

金属离子对粪产碱杆菌 C16 的脱氮和亚硝酸盐积累的影响

王瑶 刘玉香* 安华 张浩

(太原理工大学 环境科学与工程学院 山西 太原 030024)

摘 要:【目的】研究不同金属离子对异养氨氧化细菌 C16 的生长和脱氮性能影响,探讨适于 C16 生长和脱氮的金属离子及其浓度。【方法】实验选用 Mg²⁺、Mn²⁺、Fe²⁺、Cu²⁺、Zn²⁺5 种金 属离子,对 C16 的生长、脱氮性能、亚硝酸盐氮积累以及相关酶活性进行研究。【结果】Mg²⁺ 明显促进 C16 的生长和 NH₄⁺-N 氧化速率;较高浓度 Mn²⁺使得 C16 无法生长;原培养基中缺 少 Fe²⁺会抑制 C16 的生长和 NH₄⁺-N 氧化速率;在原培养基中加入 0.1 mmol/L 的 Cu²⁺对 C16 的生长和脱氮具有一定的促进作用,Cu²⁺使得培养基中基本无 NO₂⁻-N 和 NH₂OH 的积累;不同 浓度的 Zn²⁺对 C16 的生长和氨氮去除有抑制作用。酶活实验结果显示,0.1 mmol/L Mg²⁺促进了 羟胺氧化还原酶(HAO)的活性;0.1 mmol/L Cu²⁺促进了硝酸盐还原酶(Nar)和亚硝酸盐还原酶 (Nir)的活性。【结论】Mg²⁺是 C16 生长和脱氮过程中的一种重要金属离子;加入 Cu²⁺可避免过 量亚硝酸盐积累。

关键词:异养氨氧化,金属离子,羟胺氧化还原酶,硝酸盐还原酶,亚硝酸盐还原酶

Influence of metal ions on nitrogen removal and NO₂⁻-N accumulation by *Alcaligenes faecalis* C16

WANG Yao LIU Yu-Xiang^{*} AN Hua ZHANG Hao

(College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China)

Abstract: [Objective] The influence of different metal ions on the growth and nitrogen removal ability were studied to identify the suitable metal ions and their concentrations for strain C16. [Methods] Mg^{2+} , Mn^{2+} , Fe^{2+} , Cu^{2+} and Zn^{2+} ions were selected to study their influence on the growth, nitrogen removal ability, NO_2^- -N accumulation and activity of relative enzymes of strain C16. [Results] Mg^{2+} significantly promoted the growth and NH_4^+ -N oxidation rate of strain C16; C16 could not grow in higher concentrations of Mn^{2+} ; lacking of Fe^{2+} in original medium inhibited the growth and NH_4^+ -N oxidation rate of c16; adding 0.1 mmol/L Cu^{2+} in the original culture medium could stimulate the growth and nitrogen removal rate of strain C16, meanwhile NO_2^- -N and NH_2OH were only present in trace amounts; the existing of Zn^{2+} of different concentrations inhibited the growth and NH_4^+ -N oxidation rate of C16. A further enzyme testing results showed that, 0.1 mmol/L Mg^{2+} promoted the activity of hydroxylamine oxidase (HAO); 0.1 mmol/L Cu^{2+}

*通讯作者: ⊠: yuxiangliu2002@126.com

收稿日期: 2014-02-09; 接受日期: 2014-03-13; 优先数字出版日期(www.cnki.net): 2014-04-10

基金项目:国家自然科学基金项目(No. 51078252);山西省国际合作计划项目(No. 2010081018);山西省自然科学基金项目(No. 2010011016-1)

promoted nitrate reductase (Nar) and nitrite reductase (Nir) activity. [Conclusion] Mg^{2+} was necessary for the growth and nitrogen removal of strain C16. The addition of Cu^{2+} could avoid excessive accumulation of nitrite.

