

在大肠杆菌中利用 SCLM 系统进行高效率 λ-Red 基因 敲除/整合的新策略

王瑶¹ 许杨^{1*} 陈楠² 徐欣怡² 刘伟丰^{2*} 陶勇² (1. 南昌大学 食品科学与技术国家重点实验室 中德联合研究院 江西 南昌 330047) (2. 中国科学院微生物研究所 北京 100101)

摘 要:【目的】传统采用的 λ-Red 体系在大肠杆菌染色体上进行基因敲除/整合操作时存在操 作繁琐、假阳性率高、多基因连续敲除/整合不稳定等问题。本研究基于上述问题建立一种便于 基因构建、高筛选效率(100%)、具有统一技术步骤的 λ-Red 敲除/整合系统,为提高基因功能研 究和代谢工程改造工作效率奠定基础。【方法】采用新的 pSC101 衍生复制起始位点消除假阳性; 利用高拷贝数质粒和多克隆位点实现快速遗传构建操作;采用 Cre/LoxP 抗性消除位点便于多基 因连续整合。选择一系列初级代谢重要基因靶点进行敲除/整合。【结果】构建了一套新型 λ-Red 质粒系统(SC101-Cre-LoxP-MCS, SCLM 系统)。打靶片段经电转化受体细胞后在双抗性平板上 筛选阳性克隆,基因敲除/整合的效率均可以达到 100%。【结论】新建立的基因敲除与整合方 法提高了基因重组效率,大幅度减少了相关操作的步骤,缩短了研究周期。该方法的建立为基 因功能研究和构建新遗传特性的工程菌株提供了有力的工具。

关键词:λ-Red 重组技术,大肠杆菌,基因敲除与整合,模板质粒,筛选效率

Novel efficient strategy for λ-Red-mediated gene knock-out/in in *Escherichia coli* using SCLM system

WANG Yao¹ XU Yang^{1*} CHEN Nan² XU Xin-Yi² LIU Wei-Feng^{2*} TAO Yong²

(1. State Key Laboratory of Food Science and Technology, Sino-Germany Jiont Research Institute, Nanchang University, Nanchang, Jiangxi 330047, China)

(2. Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China)

Abstract: [Objective] Generally, traditional λ -Red recombination system possessed low efficiency, complicated processes, inconsistent protocols, high false-positive rate and instability for multi-gene-knock-out/knock-in during manipulation on chromosome gene of *Escherichia coli*. In order to solve these problems, this study established a high efficiency and standard strategy of gene knock-out/in. [Methods] Based on λ -Red recombination system, new template plasmids were developed. A pSC101 derivative replication origin was used to diminish the false-positive problem.

*通讯作者: 许杨: Tel: 86-791-8329479; ⊠: xuyang1951@163.com

刘伟丰:Tel:86-10-64807478;区:liuwfv@163.com

收稿日期: 2014-04-22; 接受日期: 2014-06-03; 优先数字出版日期(www.cnki.net): 2014-12-26

基金项目: 国家 973 计划项目(No. 2012CB721105)

Convenient genetic manipulation was achieved by using high-copy-number plasmid and multiple cloning sites. New genetic marker was used to facilitate continuous multi-gene knock-out/in. A series of key targets within primary metabolite networks of *E. coli* were then knocked out/in using our methods. **[Results]** New λ -Red plasmids system, named SC101-Cre-*Lox*P-MCS system, was developed. The positive colonies were selected on two-resistance plate and 100% positive rate was achieved. **[Conclusion]** The efficiency of gene recombination was improved by the new method of gene knock-out/knock-in. This new system provides a rapid genetic manipulation. Our new strategy provides important insights into gene function research and genetic engineering bacteria with new genetic characteristics.

Keywords: λ -Red recombination system, *Escherichia coli*, Gene knock-out/knock-in, Template plasmids, Screen efficiency

大肠杆菌是生命科学研究中一类重要的模式 微生物,同时也是生物工程领域最常用的宿主菌。 在大肠杆菌生理研究及代谢工程改造过程中,常常 需要对染色体上相关靶点序列进行敲除、突变、替 换或外源序列插入等遗传操作,以使大肠杆菌可以 获得对生产、研究有利的稳定性状^[1-4]。例如,在利 用大肠杆菌生产化合物时,通过对代谢通路中相关 基因的敲除可以阻断大肠杆菌的代谢旁路、减弱毒 副作用,以提高目标产物的产量或质量;通过基因 插入将染色体上基因的启动子替换为强启动子,从 而强化基因表达水平以增强大肠杆菌的某种代谢 能力。

目前,大肠杆菌染色体上基因敲除、整合等操 作绝大多数是通过 λ-Red 同源重组方法实现的^[5-6]。 完整的 λ-Red 重组方法 2000 年由 Wanner 等建立^[7]。 该方法通过将两侧含有同源序列的线性抗性基因 片段转入细胞,使片段在 λ 噬菌体重组酶 Redα、Redβ 和 Redγ 的作用下与染色体序列发生双交换^[8-10],从 而实现了对基因的敲除。在对外源基因片段进行染 色体上的插入整合操作时,则需要将外源基因拼接 于同源序列与抗性基因之间,然后在 λ-Red 重组酶 的作用下插入到染色体相关位点。相比于基因敲 除,基因整合能够赋予大肠杆菌更多新的性状,在 大肠杆菌生理研究和代谢工程改造中成为越来越 重要的研究手段^[11]。特别是近年来随着耐药性、重 组表达、多态性等大肠杆菌生理机制研究的广泛开 展,以及合成生物学中对基因表达微调控要求的提 高,蛋白表达跟踪、启动子替换等手段必须通过染 色体上的基因整合操作才能实现^[12-13]。

