微生物学通报 Microbiology China tongbao@im.ac.cn

**Nov. 20, 2015, 42(11): 2189–2197** © 2015 by Institute of Microbiology, CAS DOI: 10.13344/j.microbiol.china.150070



# 倭蜂猴粪便微生物苯酚羟化酶和邻苯二酚 1,2-双加氧酶 基因多样性研究

熊彩云<sup>1</sup> 许波<sup>1,2,3,4</sup> 戴利铭<sup>1</sup> 李俊俊<sup>1,2,3,4</sup> 唐湘华<sup>1,2,3,4</sup> 慕跃林<sup>1,2,3,4</sup> 杨云娟<sup>1,2,3,4</sup> 周峻沛<sup>1,2,3,4</sup> 丁俊美<sup>1,2,3,4</sup> 黄竴锡<sup>1,2,3,4\*</sup>

(1. 云南师范大学 生命科学学院 云南 昆明 650500)

(2. 生物能源持续开发利用教育部工程研究中心 云南 昆明 650500)

(3. 云南省生物质能与环境生物技术重点实验室 云南 昆明 650500)

(4. 云南师范大学 酶工程重点实验室 云南 昆明 650500)

摘 要:【目的】分析倭蜂猴粪便微生物中苯酚羟化酶(Phenol hydroxylase, PH)和邻苯二酚 1,2-双加氧酶(Catechol 1,2-dioxygenase,  $C_{12}O$ )的基因多样性。【方法】利用简并引物,以倭蜂猴粪便 微生物宏基因组 DNA 为模板,通过 PCR 扩增,分别构建 PH 和  $C_{12}O$  基因克隆文库,并对克隆 进行测序分析。【结果】倭蜂猴粪便微生物来源的 PH 和  $C_{12}O$  基因序列经 BLAST 比对分析,与 GenBank 中相应酶的序列一致性分别介于 92%-100%和 87%-100%。系统进化树分析表明 PH 基 因序列与 Neisseria、Burkholderia、Alcaligenes、Acinetobacter 4 个属来源的 PH 序列相关;  $C_{12}O$ 基因序列全部与 Acinetobacter 来源的  $C_{12}O$  序列相关。序列比对结果表明 PH 序列具有 LmPH (Largest subunit of multicomponent PH)中高保守的两个 DEXRH 结构域;  $C_{12}O$  序列具有能被 Ag<sup>+</sup> 和 Hg<sup>2+</sup>抑制的位点(半胱氨酸)。【结论】倭蜂猴粪便微生物来源的 PH 为多组分 PH, 其降解苯酚 的中间产物邻苯二酚可以被  $C_{12}O$  通过邻位开环途径裂解。

关键词: 倭蜂猴, 粪便微生物, 苯酚羟化酶, 邻苯二酚 1,2-双加氧酶, 多样性

# Analysis gene diversity of phenol hydroxylase and catechol 1,2-dioxygenase from fecal microbiome of *Nycticebus pygmaeus*

XIONG Cai-Yun<sup>1</sup> XU Bo<sup>1,2,3,4</sup> DAI Li-Ming<sup>1</sup> LI Jun-Jun<sup>1,2,3,4</sup> TANG Xiang-Hua<sup>1,2,3,4</sup> MU Yue-Lin<sup>1,2,3,4</sup> YANG Yun-Juan<sup>1,2,3,4</sup> ZHOU Jun-Pei<sup>1,2,3,4</sup> DING Jun-Mei<sup>1,2,3,4</sup> HUANG Zun-Xi<sup>1,2,3,4\*</sup>

基金项目: 国家自然科学基金项目(No. 31160229, 31360268, 31560305)

<sup>\*</sup>通讯作者: Tel: 86-871-65920830; Fax: 86-871-65920952; 回: huangzunxi@163.com

收稿日期: 2015-01-21; 接受日期: 2015-04-10; 优先数字出版日期(www.cnki.net): 2015-04-24

(1. School of Life Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China)

(2. Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunning, Yunnan 650500, China)

(3. Key Laboratory of Yunnan for Biomass Energy and Biotechnology of Environment, Kunming, Yunnan 650500, China) (4. Key Laboratory of Enzyme Engineering, Yunnan Normal University, Kunming, Yunnan 650500, China)

Abstract: [Objective] The gene diversity of phenol hydroxylase and catechol 1,2-dioxygenase were investigated from fecal microbiome of Nycticebus pygmaeus. [Methods] Degenerate primers were used to amplify phenol hydroxylase and catechol 1,2-dioxygenase gene fragments from metagenomic DNA. Phenol hydroxylase and catechol 1,2-dioxygenase gene clone libraries were constructed, and some of clones were sequenced separately. [Results] The BLAST analysis of phenol hydroxylase and catechol 1,2-dioxygenase sequences showed 92%-100% and 87%-100% identities to the known phenol hydroxylase and catechol 1,2-dioxygenase sequences in GenBank. Phylogenetic analysis showed that phenol hydroxylase sequences in gene clone libraries had high similarity with phenol hydroxylase sequences from Neisseria, Burkholderia, Alcaligenes, Acinetobacter. And catechol 1,2-dioxygenase sequences in gene clone libraries had high similarity with catechol 1,2-dioxygenase sequences from Acinetobacter. Sequence alignment showed two DEXRH motifs of LmPH sequences were detected in phenol hydroxylase sequences, and the conserved cysteine was detected in catechol 1,2-dioxygenase sequences which was inhibited by Ag<sup>+</sup> and Hg<sup>2+</sup>. [Conclusion] The phenol hydroxylase from fecal microbiome of Nycticebus pygmaeus was multicomponent phenol hydroxylase, and catechol that middle production of phenol degradation can be cleaved by catechol 1,2-dioxygenase through ortho-pathway.

