20
- [4] Simões LC, Simões M, Oliveira R, et al. Potential of the adhesion of bacteria isolated from drinking water to materials[J]. Journal of Basic Microbiology, 2007, 47(2): 174-183
- [5] Peng KM, Wang RF, Guo L, et al. Adhesion of bacteria to oil-water interface: mechanism, characteristics and application[J]. Microbiology China, 2014, 41(7), 1410-1416 (in Chinese) 彭开铭, 王若菲, 郭磊, 等. 细菌在油水界面粘附的理论、特

些万韬, 工石非, 郭福, 寻. 细菌在油水介面柏附的理论、符 性及应用[J]. 微生物学通报, 2014, 41(7): 1410-1416

- [6] van Oss CJ, Good RJ, Chaudhury MK. The role of van der Waals forces and hydrogen bonds in "hydrophobic interactions" between biopolymers and low energy surfaces[J]. Journal of Colloid and Interface Science, 1986, 111(2): 378-390
- [7] Hermansson M. The DLVO theory in microbial adhesion[J]. Colloids and Surfaces B: Biointerfaces, 1999, 14(1/4): 105-119
- [8] van Oss CJ. Acid-base interfacial interactions in aqueous media[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 78: 1-49
- [9] Araújo EA, de Andrade NJ, da Silva LHM, et al. Modification of stainless steel surface hydrophobicity by silver nanoparticles: strategies to prevent bacterial adhesion in the food processing[J]. Journal of Adhesion Science and Technology, 2013, 27(24): 2686-2695
- [10] Hori K, Matsumoto S. Bacterial adhesion: from mechanism to control[J]. Biochemical Engineering Journal, 2010, 48(3): 424-434
- [11] Gerson DF, Scheer D. Cell surface energy, contact angles and phase partition III. Adhesion of bacterial cells to hydrophobic surfaces[J]. Biochimica et Biophysica Acta (BBA) -Biomembranes, 1980, 602(3): 506-510
- [12] Lee KY, Blaker JJ, Murakami II R, et al. Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils[J]. Langmuir, 2014, 30(2): 452-460
- [13] Zhang XR, Jiang ZY, Li MY, et al. Rapid spectrophotometric method for determining surface free energy of microalgal cells[J]. Analytical Chemistry, 2014, 86(17): 8751-8756
- [14] Cui ZG. Fundamentals of Surfactants, Colloids, and Interface Chemistry[M]. Beijing: Chemical Industry Press, 2013: 161-163 (in Chinese) 崔正刚. 表面活性剂、胶体与界面化学基础[M]. 北京: 化学 工业出版社, 2013: 161-163
- [15] Busscher HJ, Weerkamp AH, van der Mei HC, et al. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion[J]. Applied and Environmental Microbiology, 1984, 48(5): 980-983
- [16] Sharma PK, Hanumantha Rao K. Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry[J]. Advances in Colloid and Interface Science, 2002, 98(3): 341-463
- [17] Brown DG, Jaffé PR. Effects of nonionic surfactants on the cell surface hydrophobicity and apparent hamaker constant of a *Sphingomonas* sp.[J]. Environmental Science & Technology, 2006, 40(1): 195-201
- [18] Botton S, Verliefde ARD, Quach NT, et al. Influence of biofouling on pharmaceuticals rejection in NF membrane filtration[J]. Water Research, 2012, 46(18): 5848-5860
- [19] Korenevsky A, Beveridge TJ. The surface physicochemistry and adhesiveness of *Shewanella* are affected by their surface