然而由于缺乏技术步骤统一、方便高效的操作 系统, λ -Red 重组在实际操作尤其是在基因整合操 作时受到了很大限制^[14]。目前 λ-Red 重组体系普遍 采用了 pKD4-pKD46-pCP20 的 3 质粒系统:其中包 括用于扩增打靶 DNA 片段的模板质粒 pKD4 (或 pKD3、pKD13)、含有 λ-Red 重组酶的 pKD46 以及 辅助质粒 pCP20^[7,15]。该系统采用 FRT 位点作为抗 性基因的消除标记,抗性基因两侧连有相同的 FRT 位点,该位点可以在 pCP20 质粒 Flp 酶的作用下发 生重组而消除抗性基因,以进行下一轮基因敲除。 但由于抗性消除后染色体被敲除基因座位处留有 完整的 FRT"痕", 当敲除或整合基因位点数量达到 5-6 个时,会造成染色体不稳定从而无法实现基因 的连续敲除^[16]。另一方面,这套系统最大的问题是 无法有效实现基因整合。基因整合需要将目的基因 序列与抗性基因拼接,由于 pKD4 无法进行直接的 构建操作,基因整合只能采用如下策略:(1)尝试 改造模板 pKD4 用于构建,但 pKD4 拷贝数极低, 并只能在特殊的 BW25141 菌株中复制,因此很难 用传统的构建方式实现。(2) 一些人试图在普通质 粒上进行拼接,但往往在重组后存在大量假阳性, 后续处理繁琐。(3) 交错 PCR 等不依赖质粒的拼接 方式,但效率很低,很难获得高浓度的目的基因片 段。以上问题导致在进行外源基因整合时,没有统 一的技术步骤,许多方法难以重复。使大肠杆菌基

因整合操作很难在普通实验室推广。

随着代谢工程等研究的发展与实际生产的需 要,亟需建立一种具有统一技术步骤、快捷、高效 的λ-Red 操作系统,以有利于相关研究手段进一步 应用。本文报道了一种高效的基因整合与敲除方 法,该方法以λ-Red 重组技术为基础,通过采用 Cre/LoxP 的抗性消除策略替代 Flp/FRT 策略,从而 有利于实现多基因连续稳定敲除与整合;通过引入 多克隆位点并对模板质粒复制起始位点进行改造, 实现了基因构建与高效筛选的兼容。从而建立了一 个方便快捷、易于推广、100%阳性筛选率且具有统 一技术步骤的λ-Red 操作系统。

1 材料与方法

1.1 材料

1.1.1 菌株和质粒:大肠杆菌菌株(Escherichia coli) BW25113、T1 由本实验室保存,相关质粒见表 1。 1.1.2 主要试剂:T4 DNA Ligase、限制性内切酶, 购于 New England Biolabs 公司;点突变试剂盒,购 于北京全式金生物有限公司;PCR 产物纯化及凝胶 回收试剂盒,购于 Promega 公司;引物由生工生物 工程(上海)有限公司合成。卡那霉素(Kan)和链霉素 (Str)的工作浓度为 50 mg/L, 氨苄青霉素(Amp)的工 作浓度为 100 mg/L。

1.2 引物设计

本研究中所涉及到的引物见表 2,引物位置如 图 1 所示。

1.3 模板质粒(pULM, pCLM, pSLM, pSLM-glk, pSLM-acs, pSLM-ispDF)及消除抗性质粒(pSCre) 的构建

以 pKD4 质粒为模板扩增卡那霉素抗性基因, 同时将多克隆位点和 Lox 位点序列设计在引物中, 以 pUC19 质粒为模板扩增 ColE1 复制起始位点片 段,以 pSB1s 质粒(本实验室构建,待发表)为模板 扩增复制子 pSC101,利用引物通过 Not I 和 Asc I 限制性酶切位点连接,所获得的质粒 pULM (复制 子为 ColE1)与 pCLM (复制子为 pSC101)即为含有 Lox66/Lox71 位点及两个多克隆位点的敲除/整合模 板质粒。以质粒 pCLM 为基础 利用引物 pSC101C-F 与 pSC101C-R 将起始位点的甘氨酸突变为缬氨酸, 该位点能增加质粒的拷贝数^[17],从而获得了新的敲