Keywords: Nycticebus pygmaeus, Fecal microbiome, Phenol hydroxylase, Catechol 1,2-dioxygenase, Gene diversity

倭蜂猴(Nycticebus pygmaeus)是目前原始猴中 研究最少的物种之一<sup>[1]</sup>。倭蜂猴为杂食性动物,摄 食种类较为广泛,而芳香化合物是自然界中分布仅 次于碳水化合物且难降解的一类有机化合物,能在 食物链中逐级积累并对生物体产生危害。宿主的饮 食会使其胃肠道中的微生物具备相应的生理和代 谢特点。本实验室在前期的研究中发现,与其他动 物相比,倭蜂猴粪便微生物宏基因组中存在更高丰 度和多样性的芳香化合物代谢系统,且 KEGG (Kyoto encyclopedia of genes and genomes)代谢途径 注释分析发现了与苯甲酸好氧降解途径相关的 酶类<sup>[2]</sup>。

芳环加氧酶是芳香化合物降解过程中的重要 酶类,按催化功能可划分为芳环羟化加氧酶和芳环 断裂加氧酶两类,分别催化羟基化反应与断裂反 应<sup>[3]</sup>。PH (EC1.14.13.7)、C<sub>12</sub>O (EC1.13.11.1)和邻苯 二酚 2,3-双加氧酶(Catechol 2,3-dioxygenase, C<sub>23</sub>O, EC1.13.11.2)是苯酚好氧降解中的关键芳环加氧酶。 首先,苯酚在 PH 的羟基化作用下转变成邻苯二酚; 其次,邻苯二酚在 C<sub>12</sub>O 和 C<sub>23</sub>O 作用下分别通过邻 位开环(*ortho*-pathway)和间位开环(*meta*-pathway)形 式被进一步降解<sup>[4]</sup>。

目前,对环境样品基因组中芳环加氧酶的研究 主要集中在富含有机污染物的环境。通过构建土壤 基因组文库筛选到苯乙烯单加氧酶、C<sub>23</sub>O、P450 单加氧酶、4-羟基苯丙酮酸双加氧酶、2,4-二氯酚羟 化酶<sup>[5-9]</sup>;从活性污泥基因组文库筛选到外二元醇双 加氧酶、4-硝基甲苯氧化酶<sup>[10-11]</sup>;同样用活性污泥 宏基因组 DNA 为模板,通过 PCR 扩增得到 2,3-二 羟基联苯 1,2-双加氧酶<sup>[12]</sup>;从牛瘤胃噬菌体表达文 库获得一个多酚氧化酶<sup>[13]</sup>;炼油废水处理厂的污泥 基因组文库中发现有 PH 和 C<sub>23</sub>O 基因<sup>[14]</sup>,而对动 物胃肠道来源的相应酶类研究较少。本研究直接从 倭蜂猴粪便样品中提取微生物宏基因组 DNA,利用 简并引物扩增 PH、C<sub>12</sub>O 和 C<sub>23</sub>O 基因片段,并分析 PH 和 C<sub>12</sub>O 基因多样性,为该环境中芳环加氧酶的 研究奠定了基础。

# 1 材料与方法

## 1.1 主要试剂和仪器

宏基因组 DNA 提取试剂盒购自 Qiagen 公司; 胶回收试剂盒及质粒提取试剂盒购自 Tiangen 公 司;限制性内切酶、DNA 聚合酶和 dNTPs 购自日 本 TaKaRa 公司。

PCR 仪、核酸电泳仪购自美国 Bio-Rad 公司。

## 1.2 样品、菌株和载体

倭蜂猴粪便样品采自云南省红河州屏边县大围山自然保护区。大肠杆菌(Escherichia coli) Trans1-T1感受态细胞购自北京TransGen公司。载体 pMD19-T购自日本TaKaRa公司。

#### 1.3 倭蜂猴粪便微生物宏基因组 DNA 的提取

参照 QIAamp DNA Stool Mini Kit 试剂盒操作 步骤进行提取。

# 1.4 PCR 扩增和克隆文库的构建

**1.4.1** PCR 扩增: 以倭蜂猴粪便微生物宏基因组 DNA 为模板, 用表 1 中的引物分别进行 PCR 扩增。

PCR 反应体系(20 μL): 10×PCR buffer 4 μL, dNTPs (2.5 mmol/L) 2 μL, *Taq* DNA polymerase (5 U/μL) 0.3 μL, 10 μmol/L 上下游引物各 1 μL, 模板 DNA 1 μL, ddH<sub>2</sub>O 10.7 μL。反应条件均为: 94 °C 5 min; 94 °C 30 s, 73 °C 30 s, 72 °C 1 min, 25 个循环, 每个循环降 1 °C; 94 °C 30 s, 48 °C 30 s, 72 °C 1 min, 10 个循环; 72 °C 7 min。所有扩增产物经琼 脂糖凝胶电泳检测后发现仅有引物 pheUf/pheUr 和 C<sub>12</sub>OF/C<sub>12</sub>OR 可扩增出相应的 PH 和 C<sub>12</sub>O 基因片段 条带,大小分别为 620 bp 和 480 bp 左右。