Keywords: Heterotrophic ammonia oxidizing bacteria, Metal ions, Nitrate reductase, Nitrite reductase, Hydroxylamine oxidase

传统的废水处理过程中氨氮去除包括好氧条 件下的硝化作用和厌氧条件下的反硝化作用。然 而,这种传统的氨氮去除过程中存在反应装置庞 大、对高负荷有机物浓度敏感等许多难以克服的问 题^[1-5]。近年来在废水处理过程中,异养微生物的 脱氮作用受到了越来越多的关注^[6-7],异养脱氮是 异养微生物同时异养硝化和好氧反硝化作用的 结果^[8-10]。

在生物法处理废水的过程中,微量的金属离 子是微生物生命活动所需的营养物质,是酶的活 化剂或活性基,对酶的活性有一定的促进作用。 但当环境中的金属离子缺乏、过多或比例失调 时,会影响酶的活性,从而影响微生物的生长代 谢作用^[11-13]。异养氨氧化菌在代谢底物时,有着与 自养氨氧化菌相似的酶系统,即先由氨单加氧酶 (AMO)将铵/氨氧化为羟胺,然后由羟胺氧化还原 酶(HAO)催化进一步氧化得到亚硝酸。AMO 和 HAO 是好氧氨氧化菌代谢过程中的关键酶^[10,14]。 在反硝化过程中,存在于细胞周质中的硝酸盐还原 酶(Nar)是在好氧条件下将硝酸盐转变成亚硝酸盐 的关键酶^[15-17]。从反硝化细菌 Thiosphaera pantotropha LMD中分离出的两种类型的亚硝酸盐 还原酶(Nir)都可在好氧条件下催化亚硝酸盐发生 还原反应^[18]。在异养硝化过程中,各种酶所需的 金属离子是不同的,例如:AMO的活性位点被认 为含有 Cu²⁺ 少量 Cu²⁺的加入可以明显的刺激 NH₃ 的氧化^[19-20]。而在对细菌 T. pantotropha LMD 的研 究中发现, Mg²⁺是 AMO 所需的一种重要金属离 子^[21]。非血红素 Fe 的羟胺氧化还原酶在异养氨氧 化菌中广泛分布 这些酶的羟胺氧化还原活性可明 显被 Fe²⁺激活^[10,22-23]。在氮氧化物还原酶中,检测 到了 Fe²⁺的存在^[24]。

Alcaligenes faecalis C16 是本实验室从焦化废 水活性污泥中筛选到的一株高效去除氨氮并显著 积累亚硝酸盐氮的异养氨、氧化细菌^[5,25]。之前的 实验主要是对 C16 的最佳碳源、氮源、C/N 和 pH 等条件做了研究,本实验则研究 Mg^{2+} 、 Mn^{2+} 、 Fe^{2+} 、 Cu^{2+} 、 Zn^{2+} 5 种金属离子对异养硝化细菌 C16 的生 长、脱氮性能、亚硝酸盐氮积累以及酶活性的影响, 探讨适于 C16 生长和脱氮的金属离子及其浓度, 从而使 A. faecalis C16 在生物废水处理过程中有更 好的应用。

- 1 材料与方法
- 1.1 微生物

A. faecalis C16 保存在-40°C 甘油封存的培养 基中。

1.2 培养基

基础培养基(g/L):柠檬酸钠 4.902, (NH₄)₂SO₄ 0.472,K₂HPO₄ 0.200, NaCl 0.120。用 25%的 NaOH 溶液调节到培养基 pH 7.0。

原培养基(g/L):柠檬酸钠 4.902, (NH₄)₂SO₄ 0.472, K₂HPO₄ 0.200, NaCl 0.120, MgSO₄·7H₂O 0.050, MnSO₄·4H₂O 0.010, FeSO₄·7H₂O 0.010。用 25%的 NaOH 溶液调节到培养基 pH 7.0。