表1 本研究相关质粒					
Table 1 Plasmids used in this study					
质粒	质粒特征	来源及参考文献			
Plasmids	Characteristics	Sources or references			
pKD46	Amp ^r ; λ -Red recombinase under araBAD promoter ; ts origin	本实验室保存 ^[7]			
pKD4	Ampr ; FRT-Kanr-FRT ; oriR6k origin	本实验室保存 ^[7]			
pUC19	Amp ^r ; ColE1 origin	本实验室保存			
pSB1s	Str ^r ; araBAD promoter ; pSC101 origin	本实验室保存			
pGAPZaA-Cre	Zeocin ^r ; Cre recombinase	本实验室保存			
pS95s-glk	Str ^r ; P119 promoter-E. coli glk fragment	本实验室保存			
pS95s-ispDF	Str ^r ; P119 promoter-A. tumefaciens ispDF fragment	本实验室保存			
pS95s-acs	Str ^r ; P119 promoter-E. coli acs fragment	本实验室保存			
pULM	Lox66-Kan ^r -Lox71 ; MCS ; ColE1 origin	本研究			
pSCre	Str ^r ; Cre recombinase under araBAD promoter ; pSC101ts origin	本研究			
pCLM	Lox66-Kan ^r -Lox71 ; MCS ; pSC101 origin	本研究			
pSLM	Lox66-Kan ^r -Lox71 ; MCS ; pSC101G93R origin	本研究			
pSLM-glk	Kan ^r ; P119 promoter-E. coli glk fragment; pSC101G93R origin	本研究			
pSLM-acs	Kanr ; P119 promoter-E. coli acs fragment ; pSC101G93R origin	本研究			
pSLM-ispDF	Kanr ; P119 promoter-E. coli ispDF fragment ; pSC101G93R origin	本研究			

表 2 扩增及鉴定引物序列 Table 2 Primer sequence used for amplification and identification				
引物				
Primers	Sequences $(5' \rightarrow 3')$	Purpose		
构建用引物 Co	onstructing primers			
pSC101-F	AGACTC <u>GGCGCGCC</u> GGTTGGCGCGCAGACCCGCCAT	Amplification of pSC101 origin		
pSC101-R	AGACTC <u>GCGGCCGC</u> GGGTTTTGCTGCCCGCAAACGGG			
glk-F	AGACTCGCGGCCGCATGCAAAGTATGCATTAGTCG	Amplification of glk gene		
glk-R	AGACTC <u>GCTAGC</u> TTACAGAATGTGACCTAAGG			
cre-F	AGACTC <u>CCATGG</u> GATCCAATTTACTGACCGT	Amplification of cre gene		
cre-R	AGACTCCCCGAGCTAATCGCCATCTTCCAG			
acs-F	AGACTC <u>GCGGCCGC</u> ATGAGCCAAATTCACAAACA	Amplification of acs gene		
acs-R	AGACTC <u>GCTAGC</u> TTACGATGGCTCGCGATAG			
IspDF-F	AGACTCGCGGCCGCATGAAATTCGGCATCGTCAT	Amplification of IspDF gene		
IspDF-R	AGACTC <u>GCTAGC</u> TCATAGCGGTCTGCCTTGGT			
pSC101C-F	AAAGGCTTTCGGATTTTCCAGTGGAC	pSC101 origin point mutation of copy number		
pSC101C-R	GAAAATCCGAAAGCCTTTAACCAAAG	(G93→R)		
pSC101T-F	ACCAATACGTTCAGATGATGAACAT	pSC101 origin point mutation of temperature sensitive		
pSC101T-R	ATGTTCATCATCTGAACGTATTGGT	$(A56 \rightarrow V)$		
打靶片段扩增	引物 Amplification primers of targeting fragment			
ngi-P1	TACAATCTTCCAAAGTCACAATTCTCAAAAATCAGAAGAG	Amplification of pgi gene knock-out fragment		
pgi-11	TATTGCTAATGATTCCGGGGGATCCGTCGACC			
pgi-P2				
		Amplification of alk gene knock-in fragment		
ptsG-P3	TACTCAGGAGCACTCTCAATTGCATGCCACAGCTAACACC	A mphileadon of gik gene knock in nagment		
ntsG P2	CATCTGGCTGCCTTAGTCTCCCCAACGTCTTACGGATTA			
pist-12	GTGGTTACGGATGTACTCGACGGATCCCTGCAGACTA			
poxB-P1	GATGAACTAAACTTGTTACCGTTATCACATTCAGGAGAT	Amplification of <i>pox</i> B gene knock-out fragment		
	GGAGAACCAIGAIICCGGGGAICCGICGACC			
poxB-P2	GCCACCCTTTATGTAGGCTGGAGCTGCTTCG			
/D D1	TCCGTAACACTGAAAGAATGTAAGCGTTTACCCACTAAG	Amplification of galR gene knock-out fragment		
gaik-P1	GTATTTTATGATTCCGGGGGATCCGTCGACC			
galR-P2	GTCGCCAGACCATCGAAGAATTACTGGCGCTGGAATTG			
0		Amplification of white going knock out fragment		
yliE-P1	GTATTAACATGATTCCGGGGGATCCGTCGACC	Amplification of yull gene knock-out fragment		
	TCAGCAGACTGACTGTAAGTACGAACTTATTGATTCTGG			
yııE-P2	ACATACGTAAAATGTAGGCTGGAGCTGCTTCG			
poxB-P3	TCAGATGAACTAAACTTGTTACCGTTATCACATTCAGGA	Amplification of <i>isp</i> DF and <i>acs</i> gene knock-in		
P	GATGGAGAACCGCATGCCACAGCTAACACC	fragment		
poxB-P2				
鉴定引物 Ider	tification primers			
		Identification of recombinants of <i>nai</i> gene knock-out		
pgi-A1		recommended of recommended of par gone knock out		
<i>pgi</i> 112		Identification of recombinants of gene		
K1 (Kan ⁺ -F)	TGGCTACCCGTGATATTGCTGAAGA	knock-out/knock-in		
ptsG-A1	TGGATCTCTTCACCCGCTACCAGG	Identification of recombinants of glk gene knock-in		
ptsG-A2	ATGTTTAAGAATGCATTTGCTAAC			
poxB-A2	CCGCGTTCGCAGTGACTGAG	Identification of recombinants of <i>poxB</i> gene knock-out		
galR-A2	TCGTTCTCTGGAACACGCGC	Identification of recombinants of <i>gal</i> R gene knock-out		
yliE-A2	AGCTGTGCGCAAACCAACCA	Identification of recombinants of yliE gene knock-out		