1.4.2 克隆文库的构建:用 DNA 胶回收剂盒分别 切胶回收 PCR 扩增产物即 620 bp 和 480 bp 左右的 目的条带。回收产物分别与 pMD19-T 载体 16 °C 连接 30 min,连接产物分别转化大肠杆菌(*Escherichia coli*) Trans1-T1 感受态细胞,通过蓝白斑筛选,挑 白色菌落进行菌落 PCR 验证。经菌落 PCR 鉴定为 含 PH 基因片段的阳性克隆,用限制性内切酶 *Sau*3AI和 *Afa*I 对其进行限制性内切酶片段长度多态性(PCR-RFLP)分析后,将 34 个可能插入不同 PH 基因片段的重组子送华大基因测序。同样白色菌 落,鉴定为含 C<sub>12</sub>O 基因片段的阳性克隆,挑

| 表 1 扩增 PH、C <sub>12</sub> O 和 C <sub>23</sub> O 基因的引物<br>Table 1 Primers used for amplifying the PH, C <sub>12</sub> O and C <sub>23</sub> O gene fragments |                                       |                  |           |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|-----------|--|--|
| 引物名称                                                                                                                                                        | 引物序列                                  | 引物长度             | 参考文献      |  |  |
| Primer name                                                                                                                                                 | Primer sequence $(5' \rightarrow 3')$ | Primer size (bp) | Reference |  |  |
| PH/pheUf                                                                                                                                                    | CCAGGSBGARAARGAGARGAARCT              | 24               | [15]      |  |  |
| pheUr                                                                                                                                                       | CGGWARCCGCGCCAGAACCA                  | 20               |           |  |  |
| PH/Pheh-3F                                                                                                                                                  | CGKATGACSTACGGCTGGATGGGCG             | 25               | [16]      |  |  |
| Pheh-3R                                                                                                                                                     | ACGTCCTGTTCGATGATCTCCTTGATCCGC        | 30               |           |  |  |
| $C_{12}O/C_{12}OF$                                                                                                                                          | CCTGARCBGTHGGYTTTGCNCGTATGGATGA       | 31               | [16]      |  |  |
| C <sub>12</sub> OR                                                                                                                                          | TCACGRGTWGCRWARGCAAAGTC               | 23               |           |  |  |
| C <sub>23</sub> O/ORF-F                                                                                                                                     | AGGTGWCGTSATGAAMAAAGG                 | 21               | [17]      |  |  |
| ORF-R                                                                                                                                                       | TYAGGTSAKMACGTTCAKGAA                 | 21               |           |  |  |
| C <sub>23</sub> O/C <sub>23</sub> OF                                                                                                                        | GGTCTGATYGAAATGGAYCGCGA               | 23               | [16]      |  |  |
| C <sub>23</sub> OR                                                                                                                                          | CGTTCGTTSAGCACCCGGTCGTG               | 23               |           |  |  |

167个抽提质粒,用限制性内切酶 *Afa* I 对所提质粒 进行 RFLP 分析后,将 35个可能插入不同 C<sub>12</sub>O 基 因片段的重组子送华大基因测序。

1.5 序列分析

**1.5.1** 序列比对分析: 对测序获得的序列,用 Vector NTI 11.5 软件去除两端载体序列后,使用 NCBI BLASTx (http://blast.ncbi.nlm.nih.gov/Blast.cgi)进行 比对分析,选取与 GenBank 数据库中 PH 和 C<sub>12</sub>O 序列有较高相似性的基因片段鉴定为 PH 和 C<sub>12</sub>O 序列。

**1.5.2** PH和C<sub>12</sub>O基因多样性分析:用MEGA 6.0 (Molecular evolutionary genetics analysis 6.0)将所得的PH和C<sub>12</sub>O基因序列翻译成氨基酸序列,从NCBI (http://www.ncbi.nlm.nih.gov/) GenBank 中下载相似 序列作为参考序列,使用 MEGA 6.0 软件中的 Neighbor-Joining 算法和 Poission correction 矩阵构 建系统进化树,设定 Bootstrap 1 000。用 Clustal X 软件进行序列比对。

#### 1.6 序列登录号

PH 和 C<sub>12</sub>O 的核酸序列已提交 GenBank 数据 库, 序列号分别为 KP340937-KP340970 和 KP340902-KP340936。

## 2 结果与分析

2.1 倭蜂猴粪便微生物 PH 基因序列及多样性 分析

34 个阳性克隆的测序结果去除载体序列,通过 BLAST 比对分析,结果显示,34 条 PH 基因片段 中3 条与 Neisseria sicca 来源的 PH 序列有 98%-99%的相似性;1条与Burkholderia sp. MSh1 来源的 PH 序列相似性为 92%;还有1条与 Alcaligenes sp. OS2 来源的 PH 有 95%的序列相似 性;其余 29条均与Acinetobacter 来源的 PH 序列有 99%-100%的相似性。为了更形象地表述各基因序 列的相似性关系,去除重复氨基酸序列,以从 GenBank 下载的 PH 序列作为参考序列,构建系统 进化树(图 1)。如进化树所示,大部分倭蜂猴粪便微

http://journals.im.ac.cn/wswxtbcn

生物来源的 PH 基因片段与来源于 Acinetobacter 的 PH 序列相关,说明来源于 Acinetobacter 的 PH 在倭 蜂猴粪便微生物中可能有较高的丰度。