polysaccharides[J]. Microbiology, 2007, 153(6): 1872-1883

- [20] Seale RB, Flint SH, McQuillan AJ, et al. Recovery of spores from thermophilic dairy bacilli and effects of their surface characteristics on attachment to different surfaces[J]. Applied and Environmental Microbiology, 2008, 74(3): 731-737
- [21] Khan MMT, Ista LK, Lopez GP, et al. Experimental and theoretical examination of surface energy and adhesion of nitrifying and heterotrophic bacteria using self-assembled monolayers[J]. Environmental Science & Technology, 2011, 45(3): 1055-1060
- [22] Chen G, Zhu HL. Bacterial adhesion to silica sand as related to Gibbs energy variations[J]. Colloids and Surfaces B: Biointerfaces, 2005, 44(1): 41-48
- [23] Ozkan A, Berberoglu H. Physico-chemical surface properties of microalgae[J]. Colloids and Surfaces B: Biointerfaces, 2013, 112: 287-293
- [24] Chen G, Driks A, Tawfiq K, et al. *Bacillus anthracis* and *Bacillus subtilis* spore surface properties and transport[J]. Colloids and Surfaces B: Biointerfaces, 2010, 76(2): 512-518
- [25] Maataoui H, Barkai H, Sadiki M, et al. Physicochemical characterization of actinomycetes isolated from decayed cedar wood: contact angle measurement[J]. Journal of Adhesion Science and Technology, 2014, 28(20): 2046-2053
- [26] Feng WH, Swift S, Singhal N. Effects of surfactants on cell surface tension parameters and hydrophobicity of *Pseudomonas putida* 852 and *Rhodococcus erythropolis* 3586[J]. Colloids and Surfaces B: Biointerfaces, 2013, 105: 43-50
- [27] Chen G, Strevett KA. Impact of surface thermodynamics on bacterial transport[J]. Environmental Microbiology, 2001, 3(4): 237-245
- [28] Grasso D, Smets BF, Strevett KA, et al. Impact of physiological state on surface thermodynamics and adhesion of *Pseudomonas aeruginosa*[J]. Environmental Science & Technology, 1996, 30(12): 3604-3608
- [29] Zoueki CW, Ghoshal S, Tufenkji N. Bacterial adhesion to hydrocarbons: role of asphaltenes and resins[J]. Colloids and Surfaces B: Biointerfaces, 2010, 79(1): 219-226
- [30] Das T, Krom BP, van der Mei HC, et al. DNA-mediated bacterial aggregation is dictated by acid-base interactions[J]. Soft Matter, 2011, 7(6): 2927-2935
- [31] Iwabuchi N, Sharma PK, Sunairi M, et al. Role of interfacial tensions in the translocation of *Rhodococcus erythropolis* during

growth in a two phase culture[J]. Environmental Science & Technology, 2009, 43(21): 8290-8294

- [32] Li L, Wang ZM, Rietveld LC, et al. Comparison of the effects of extracellular and intracellular organic matter extracted from *Microcystis aeruginosa* on ultrafiltration membrane fouling: dynamics and mechanisms[J]. Environmental Science & Technology, 2014, 48(24): 14549-14557
- [33] van Oss CJ. Development and applications of the interfacial tension between water and organic or biological surfaces[J]. Colloids and Surfaces B: Biointerfaces, 2007, 54(1): 2-9
- [34] Sheng GP, Yu HQ. Relationship between the extracellular polymeric substances and surface characteristics of *Rhodopseudomonas acidophila*[J]. Applied Microbiology and Biotechnology, 2006, 72(1): 126-131
- [35] Nomura T. Control of microbial adhesion using fine particle technology[J]. Advanced Powder Technology, 2012, 23(5): 532-537
- [36] Yoshihara A, Narahara H, Kuriyama Y, et al. Measurement of microbial adhesive forces with a parallel plate flow chamber[J]. Journal of Colloid and Interface Science, 2014, 432: 77-85
- [37] Feng L, Li XF, Song P, et al. Surface interactions and fouling properties of *Micrococcus luteus* with microfiltration membranes[J]. Applied Biochemistry and Biotechnology, 2011, 165(5/6): 1235-1244
- [38] Perni S, Preedy EC, Prokopovich P. Success and failure of colloidal approaches in adhesion of microorganisms to surfaces[J]. Advances in Colloid and Interface Science, 2014, 206: 265-274
- [39] Peng KM. Study of the characteristic of demulsifying Alcaligenes sp. S-XJ-1 cell surface properties and composition, and its action in emulsion[D]. Shanghai: Doctoral Dissertation of Tongji University, 2014 (in Chinese) 彭开铭. 生物破乳菌 Alcaligenes sp. S-XJ-1表面物质、性质特 征及其对乳状液作用规律的研究[D]. 上海: 同济大学博士学 位论文, 2014
- [40] Peng KM, Liu J, Lu LJ, et al. Cell surface properties of the demulsifying strain *Alcaligenes* sp. S-XJ-1 governing its behavior in oil-water biphasic systems[J]. Journal of Adhesion Science and Technology, 2015. DOI: 10.1080/01694243.2015.1095674