1.3 金属离子对 C16 硝化性能的影响

1.3.1 金属离子种类对 C16 硝化性能的影响:为 了研究 C16 在不同的无机金属离子培养基中的生 长和NH₄⁺-N去除效果 将 0.4 mol/L 的 Mg²⁺、Mn²⁺、 Fe²⁺、Cu²⁺、Zn²⁺无菌母液,取 0.1 mL 分别加入到 高压蒸汽灭菌后的基础培养基中,将基础培养 基作为对照。每 100 mL 培养基中接入 1 mL 处于 对数期的 C16 细菌悬浮液(其菌液吸光值为 0.745±0.028)。在 30 °C、120 r/min 摇床中培养。 每 24 h 取样测定其菌液密度(OD_{600} 值)和 NH_4^+ -N 值。

1.3.2 不同浓度 Mg^{2+} 、 Mn^{2+} 和 Fe^{2+} 对 C16 硝化性能的影响: 原培养基中的 3 种金属离子(Mg^{2+} 、 Mn^{2+} 、 Fe^{2+})浓度依次为 0、0.1、1.0、3.0 mmol/L, 其他两种金属离子浓度不变,以原培养基作为对照,研究 C16 的生长和 NH_4^+ -N 去除效果。高压蒸汽灭菌后,每 100 mL 的培养基中接入 1 mL 处于对数期的 C16 细菌 悬浮液(其菌液吸光值为0.745±0.028)。30 °C、120 r/min 摇床培养。每 24 h 取样测定其菌液密度(OD_{600} 值)、 NH_4^+ -N、 NO_2^- -N和 NH_2OH-N 值。

1.3.3 不同浓度 Cu²⁺对 C16 硝化性能的影响:在 原培养基中分别加入 0.1、0.5、1.0 mmol/L 的 Cu²⁺, 以原培养基作为对照,研究 Cu²⁺对 C16 生长和脱 氮性能的影响。30 °C、120 r/min 摇床培养。每 24 h 取样测定其菌液密度(*OD*₆₀₀ 值)、NH₄⁺-N、 NO₂⁻-N 和 NH₂OH-N 值。

1.3.4 不同浓度 Zn^{2+} 对 C16 硝化性能的影响:在 原培养基中分别加入 0.1、1.0、3.0 mmol/L 的 Zn^{2+} 。 以原培养基作为对照,研究 Zn^{2+} 对 C16 生长和脱 氮性能的影响。30 °C、120 r/min 摇床培养。每 24 h 取样测定其菌液密度(OD_{600} 值)、NH₄⁺-N、 NO₂⁻-N 和 NH₂OH-N 值。在以上方法中所有高压 蒸汽灭菌培养基都是基础培养基,所有金属离子母 液都是过滤除菌。

1.4 不同无机金属离子对 HAO、Nar 和 Nir 活性的影响

在酶体系中分别加入 0.1 mmol/L 的 Mg^{2+} 、 Mn²⁺、Cu²⁺和 Fe²⁺分别测定 HAO、Nar 和 Nir 活性, 研究不同金属离子的加入对 HAO、Nar 和 Nir 活性 的影响。以原培养基作为对照。

1.5 测定方法

菌液密度用可见分光光度计在波长 600 nm 测 吸光度;氨氮:纳氏试剂光度法;亚硝酸盐氮: N-(1-萘基)-乙二胺光度法^[26];羟胺:8-羟基喹啉光 度法^[27]。