PH 分为单组分 PH (Monocomponent phenol hydroxylase)和多组分 PH (Multicomponent phenol hydroxylase, mPHs)两类,结构复杂的 mPHs 是环境中占优势的酶。*Pseudomonas* sp. CF600<sup>[18]</sup>、 *Acinetobacter calcoaceticus* NCIB8250<sup>[19]</sup>、 *Acinetobacter calcoaceticus* PHEA-2<sup>[20]</sup>和 *Comamonas testosteroni* TA441<sup>[21]</sup>等菌中的 mPHs 基 因簇均已被克隆。在大部分 mPHs 基因中,其大亚 基(LmPH)活性部位的编码序列是保守的<sup>[22]</sup>。

在系统进化树上选分别与 Neisseria、 Burkholderia、Alcaligenes、Acinetobacter 4 个属来 源的 PH 序列聚在一起的 5 条 PH 基因片段 (PH1-c-7、PH1-c-58、PH1-d-52、PH1-a-10 和 PH1-d-80),与其他不同环境和菌株来源的 mPHs 中 的 LmPH 编码序列进行序列比对分析(图 2)。结果 显示倭蜂猴粪便微生物来源的 PH 序列与其他环境 菌株来源的 LmPH 编码序列具有较高的序列相似 性,其中包括 2 个高度保守、大约相隔 100 个氨基 酸的 DEXRH 结构域,这个结构域是大多数 PH 的 典型特征。以上分析表明,倭蜂猴粪便微生物来源 的 PH 很有可能为 mPHs,且从图 1 可看出,所有 该来源的 PH 基因片段与单组分的 PH 序列并不 相关。

# 2.2 倭蜂猴粪便微生物 C<sub>12</sub>O 基因序列及多样性分析

35个阳性克隆的测序结果去除载体序列,通过 BLAST 比对分析,结果显示,35条 C<sub>12</sub>O 基因片段 与 *Acinetobacter* 来源的 C<sub>12</sub>O 有 87%-100%的序列 相似性。去除重复氨基酸序列,以 GenBank 中下载 的 C<sub>12</sub>O 序列作为参考序列,构建系统进化树(图 3), 如进化树所示,倭蜂猴粪便微生物来源的 C<sub>12</sub>O 基 因片段全部与 *Acinetobacter* 来源的 C<sub>12</sub>O 序列相关, 并在 *Acinetobacter* 的不同种间表现出一定的丰度。



0.2

## 图 1 倭蜂猴粪便微生物来源的 PH 基因片段系统进化树分析 Figure 1 Phylogenetic analysis based on the partial amino acid sequences of PH genes from fecal microbiome of *Nycticebus pygmaeus*

Note: Sequences of clones identified in this study are indicated with "PH". The numbers in parentheses are accession numbers of sequences. Numbers at each branch point indicate the percentage supported by bootstrap values based on 1 000 replications. The scale bar represents the number of changes per amino acid position.