注:引物的横线部分为酶切位点;pSC101-F为AscI酶切位点;pSC101-R、IspDF-F、acs-F与glk-F为NotI酶切位点;glk-R、IspDF-R、acs-R为NheI酶切位点;cre-F为NcoI酶切位点;cre-R为XhoI酶切位点;引物的黑体部分为同源臂.

Note: The underline primers were the restriction enzyme cutting site; pSC101-F was Asc I restriction enzyme cutting site; pSC101-R, IspDF-F, acs-F and glk-F were Not I restriction enzyme cutting site; glk-R, IspDF-R, acs-R were Nhe I restriction enzyme cutting site; cre-F were Nco I restriction enzyme cutting site; cre-R was Xho I restriction enzyme cutting site; The bold part of the primers were homologous arms.

图 1 基因敲除/整合及其卡纳抗性基因去除设计示意图 Figure 1 Schemes for gene knock-out/knock-in and excision of kanamycin resistance gene

Note: A: Procedures for gene knock-out; B: Procedures for gene knock-in.

除/整合模板质粒 pSLM。将 glk 基因转录子连接至 模板质粒 pSLM 的多克隆位点位置,构建的模板质 粒 pSLM-glk 便于基因的整合。将 Cre 重组酶基因 片段通过 Nco I 和 Xho I 连接到链霉素抗性、含有 阿拉伯糖启动子和 pSC101 复制起始位点的表达载 体 pSB1s 上,利用引物 pSC101T-F 与 pSC101T-R 将 pSC101 复制起始位点中的丙氨酸位点突变为缬 氨酸,该位点突变能将质粒改造成温度敏感型^[18],从 而获得了辅助质粒 pSCre 用于抗性基因的消除。分 子克隆操作采用分子克隆实验指南进行操作^[19],转 化 T1 感受态细胞,构建载体通过测序鉴定。

1.4 打靶片段的制备

以模板质粒(pULM、pCLM、pSLM、pSLM-glk、 pSLM-acs、pSLM-ispDF)为模板,利用打靶片段扩 增引物扩增含有 *Lox*P 位点的卡那霉素抗性片段(或 包括待插入基因片段),PCR 产物分别通过 PCR 产 物纯化试剂盒或凝胶回收试剂盒进行纯化(必要时 纯化后以 *Dpn* I 限制性内切酶 37 °C 处理 6 h 以去 除模板质粒,并再次通过 PCR 产物纯化试剂盒回收 打靶片段)。 1.5 Red 基因的诱导表达及电转感受态细胞的 制备

质粒 pKD46 利用 CaCl₂ 法转化进入宿主菌 BW25113,于含有氨苄青霉素的 LB 培养基中 30 °C 培养过夜,次日按1:100 接种至100 mL LB 培养基, 30 °C 培养至 *OD*₆₀₀ 为 0.2, 加入 L-阿拉伯糖至终浓 度 30 mmol/L,诱导1h(*OD*₆₀₀ 不超过 0.6),使 Redα、 Redβ 和 Redγ 三种蛋白表达。冰上预冷 30 min,然 后 4 000 r/min、4 °C 离心 10 min,用预冷的无菌 水洗涤1次,然后用预冷的10%甘油洗涤3次, 浓缩成 500 μL 感受态细胞,取 50 μL 感受态用于 电转化。

1.6 电转化

将处理过的打靶 DNA 片段与感受态细胞混匀, 转入预冷的 0.1 cm 的电击杯,然后进行电击,电击 条件为电压 1.8 kV,电击时间 5 ms,电击完成后立 即加入预热的 LB 培养基,30 °C 复苏 2 h,涂布卡 那霉素+氨苄青霉素抗性平板,30 °C 培养过夜。

1.7 基因敲除菌株鉴定

挑取平板上的重组子于 LB 液体培养基

注:A:基因敲除过程;B:基因整合过程.