酶活测定方法:从培养 24 h 的培养基中取出

200 mL 菌液进行预处理, 8 000 r/min 离心 10 min 后倒掉上清液,用 pH 7.4、0.01 mol/L 磷酸盐缓冲 液冲洗 2-3 次, 使菌液悬浮。用超声波破碎 5 mL 细菌悬浮液(20 min, 37 W, 超声波处理 3 s 停顿 7 s,冰浴)。破碎后离心(15 000 r/min、20 min、4 °C), 得到 5 mL 上清液用于测定 HAO、NiR 和 Nar 的活 性。HAO 的测定体系是:0.050 mol/L Tris-HCl (pH 7.4), 0.001 mol/L 铁氰化钾, 0.004 mol/L EDTA, 800 µL 酶液,加入 0.002 mol/L 羟胺反应开始,在 400 nm 处测其吸光度。根据反应混合物中羟胺的 减少量测定 HAO 的活性。Nar 的测定体系是: 10 mmol/L 磷酸盐缓冲溶液(pH 7.4), 0.2 mmol/L NADH, 800 μL 酶液, 加入 10 μmol/L 硝酸钠反应 开始。根据反应混合物中硝酸钠的减少量测定 Nar 的活性。Nir 的测定体系是: 10 mmol/L 磷酸盐缓 冲溶液(pH 7.4), 0.2 mmol/L NADH, 800 µL 酶液, 加入 10 µmol/L 亚硝酸钠反应开始。根据反应混合 物中亚硝酸钠的减少量测定 Nir 的活性。Nar 和 Nir 均在 340 nm 处测其吸光度。

蛋白浓度的测定用 Bradford Reagent Kit (北京 索莱宝科技有限公司)。每分钟催化 1 μmol 底物所 需的酶量定义为一个酶活单位(U)。

2 结果与讨论

2.1 金属离子种类对 C16 脱氮性能的影响

浓度为 0.4 mmol/L 的 Mg^{2+} 、 Mn^{2+} 、 Cu^{2+} 、 Fe^{2+} 、 Zn²⁺ 5 种金属离子对 C16 的生长和脱氮性能影响 如图 1A, B 所示。与对照组相比,基础培养基中 加入 Mg^{2+} 明显促进 C16 的生长和 NH_4^+ -N 氧化速 率。基础培养基中加入 Fe^{2+} 对 C16 的生长基本没 有影响,但促进了 NH_4^+ -N 氧化速率。而 Cu^{2+} 和 Zn²⁺的加入却明显抑制了 C16 的生长,并且 NH_4^+ -N 氧化速率也较低。基础培养基中加入 Mn^{2+} 时,C16 未见生长。由此可知, Mg^{2+} 对 C16 的生 长和脱氮有重要作用,它可能是 C16 脱氮途径中 的一种重要金属离子。

Note: Error bars using $x \pm s$ of two replicates.

结果表明不同金属离子对 C16 的生长和脱氮 具有不同作用。这些金属离子的加入可能在一定程 度上影响了 C16 脱氮过程中相关酶的活性。 Robertson 等^[21]对异养硝化细菌 *T. pantotropha* LMD 的研究结果显示, Mg^{2+} 是 AMO 所需的一种 重要金属离子。Zhao B.等^[3]的研究发现, Mg^{2+} 明 显促进了异养硝化细菌 *Providencia rettgeri* YL 的 生长和氨氮去除速率, Mn^{2+} 和 Zn²⁺对 YL 的生长和氨 氮去除速率也有促进作用,这与对 C16 的作用不同。 2.2 不同浓度 Mg^{2+} 、 Mn^{2+} 和 Fe^{2+} 对 C16 硝化性 能的影响

2.2.1 不同浓度的 Mg^{2+} 对 C16 硝化性能的研究: 如图 2A、B 所示,当原培养基中没有 Mg^{2+} 时,C16 的生长和 NH_4^+ -N 去除速率较其他浓度组变慢, NH_4^+ -N 在 72 h 才基本去除完全;0 mmol/L Mg^{2+} 浓度组的 NH_2OH 累积量远远高于其他浓度组,在 24 h NH_2OH 浓度达到了 30.212±2.396 mg/L,然后 开始逐渐减少(图 2C); NO_2^- -N 的积累量与原培养 基相比无明显差异(图 2D)。由此推测出 Mg^{2+} 可能 影响了 HAO 的活性 *继*而影响了羟胺的氧化速率, 使羟胺大量积累。如图 2 所示,不同浓度 Mg^{2+} 对 C16 的生长和 NH_4^+ -N 氧化都有一定的促进作用。 因此, Mg^{2+} 是 C16 生长和脱氮过程中的一种重要 金属离子, 这与上述实验得出的结论是一致的。 Zhao B.等^[3]和 Kim 等^[28]的研究显示, Mg^{2+} 也明显 促进了异养硝化细菌 *P. rettgeri* YL 和 *Bacillus* strains PK15 的生长和氨氮去除速率。