| LmPH.0S2<br>LmPH.W1<br>DmPN<br>PH1-a-10<br>PH1-c-7<br>PH1-c-58<br>PH1-d-52<br>PH1-d-80         | QGEKEKKLYAVIEAFAQNNGQLIVSDARYINALKLFIQGVTPLEYYAYRG<br>QAEKEKKLYAIFDAFAQNNGQMNISDPRYLNAIKVFLTAVTPLEYQAYQG<br>QAEKEKKLYAIFDAFAQNNGQMNVSDRRYVNALKLFLTAVTPLEYQAYQG<br>QAEKEKKLYAIFDAFAQNNGQMNVSDRRYVNAIKLFLTAVTPLEYQAYQG<br>QAEKEKKLYAIFDAFAQNNGQLNISDRRYLNAIKLFLTAVTPLEYQAYQG<br>QAEKEKKLYAIFDAFAQNNGQLNISDRRYVNAIKIFLTGVTPPEYQAYQG<br>QAEKEKKLYAIFDAFAQNNGQLNISDRRYVNAIKIFLTGVTPPEYQAYQG<br>QAEKEKKLYAIFDAFAQNNGQLNVSDRRYLNAIKLFLTGVTPIEYNAHRG<br>QAEKEKKLYAIFDAFAQNNGQMNVSNERYLNAIKLFLTAVTPLEYQAYQG<br>QAEKEKKLYAIFDAFAQNNGQMNVSNERYLNAIKLFLTAVTPLEYQAYQG                                                       | 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50                |
|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| LmPH.OS2<br>LmPH.W1<br>DmPN<br>MoPN<br>PH1-a-10<br>PH1-c-7<br>PH1-c-58<br>PH1-d-52<br>PH1-d-80 | FAHLGRHFTGEGARVATQMQAIDELRHFQTETHALSHYNKYFNCMHNSNQ<br>YSHVGRQFSGIGARIACQMQSIDELRHVQTQVHAMSHYNKFFNGFQDWSH<br>FSRVGRQFSGIGARIACQMQAIDELRHVQTQVHAMSHYNKFFDGLHDFAH<br>YAHVGRQFSGIGARIASQMQSIDELRHVQTQIHAMSHYNKFFDGFQDWAH<br>YAHVGRQFSGIGARIASQMQSIDELRHVQTQIHAMSHYNKFFDGFQDWAH<br>YAHVGRQFGGIGARIASQMQSIDELRHVQTQIHAMSHYNKYFDGFQDWSH<br>FAMAGRQLRGVGSRVACQMQAIDELRHVQTQIHAMSHYNKFFDGFQDWAH<br>YAHVGRQFSGIGARIASQMQSIDELRHVQTQIHAMSHYNKFFDGFQDWAH<br>YAHVGRQFSGIGARIASQMQSIDELRHVQTQIHAMSHYNKFFDGFQDWAH<br>YAHVGRQFSGIGARIASQMQSIDELRHVQTQIHAMSHYNKFFDGFQDWAH                                                       | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100        |
| LmPH.0S2<br>LmPH.W1<br>DmPN<br>MoPN<br>PH1-a-10<br>PH1-c-7<br>PH1-c-58<br>PH1-d-52<br>PH1-d-80 | WFDRVWYLSVPKSFFEDALTSGPFEFLTAISFSFEYVLTNLLFVPFMSGA<br>MHDRVWYLSVPKSFFEDARAAGPFEFLLAISFSFEYVLTNLLFVPFMSGA<br>MYDRVWYLSVPKSYMDDARTAGPFEFLTAVSFSFEYVLTNLLFVPFMSGA<br>MHDRVWYLSVPKSFFEDARSAGPFEFLLAISFAFEYVLTNLLFVPFMSGA<br>MHDRVWYLSVPKSFFEDARSAGPFEFLLAISFSFEYVLTNLLFVPFMSGA<br>MHDRVWYLSVPKSFFEDARSAGPFEFLLAISFSFEYVLTNLLFVPFMSGA<br>MHDRVWYLSVPKSFFEDARSAGPFEFLLAISFSFEYVLTNLLFVPFMSGA<br>MHDRVWYLSVPKSFFEDARSAGPFEFLLAISFSFEYVLTNLLFVPFMSGA<br>MHDRVWYLSVPKSFFEDARSAGPFEFLLAISFSFEYVLTNLLFVPFMSGA                                                                                                             | 150<br>150<br>150<br>150<br>150<br>150<br>150<br>150        |
| LmPH.OS2<br>LmPH.W1<br>DmPN<br>PH1-a-10<br>PH1-c-7<br>PH1-c-58<br>PH1-d-52<br>PH1-d-80         | AHNGDISTVTFGFSAQSDESRHMTLGIECIKFMLEQEPDNVPIVQRWINK<br>AYNGDMATVTFGFSSQSDEARHMTLGLEVIKFLLEQHEDNVPIVQEWIDK<br>AYNGDMATVTFGFSAQSDEARHMTLGLEVIKFLLEQHEDNVPIVQEWIDK<br>AYNGDMATVTFGFSAQSDEARHMTLGLEIVKFLLEQHEDNVPIVQEWIDK<br>AHNGDMATVTFGFSAQSDEARHMTLGLEIVKFLLEQHEDNVPIVQEWIDK<br>AHNGDMATVTFGFSAQSDEARHMTLGLEIIKFLLEQHEDNVPIVQEWIDK<br>AYNGDMATVTFGFSAQSDEARHMTLGLEIVKFLLEQHEDNVPIVQEWIDK<br>AYNGDMATVTFGFSAQSDEARHMTLGLEIVKFLLEQHEDNVPIVQEWIDK<br>AYNGDMATVTFGFSAQSDEARHMTLGLEIVKFLLEQHEDNVPIVQEWIDK<br>AYNGDMATVTFGFSAQSDEARHMTLGLEIVKFLLEQHEDNVPIVQEWIDK<br>AYNGDMATVTFGFSAQSDEARHMTLGLEIVKFLLEQHEDNVPIVQEWIDK | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 |
| LmPH.0S2<br>LmPH.W1<br>DmPN<br>MoPN<br>PH1-a-10<br>PH1-c-7<br>PH1-c-58<br>PH1-d-52<br>PH1-d-80 | ****<br>WFWRGY.<br>WFWRGY.<br>WFWRGYR<br>WFWRGYR<br>WFWRGYR<br>WFWRGYR<br>WFWRGYR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 206<br>206<br>206<br>207<br>207<br>207<br>207<br>207<br>207 |

图 2 倭蜂猴粪便微生物来源的 PH 序列与其他 LmPH 序列的部分比对分析

**Figure 2** Partial amino acid sequence alignment of PH from fecal microbiome of *Nycticebus pygmaeus* with other LmPH Note: Sequences used in this alignment are: LmPH.OS2<sup>[23]</sup>, LmPH.W1<sup>[24]</sup>, MopN<sup>[19]</sup>, DmpN<sup>[25]</sup>. Two typical DEXRH motifs are indicated by asterisks.