(Amp⁺+Kan⁺), 30 °C 培养,利用鉴定引物 PCR 扩 增方法鉴定是否整合,挑选阳性克隆。将阳性菌种 置于 LB 液体培养基(Kan⁺) 42 °C 培养,以去除质粒 pKD46,然后划线 LB 平板(Kan⁺),对所得的单菌落 进行氨苄青霉素敏感型检测,对氨苄青霉素敏感的 菌种即为去除了质粒 pKD46 的菌种。

1.8 卡那霉素抗性基因的去除

将质粒 pSCre 转化以上获得的卡那霉素抗性的 菌种,涂布 LB 平板(Str⁺),30 °C 培养过夜,表达 的 Cre 酶识别 *Lox*P 位点将卡那霉素抗性去除。从 平板挑选克隆于 LB 液体培养基(Str⁺)30 °C 培养, 利用 0.2% L-阿拉伯糖进行诱导 Cre 酶表达,通过 鉴定引物进行 PCR 扩增鉴定抗性基因是否去除,将 阳性菌种置于 42 °C 培养,以去除质粒 pSCre,然 后划线无抗 LB 平板,对所得的单菌落进行卡那霉 素敏感型检测及 PCR 性状验证。

2 结果与分析

2.1 Cre-LoxP-MCS (CLM)系统的构建和检测 为了构建一种有利于基因整合操作,并能够实 现多基因的连续敲除或整合的模板质粒,在模板质 粒 pULM 中引入如下功能单元:(1) Lox66/Lox71 序 列作为抗性标记基因的消除位点。Lox66 和 Lox71 在 Cre 重组酶的作用下发生重组并消除抗性基因。 形成的 Lox72 序列很难被 Cre 酶进一步作用,从而 能够在后续的多基因连续敲除或整合时保持染色 体的稳定^[20]。(2) 在 Lox66 及 Lox71 两个位点的外 侧分别引入两个多克隆位点 MCS1 和 MCS2,从而 可以通过限制酶连接或其他方法方便地实现基因 拼接(图 2)。

以质粒 pULM 为模板对 *pgi* 基因(6-磷酸果糖异 构酶)进行敲除。打靶片段采用琼脂糖凝胶电泳纯化 和 PCR 产物纯化两种纯化方式,并经 *Dpn* I 酶处 理。结果显示,经琼脂糖凝胶电泳与 PCR 产物纯化 的 DNA 片段均有约 10³/50 μL 感受态细胞的克隆, 分别随机挑选 20 个克隆,用鉴定引物 *pgi*-A2 与 K1 对 *pgi* 基因敲除菌种进行鉴定。结果表明:经 PCR 产物纯化的 DNA 片段全部为假阳性(阳性率为 0, 图 3A),而经琼脂糖凝胶电泳回收的 DNA 片段, 有 2 个克隆的基因扩增条带大小为 600 bp,与实际 大小一致,为成功敲除的阳性克隆(图 3B)。经提取

图 3 菌落 PCR 对 pgi 基因敲除菌种的鉴定 Figure 3 PCR identification of recombinants of pgi gene knock-out

注:A:打靶片段通过 PCR 产物纯化试剂盒纯化;B:打靶片段通过琼脂糖凝胶电泳纯化.M:DNA marker;1:阳性对照;2-11: 随机挑选的重组子.

Note: A: DNA fragment used for knocking out the *pgi* gene was purified by cycle-pure kit; B: DNA fragment used for knocking out the *pgi* gene was purified by gel extraction kit. M: DNA marker; 1: Positive control; 2–11: Recombinants.

质粒鉴定,假阳性均为模板质粒转入引起。而通过 延长 *Dpn* I 的处理时间,能够一定程度上消除假阳 性(琼脂糖凝胶电泳纯化后处理超过 16 h, 16 阳 性/20 克隆,阳性率为 80%)。

将 pSCre 质粒转入 pKD46 消除的敲除菌株用于 消除抗性基因,利用引物 *pgi*-A1 与 *pgi*-A2 对抗性 基因消除菌种进行验证。由于含有卡那霉素抗性基 因,因此扩增条带大小为 2 024 bp (图 4,泳道 1), 消除卡那霉素抗性基因后,条带大小为 600 bp (图 4,泳道 2–11),条带大小与实际一致,表明卡那霉 素抗性基因已被 Cre 酶的作用去除。

2.2 SC101-Cre-LoxP-MCS (SCLM)系统的构建

基于质粒 pULM 和 pSCre 的 Cre-LoxP-MCS 系统能够成功实现大肠杆菌基因的敲除和抗性消除,

同时构建了多克隆位点也便于基因整合的分子操 作。但操作过程中存在较多的假阳性,还无法实现 高效率的敲除/整合。为了解决模板质粒造成的假阳 性问题,构建了质粒 pCLM。将 1 ng 的 pCLM 质粒 分别电转化 BW25113 和 BW25113 (pKD46) 取 1/10 体积的复苏细胞涂布具有相应抗性的平板。结果表 明,pULM 质粒转化 BW25113 (pKD46)的转化子数 (Kan⁺+Amp⁺平板)约为 10⁴/ng DNA (图 5A), pCLM 质粒转化 BW25113 的转化子数量约为 5×10³/ng DNA (Kan⁺平板)(图 5B),而转化 BW25113 (pKD46) 菌株时无转化子(Kan⁺+Amp⁺平板)(图 5C)。以上结 果证明由于质粒的不相容性,采用同样 pSC101 衍 生的复制起始位点的策略能够有效消除模板质粒 转入 BW25113 (pKD46)。

Note: M: DNA marker; 1: Recombinant with kanamycin resistance; 2-11: Recombinants without kanamycin resistance.

质粒 pCLM 所采用的 pSC101 复制起始位点 为低拷贝(5 copies/cell),在采用常规酶切连接操 作时,往往需要制备较多的质粒,造成操作的繁 琐,点突变改造的质粒 pSLM 提高了拷贝数便于 分子生物学操作。突变后获得质粒 pSLM 并通过 测序验证(图 6)。采用相同菌体量分别提取相关质 粒 pULM、pCLM 和 pSLM,凝胶电泳结果表明 pSLM 的浓度与 pULM 基因一致(图 7,泳道 1 与 泳道 3),证明 pSLM 质粒具有高拷贝特性从而有 利于基因操作。此外将 pSLM 质粒电转化 BW25113 (pKD46)时,转化能力与 pCLM 质粒相似,0.1 ng 的 DNA 仍然无转化子,证明 pSLM 仍然保持与 pKD46 不相容特性。

2.3 利用 SCLM 系统对大肠杆菌进行基因敲除

以 pSLM 为模板, 敲除 pgi 基因, 经 PCR 产物纯化与琼脂糖凝胶电泳的 DNA 片段均长有约 5×10² 个克隆, 分别随机挑选 20 个克隆, 用鉴定 引物对 pgi 基因敲除菌种进行鉴定。结果表明, 分 别有 18 个和 20 个阳性克隆, 阳性率分别为 90% 和 100% (图 8)。对 PCR 产物纯化中 2 个假阳性克 隆进行鉴定时,未发现 pSLM 特征序列, 推测为痕 量 DNA 污染造成。琼脂糖凝胶电泳回收具有 DNA 纯化作用, 因此后续实验均采用该方法进行 DNA 回收。

图 5 pCLM 质粒与 pULM 质粒转化比较

Figure 5 Comparison of transformants of plasmid pCLM and pULM

注:A pULM转化 BW25113 (pKD46) ;B pCLM转化 BW25113; C:pCLM转化 BW25113 (pKD46).

Note: A: Colonies for BW25113 (pKD46) transformed by pULM; B: Colonies for BW25113 transformed by pCLM; C: Colonies for BW25113 (pKD46) transformed by pCLM.

图 6 模板质粒 pSLM 示意图 Figure 6 Map of template plasmid pSLM

图 7 模板质粒 pULM、pCLM 和 pSLM 浓度的分析 Figure 7 Agarose gel electrophoresis identification of template plasmid pULM, pCLM and pSLM

注:M:DNA marker:1:模板质粒 pULM;2:模板质粒 pCLM;

3:模板质粒 pSLM.

Note: M: DNA marker; 1: Template plasmid pULM; 2: Template plasmid pCLM; 3: Template plasmid pSLM.

进一步,选择丙酮酸氧化酶 poxB (1 719 bp)、 乳糖代谢调控因子 galR (1 032 bp)、磷酸化调控因 子 yliE (2 349 bp)进行基因敲除操作。采用 pSLM 模 板质粒,分别对 poxB、galR、yliE 基因进行扩增, 然后对其进行敲除,采用验证引物进行验证,poxB (图 9A)、galR (图 9B)、yliE (图 9C)敲除后大小与阳 性对照大小一致。与敲除 pgi 基因的结果类似,在 约 5×10² 个克隆中分别挑取 20 个克隆进行验证,3 个基因均被成功敲除,阳性率均为 100%。以上结 果表明,以 pSLM 模板质粒为基础,能够实现高效 率的基因敲除。

2.4 利用 SCLM 系统对大肠杆菌进行外源基因 整合

以 pSLM 质粒为基础构建连接有大肠杆菌葡萄 糖激酶 glk 基因的模板质粒,并将 glk 基因整合到大 肠杆菌染色体的 ptsG 位点上。获得 50 个左右的克 隆,随机挑选 8 个克隆,采用引物 K1 与 ptsG-A2

图 8 菌落 PCR 对 pgi 基因敲除菌种的鉴定

Figure 8 PCR identification of recombinants of pgi gene knock-out

注:A:打靶片段通过 PCR 产物纯化试剂盒纯化;B:打靶片段通过琼脂糖凝胶电泳纯化. M:DNA marker;1:阳性对照;2–11: 随机挑选的重组子.

Note: A: DNA fragment used for knocking out the *pgi* gene was purified by cycle-pure kit; B: DNA fragment used for knocking out the *pgi* gene was purified by gel extraction kit. M: DNA marker; 1: Positive control; 2–11: Recombinants.

图 9 菌落 PCR 对 poxB、galR、yliE 基因敲除菌种的鉴定 Figure 9 PCR identification of recombinants of poxB, galR and yliE gene knock-out 韩险:D.t.arm 其用韩险:C.t.a/E 其用韩险 M.t.DNA markers 1.1. 即性时昭:2.1 防机地造的素相子

注: A: *pox*B 基因敲除; B: *gal*R 基因敲除; C: *yli*E 基因敲除. M: DNA marker; 1: 阳性对照; 2: 随机挑选的重组子. Note: A: *pox*B gene knocking out; B: *gal*R gene knocking out; C: *yli*E gene knocking out. M: DNA marker; 1: Positive control; 2: Recombinants.