研究发现 C<sub>12</sub>O 基因可分为 I 型和 II 型两类, II 型基因主要在氯代芳香族化合物的代谢途径中 出现,而 I 型基因对氯代邻苯二酚几乎没有降解能 力<sup>[26]</sup>。在 *Acinetobacter lwoffii* K24 和 *Burkholderia* sp. strain TH2 等菌中已克隆得到两类 C<sub>12</sub>O 基因<sup>[27-28]</sup>。

在系统进化树上选分布相对较远的 8 条倭蜂猴 粪便微生物来源的 C<sub>12</sub>O 基因片段, 与 A. lwoffii K24 和 Burkholderia sp. strain TH2 来源的 I 型 C<sub>12</sub>O 进行 序列比对(图4),发现*A. lwoffii* K24 来源的 I 型 $C_{12}O$ 序列中一个保守的半胱氨酸同样存在于倭蜂猴粪 便微生物来源的  $C_{12}O$  序列中,保守的两个酪氨酸 和两个组氨酸作为催化中心  $Fe^{3+}$ 的配体,研究表明 这个保守的半胱氨酸与酶活性并没有直接关系,但 会被  $Ag^+$ 和  $Hg^{2+}$ 所抑制<sup>[29]</sup>。推测倭蜂猴粪便微生物 来源的  $C_{12}O$  序列中的半胱氨酸也可能会被  $Ag^+$ 和  $Hg^{2+}$ 抑制。



图 3 倭蜂猴粪便微生物来源的 C<sub>12</sub>O 基因片段系统进化树分析

# Figure 3 Phylogenetic analysis based on the partial amino acid sequences of C<sub>12</sub>O genes from fecal microbiome of *Nycticebus pygmaeus*

Note: Sequences of clones identified in this study are indicated with " $C_{12}O$ ". The numbers in parentheses are accession numbers of sequences. Numbers at each branch point indicate the percentage supported by bootstrap values based on 1 000 replications. The scale bar represents the number of changes per amino acid position.

| AAC46228.1  | HDGVSKIDINPDED.AGPLVIHGTVTGPDGKPVAGAVVECWHANSKGFYS                         | 49  |
|-------------|----------------------------------------------------------------------------|-----|
| BAC16779.1  | RDGISKIDVNPDEG.AGPLVIRGTVTGPDGKPVANALVECWHANSKGFYS                         | 49  |
| C12015-b-1  | AVGFARMDDGSESDKVDTLFIESTVTDTEGNIIEG <mark>AKVE</mark> VWHANSLGNYS          | 50  |
| C12015-b-8  | TVGFARMDDGSESDQVDSLVIEGLVTDTNGNIIPNAKVEIWHANGLGNYS                         | 50  |
| C12015-c-21 | TVGFARMDDGSESDKIPTLIIEGTETDTEGNIIEG <mark>AKVEIWHAN</mark> SLGN <b>YS</b>  | 50  |
| C12015-c-30 | AVGFARMDDGSEEGKIPTLFIEGTVTDTEGHLIEGAKVEIWHANSLGNYS                         | 50  |
| C12015-d-7  | AVGFARMDDGTETDKIPTLFIEGTVTDTEGNIIEGAKVEIWHANSLGNYS                         | 50  |
| C12015-d-13 | AVGFARMDDGTESDKLDLLFIEGTVTDVDGNVIEGAKVEMWHANGLGMYS                         | 50  |
| C12015-d-39 | AVGFARMDDGAEEGKIPTLIIEGVVRDTSGQIIEGAKVEVWHANSLGNYS                         | 50  |
| C12015-d-63 | AVGFARMDDGSESDHLDTLIIEGTVTDTQGNIIENAKVEVWHANGLGNYS<br>*                    | 50  |
| AAC46228.1  | HFDPTGAOSDFNLRGAVKTGADGKYEFRTLMPVGYGCPPQGATQQLLNVL                         | 99  |
| BAC16779.1  | HFDPTGAQSEFNLRGAVSTDVDGKYEFRTLMPVGYGCPPHGATQQLLNVL                         | 99  |
| C12015-b-1  | FFDKSQSDFNLRRTIHADQDGKYVAQTTMPVGYGCPPEGTTQFVLNKL                           | 98  |
| C12O15-b-8  | FFDKSQSEFNLRRTIFTDADGKYTALTTMPVGYGCPPAGTTQAVLNLL                           | 98  |
| C12015-c-21 | FFDKSQSDFNLRRSIFSDQDGKYVALTTMPVGYGCPPEGTTQFVLDKL                           | 98  |
| C12O15-c-30 | FFDKSQSDFNLRRSIFSDQDGKYLAQTTMPVGYGCPPNGTTQFVLDKL                           | 98  |
| C12015-d-7  | FFDKSQSDFNLRRTILSDQDGKYVAQTTMPVGYGCPPEGTTQFVLDKL                           | 98  |
| C12015-d-13 | FFDKSQSEFNLRRTIIADDKGHYVAQTTMPVGYGCPPDGTTQAVLNKL                           | 98  |
| C12015-d-39 | FFDKSQSDFNLRRSIFTDANGQYTALTTMPVGYGCPPEGTTQLVLDKL                           | 98  |
| C12015-d-63 | FFDKTQSDFNLRRTIFSDAAGKYVAQTTMPVGYGCPPDGTTQALLNKL                           | 98  |
| AAC46228.1  | GRHGNREAHVHFEVSSDSARKLTTOENIEGDELIWDDFAYATRE                               | 143 |
| BAC16779.1  | ARHGNRPAHVHFFVTTDKYRKLTTQINIEGDPLIWDDFAYATRE                               | 143 |
| C12015-b-1  | GRHGNRPSHVHYFVSAPGYRKLTTQFNIEGDQYLWDDFAYATRX                               | 142 |
| С12015-b-8  | G <mark>RHGNRP</mark> SHVHYFVSAPGY <mark>RKLTTQ</mark> FNIEGDQYLWDDFAYATRX | 142 |
| C12015-c-21 | GRHGNRPSHVHYFVSAPGYRKLTTQFNIEGDQYLWDDFAYATRX                               | 142 |
| C12015-c-30 | G <mark>RHGNRPSHVHYF</mark> VSAPGY <mark>RKLTTQ</mark> FNIEGDQYLWDDFAFATRX | 142 |
| C12015-d-7  | GRHGNRPSHVHFFISAPGYRKLTTQFNIEGDKYLWDDFAFATRX                               | 142 |
| C12015-d-13 | GRHGNRPSHVHYFVSAPGFRKLTTQFNIEGDQYLWDDFAYATRX                               | 142 |
| C12015-d-39 | GRHGNRPSHVHYFVTAPGYRKLTTQFNIEGDQYLWDDFAYATRX                               | 142 |
| C12015-d-63 | GRHGNRPSHVHYEISAPGFRKLTTOFNIEGDOYLWDDFAYATRX                               | 142 |