进行鉴定,扩增条带大小为 600 bp (图 10,泳道 1-8),证明 glk 基因成功整合至 ptsG 基因位置,阳 性率为 100%,并进一步采用 pSCre 成功消除了卡 那霉素抗性基因(图 11,泳道 2-9)。

为了进一步验证系统在整合操作时适应的片 段种类和大小范围,选择大肠杆菌乙酰辅酶 A 合成 酶 acs 基因与农杆菌萜类合成代谢 ispDF 基因进行 基因整合操作。acs 转录子与卡那抗性基因大小为 4 113 bp *isp*DF 基因与卡那抗性基因大小为 3 548 bp。 与 glk 基因整合结果类似,获得 50 个左右的克隆, 随机挑选 8 个克隆,采用引物 poxB-A2 与 K1 进行 鉴定,扩增条带大小为 600 bp (图 12,泳道 2),证

图 10 菌落 PCR 对 glk 基因整合菌种的鉴定

Figure 10 PCR identification of recombinants of *glk* gene knock-out

注:M:DNA marker; 1-8:随机挑选的重组子。

Note: M: DNA marker; 1-8: Recombinants.

Note: M: DNA marker; 1: Recombinant with kanamycin resistance; 2-9: Recombinants without kanamycin resistance.

图 12 菌落 PCR 对 acs 和 ispDF 基因整合菌种的鉴定 Figure 12 PCR identification of recombinants of acs and ispDF gene knock-in

注: A: *acs* 基因整合; B: *isp*DF 基因整合. M: DNA marker; 1–2:随机挑选的重组子. Note: A: *acs* gene knocking in; B: *isp*DF gene knocking in. M: DNA marker; 1–2: Recombinants.

明基因成功整合至 *pox*B 基因位置, 阳性率为 100%。 以上结果表明,以 pSLM 模板质粒为基础,能够实 现高效率的基因整合。 统的大肠杆菌 λ-Red 基因敲除整合策略(图 13)。在 该策略中,通过在模板质粒中引入 2 个多克隆位点, 能够方便实现待整合基因与抗性标记基因的拼接, 便于制备打靶 DNA 片段。通过对复制起始位点的 改造,节省了整个 DNA 制备和筛选的时间,并实

3 讨论

通过本研究的优化,建立了一套基于 SCLM 系

现了克隆筛选的 100%阳性率(表 3)。

Wanner 等^[7]建立的 λ-Red 同源重组体系由于操 作简单、成功率高,是大肠杆菌染色体基因敲除整 合的首选方式。λ-Red 同源重组体系目前普遍采用 Wanner 等^[7]构建的 pKD4 (包括衍生的 pKD3、pKD13) 为模板质粒。该模板质粒采用不含 pir 蛋白的 R6k 为复制起始位点,只能在特殊的宿主菌 BW25141 中才能复制,可以最大限度地消除同源重组的假阳 性。但 pKD4 没有多克隆位点,基因整合操作需要 通过质粒外拼接或对质粒进行改造才能实现。然而 由于低拷贝特性且不能在常规菌株中进行构建, pKD4 衍生质粒无法同时具备低阳性率和方便改造 两种特性,从而限制了该方法在条件有限的常规实 验室中进行推广。近年来针对肠杆菌 λ-Red 重组体 系,人们开展了一些体系优化和改造工作,以试图 解决操作繁琐等问题。2013年,Chan等^[11]将分别 表达 λ-Red 重组酶和 Cre 重组酶的两种质粒整合在 一起,创建了单一辅助质粒,节省了基因连续敲除 操作的时间。但在该系统中模板质粒不含有多克隆 位点,并采用了常规 p15A 复制起始位点,因此不 利于基因整合操作,也没针对阳性率进行改进。而 本研究的 SCLM 系统利用 pSC101 复制子,减少了 *Dpn* I 酶处理等繁琐的 DNA 片段制备过程,成功解 决了阳性率和改造不能同时进行的问题。采用多克 隆位点适合大多数分子生物学实验室进行,也可以 通过 Gibson 等^[21]方法实现快速片段拼接(表 4)。

表 3 重组效率结果统计 Table 3 The statistics of recombination efficiency							
	模板质粒						
项目 I	Template plasmid						
			pULM		pSI	LM	
处理过程	PCR 产物纯化	+	-	-	+	-	
Method of treatment	琼脂糖凝胶电泳纯化	-	+	+	-	+	
	Dpn I 处理	+	+	处理 16 h	-	-	
阳性率		0	20	80	90	100	
Positive ratio (%)							

注:+:采用此方法处理;-:未采用此方法处理;

Note: +: The process was adopted; -: The process was not adopted.