图 4 倭蜂猴粪便微生物来源的 C<sub>12</sub>O 序列与 Acinetobacter lwoffii K24, Burkholderia sp. strain TH2 来源的 I 型 C<sub>12</sub>O 序列的部分比对分析

Figure 4 Partial amino acid sequence alignment of C<sub>12</sub>O from fecal microbiome of *Nycticebus pygmaeus* with type I C<sub>12</sub>O from *Acinetobacter lwoffii* K24 and *Burkholderia* sp. strain TH2

Note: The conserved tyrosine, histidine and cysteine residues are indicated by asterisks.

# 3 讨论

研究发现在含多组分苯酚羟化酶基因簇的 *A. calcoaceticus* NCIB8250 菌中位于苯酚羟化酶基因 下游的是编码邻位开环的 C<sub>12</sub>O 基因<sup>[19]</sup>,而在 *Alcaligenes* sp. OS2 菌中的苯酚羟化酶基因与 *Pseudomonas* sp. CF600 菌中的一样,其下游可能是 编码间位开环的 C<sub>23</sub>O 基因<sup>[23]</sup>。本研究中的系统进 化树分析结果表明,倭蜂猴粪便微生物来源的 PH 基因大部分与*A. calcoaceticus* NCIB8250 来源的 PH 序列聚在一起,因而推测倭蜂猴粪便微生物来源的 多组分苯酚羟化酶基因簇中,位于苯酚羟化酶基因 下游的是 C<sub>12</sub>O 的编码基因。 分析胃肠道微生物总 DNA 是揭示胃肠道中微 生物基因多样性的有效方法,而总 DNA 的提取是 获取微生物资源的关键所在。在不同的宏基因组 DNA 提取方法中,不可避免的出现环境 DNA 损失 现象是导致某些基因遗漏的直接原因。在本研究中 并未获得 C<sub>23</sub>O 基因,这可能与倭蜂猴粪便微生物 宏基因组 DNA 的提取方法及所用的简并引物有关, 也可能是 C<sub>23</sub>O 在倭蜂猴粪便微生物中的丰度相对 较低。后续研究过程中希望通过优化和改进提取粪 便微生物宏基因组 DNA 的方法,以便能从动物粪 便样品中获取更为丰富的芳环加氧酶。

本研究采用免培养法,通过提取倭蜂猴粪便微 生物宏基因组 DNA,对其中 PH 和 C<sub>12</sub>O 的基因多 样性进行了分析,而胃肠道中的芳环加氧酶对生物体的健康、食物消化、物质代谢等方面的影响还需 深入研究。

# 参考文献

- Fitch-Snyder H, Jurke M. Reproductive patterns in pygmy lorises (*Nycticebus pygmaeus*): behavioral and physiological correlates of gonadal activity[J]. Zoo Biology, 2003, 22(1): 15-32
- [2] Xu B, Xu WJ, Yang FY, et al. Metagenomic analysis of the pygmy loris fecal microbiome reveals unique functional capacity related to metabolism of aromatic compounds[J]. PLoS One, 2013, 8(2): e56565
- [3] Sun Y, Qian SJ. Advance on the studies of biodegradation of aromatic compounds[J]. Progress in Biotechnology, 2001, 21(1): 42-46 (in Chinese)
  孙艳, 钱世钧. 芳香族化合物生物降解的研究进展[J]. 生物 工程进展, 2001, 21(1): 42-46
- [4] Yang RD, Humphrey AE. Dynamic and steady state studies of phenol biodegradation in pure and mixed cultures[J]. Biotechnology and Bioengineering, 1975, 17(8): 1211-1235
- [5] van Hellemond EW, Janssen DB, Fraaije MW. Discovery of a novel styrene monooxygenase originating from the metagenome[J]. Applied and Environmental Microbiology, 2007, 73(18): 5832-5839
- [6] Brennerova MV, Josefiova J, Brenner V, et al. Metagenomics reveals diversity and abundance of *meta*-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation[J]. Environmental Microbiology, 2009, 11(9): 2216-2227
- [7] Kim BS, Kim SY, Park J, et al. Sequence-based screening for self-sufficient P450 monooxygenase from a metagenome library[J]. Journal of Applied Microbiology, 2007, 102(5): 1392-1400
- [8] Lee CM, Yeo YS, Lee JH, et al. Identification of a novel 4-hydroxyphenylpyruvate dioxygenase from the soil metagenome[J]. Biochemical and Biophysical Research Communications, 2008, 370(2): 322-326
- [9] Lu Y, Yu Y, Zhou R, et al. Cloning and characterisation of a novel 2,4-dichlorophenol hydroxylase from a metagenomic library derived from polychlorinated biphenyl-contaminated soil[J]. Biotechnology Letters, 2011, 33(6): 1159-1167
- [10] Suenaga H, Ohnuki T, Miyazaki K. Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds[J]. Environmental Microbiology, 2007, 9(9): 2289-2297
- [11] Kimura N, Sakai K, Nakamura K. Isolation and characterization of a 4-nitrotoluene-oxidizing enzyme from activated sludge by a metagenomic approach[J]. Microbes and Environments, 2010, 25(2): 133-139
- [12] Gou M, Qu YY, Xu BW, et al. Isolation, characterization and docking studies of 2,3-dihydroxybiphenyl 1,2-dioxygenase from an activated sludge metagenome[J]. Biotechnology Letters, 2012, 34(1): 117-123
- [13] Beloqui A, Pita M, Polaina J, et al. Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: biochemical properties, structural analysis, and phylogenetic relationships[J]. The Journal of Biological Chemistry, 2006, 281(32): 22933-22942
- [14] Silva CC, Hayden H, Sawbridge T, et al. Identification of genes