表 4 不同系统中的模板质粒特性						
Table 4Features of different template plasmids						
	抗性消除位点	复制起始位点	医粒体回数	夕古降位占		
模板质粒	(多基因敲除是否稳定)	(是否有消除假阳性功能)	灰松坊 火致	多元唯位点 Multiple cloning sites		
Template plasmid	Site of eliminating resistance marker	Origin of replication	number			
	(Stability of multi-gene knock-out/knock-in)	(Reduce false positive rate)				
pKD4 ^[7]	FRT/FRT (不稳定)	R6k (有)	低	无		
pECLox2272k ^[20]	Lox66/Lox71 (稳定)	p15A(无)	中等	无		
pSLM (This study)	Lox66/Lox71 (稳定)	pSC101 (G93R) (有)	高	有		

综上所述,通过对 λ-Red 重组体系的改造和 优化,建立了一套简单、高效率的大肠杆菌 λ-Red 基因敲除、整合系统。利用该系统进行基因整合 时,可以快捷地实现整合片段与抗性基因间的拼 接。同时由于该方法阳性率高,减少了不必要的 DNA 片段处理过程,从而能够快速、高效地进行 基因的连续敲除和整合,适合在普通分子生物学 实验室中推广。

参考文献

- Bailey JE. Toward a science of metabolic engineering[J]. Science, 1991, 252(5013): 1668-1674
- [2] Stephanopoulos G, Vallino JJ. Network rigidity and metabolic engineering in metabolite overproduction[J]. Science, 1991, 252(5013): 1675-1681
- [3] Li Y, Cao ZA. Microbial metabolic engineering: gateway to develop blueprints for cell factories[J]. Journal of Chemical Industry and Engineering (China), 2004, 55(10): 1573-1580 (in Chinese) 李寅,曹竹安.微生物代谢工程: 绘制细胞工厂的蓝图[J]. 化工学报, 2004, 55(10): 1573-1580
- [4] Lee JW, Na D, Park JM, et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals[J]. Nature Chemical Biology, 2012, 8(6): 536-546
- [5] Tomoya B, Takeshi A, Miki H, et al. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection[J]. Molecular System Biology, 2006, 2: 1-11
- [6] Huruma NT, Bruno MG. Use of lambda Red-mediated recombineering and Cre/Lox for generation of markerless chromosomal deletions in avian pathogenic *Escherichia coli*[J]. Federation of European Microbiological Societies Microbiology Letters, 2011, 325(2): 140-147
- [7] Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(12): 6640-6645
- [8] Murphy KC. Lambda Gam protein inhibits the helicase and chi O'Stimulated recombination activities of *Escherichia coli* RecBCD enzyme[J]. Journal of Bacteriology, 1991, 173(18):

5808-5821

- [9] Poteete AR. What makes the bacteriophage lambda Red system useful for genetic engineering: molecular mechanism and biological function[J]. Federation of European Microbiological Societies Microbiology Letters, 2001, 201(1): 9-14
- [10] David IF, Donald LC. Bacteriophage lambda: alive and well and still doing its thing[J]. Current Opinion in Microbiology, 2001, 4(2): 201-207
- [11] Chan WS, Sang YL. Rapid one-step inactivation of single or multiple genes in *Escherichia coli*[J]. Biotechnology Journal, 2013, 8: 776-784
- [12] Thakker C, Martinez I, San KY, et al. Succinate production in *Escherichia coli*[J]. Biotechnology Journal, 2012, 7(2): 213-224
- [13] Park JH, Oh JE, Lee KH, et al. Rational design of *Escherichia coli* for L-isoleucine production[J]. American Chemical Society Synthetic Biology, 2012, 1(11): 532-540
- [14] Hu FX, Ding R, Cui ZH, et al. Approaches and strategies of gene scarless knockout in the *Escherichia coli* genome[J]. Letters in Biotechnology, 2013, 24(4): 552-557 (in Chinese) 胡逢雪,丁锐,崔震海,等.大肠杆菌基因无痕敲除技术及 策略[J]. 生物技术通讯, 2013, 24(4): 552-557
- [15] Doublet B, Douard G, Targant H, et al. Antibiotic marker modifications of λ Red and FLP helper plasmids, pKD46 and pCP20, for inactivation of chromosomal genes using PCR products in multidrug-resistant strains[J]. Journal of Microbiological Methods, 2008, 75(2): 359-361
- [16] Mahesh M, Hend AA, Zdeno L. Gene replacement techniques for *Escherichia coli* genome modification[J]. Folia Microbiologica, 2011, 56(3): 253-263
- [17] James P, Gregory JP. New pSC101-derivative cloning vectors with elevated copy numbers[J]. Plasmid, 2008, 59: 193-201
- [18] Tamotsu H, Mutsuo S. Mutations to temperature sensitivity in R plasmid pSC101[J]. Journal of Bacteriology, 1977, 31(2): 405-412
- [19] Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual[M]. Translated by Huang PT. 3rd Edition. Beijing: Science Press, 2002: 68-70 (in Chinese)
 萨姆布鲁克 J, 拉塞尔 DW. 分子克隆实验指南[M]. 黄培堂, 译. 第3版. 北京: 科学出版社, 2002: 68-70
- [20] Nobuaki S, Hiroshi N, Yota T, et al. New multiple-deletion method for the *Corynebacterium glutamicum* genome, using a mutant *Lox* sequence[J]. Applied and Environmental Microbiology, 2005, 71(12): 8472-8480
- [21] Merryman C, Gibson DG. Methods and applications for assembling large DNA constructs[J]. Metabolic Engineering, 2012, 14(3): 196-204