and pathways related to phenol degradation in metagenomic libraries from petroleum refinery wastewater[J]. PLoS One, 2013, 8(4): e61811

- [15] Futamata H, Harayama S, Watanabe K. Group-specific monitoring of phenol hydroxylase genes for a functional assessment of phenol-stimulated trichloroethylene bioremediation[J]. Applied and Environmental Microbiology, 2001, 67(10): 4671-4677
- [16] Sandhu A, Halverson LJ, Beattie GA. Identification and genetic characterization of phenol-degrading bacteria from leaf microbial communities[J]. Microbial Ecology, 2009, 57(2): 276-285
- [17] Junca H, Pieper DH. Amplified functional DNA restriction analysis to determine catechol 2,3-dioxygenase gene diversity in soil bacteria[J]. Journal of Microbiological Methods, 2003, 55(3): 697-708
- [18] Shingler V, Powlowski J, Marklund U. Nucleotide sequence and functional analysis of the complete phenol/3,4-dimethylphenol catabolic pathway of *Pseudomonas* sp. strain CF600[J]. Journal of Bacteriology, 1992, 174(3): 711-724
- [19] Ehrt S, Schirmer F, Hillen W. Genetic organization, nucleotide sequence and regulation of expression of genes encoding phenol hydroxylase and catechol 1,2-dioxygenase in *Acinetobacter calcoaceticus* NCIB8250[J]. Molecular Microbiology, 1995, 18(1): 13-20
- [20] Xu YQ, Chen M, Zhang W, et al. Genetic organization of genes encoding phenol hydroxylase, benzoate 1,2-dioxygenase alpha subunit and its regulatory proteins in *Acinetobacter calcoaceticus* PHEA-2[J]. Current Microbiology, 2003, 46(4): 235-240
- [21] Arai H, Ohishi T, Chang MY, et al. Arrangement and regulation of the genes for *meta*-pathway enzymes required for degradation of phenol in *Comamonas testosteroni* TA441[J]. Microbiology, 2000, 146(7): 1707-1715
- [22] Fox BG, Shanklin J, Somerville C, et al. Stearoyl-acyl carrier protein delta 9 desaturase from *Ricinus communis* is a diiron-oxo protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(6): 2486-2490
- [23] El-Sayed WS, Ismaeil M, El-Beih F. Cloning and nucleotide sequence analysis of catalytic domain encoding sequence of multicomponent phenol hydroxylase from *Pseudomonas aeruginosa* AT2 and *Alcaligenes* sp. OS2[J]. Research Journal of Cell and Molecular Biology, 2009, 3(1): 20-27
- [24] Qu YY, Shi SN, Zhou H, et al. Characterization of a novel phenol hydroxylase in indoles biotranformation from a strain *Arthrobacter* sp. W1[J]. PLoS One, 2012, 7(9): e44313
- [25] Nordlund I, Powlowski J, Shingler V. Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from *Pseudomonas* sp. strain CF600[J]. Journal of Bacteriology, 1990, 172(12): 6826-6833
- [26] Harayama S, Kok M, Neidle EL. Functional and evolutionary relationships among diverse oxygenases[J]. Annual Reviews of Microbiology, 1992, 46(1): 565-601
- [27] Kim SI, Leem SH, Choi JS, et al. Cloning and characterization of two catA genes in *Acinetobacter lwoffii* K24[J]. Journal of Bacteriology, 1997, 179(16): 5226-5231
- [28] Suzuki K, Ichimura A, Ogawa N, et al. Differential expression of two catechol 1,2-dioxygenases in *Burkholderia* sp. strain TH2[J]. Journal of Bacteriology, 2002, 184(20): 5714-5722
- [29] Kim SJ, Kim SJ, Leem SH, et al. Site-directed mutagenesis of two cysteines (155, 202) in catechol 1,2-dioxygenase I<sub>1</sub> of *Acinetobacter lwoffii* K24[J]. Journal of Biochemistry and Molecular Biology, 2001, 34(2): 172-175