2.2.2 不同浓度的 **Mn**²⁺对 **C16** 硝化性能的研究: 当 Mn²⁺浓度为 1.0、3.0 mmol/L 时,C16 未见生长。 在 0 和 0.1 mmol/L 浓度组中,C16 的生长、NH4⁺-N 氧化以及 NO2⁻-N 和 NH2OH 的积累与原培养基基 本相同,如图 3 所示。由此可知,较高浓度的 Mn²⁺ 对 C16 的生长和氨氮去除有抑制作用。

2.2.3 不同浓度 Fe^{2+} 对 C16 硝化性能的研究: 如 图 4A、B 所示,当原培养基中没有 Fe^{2+} 时,在 24 h,C16 的生长速度和 NH₄⁺-N 氧化速率都低于 其他浓度组;在 NH₄⁺-N 氧化过程中,NO₂⁻-N 和 NH₂OH 的积累量明显低于其他浓度组,如图 4C、 D 所示。在 24 h,随着 Fe^{2+} 浓度的增大, Fe^{2+} 明显 促进了 C16 的生长和 NH₄⁺-N 氧化速率。48 h 后, 较高浓度的 Fe^{2+} 使得 NH₂OH 的氧化速率较其他浓 度组下降,这可能是由于较高浓度 Fe^{2+} 使 NH₂OH 氧化成 NO₂⁻-N 的过程受到抑制,如图 4C、D 所 示。由此可知,当原培养基中没有 Fe^{2+} ,而有 Mg^{2+}

图 2 不同浓度 Mg²⁺对菌株 C16 硝化性能的影响 Figure 2 Effect of different concentrations of Mg²⁺ on nitrification performance by strain C16 注:误差线采用 2 次测定结果平均值±标准偏差形式表达. Note: Error bars using x±s of two replicates.

和 Mn^{2+} 存在时,对 C16 的生长和氨氮去除有抑制 作用,由于不同金属离子之间存在协同作用^[29], Fe^{2+} 与 Mg^{2+} 和 Mn^{2+} 共同存在时,对 C16 的生长和 氨氮的去除是有利的。

2.3 Cu²⁺对 C16 硝化性能的影响

在原培养基的基础上,分别加入不同浓度的 Cu²⁺,以原培养基作为对照,研究 Cu²⁺对 C16 生 长和脱氮性能的影响(图 5)。在图 5A 中,原培养 基中 Cu²⁺加入与否,对 C16 的生长基本没有影响。 在图 5B 中,0、0.1、0.5、1.0 mmol/L Cu²⁺在 24 h 的 NH₄⁺-N 去除率分别为:75.570%±3.727%、 88.020%±2.323%、74.610%±3.318%、60.960%± 2.791%。0.1 mmol/L Cu²⁺对 NH₄⁺-N 的去除有一定 的促进作用,而1.0 mmol/L Cu²⁺对 NH₄⁺-N 的去除 有一定的抑制作用。一定浓度范围内的金属离子对 酶活性有一定的促进作用,但当环境中的金属离子 浓度超过这个范围时,会抑制酶的活性,从而抑制 微生物的生长代谢作用^[11,30]。在图 5C 中,24 h 时 对照组中的 NH₂OH 累积量明显高于其他浓度组。 在图 5D 中,不同浓度 Cu²⁺使得培养基中基本无

NO₂⁻⁻N 的积累,这可能是由于 Cu²⁺的加入促进了 Nir 的活性,使得 C16 的 NO₂⁻⁻N 还原速率加快。 于大禹等^[31]研究发现,0.1 mmol/L 的 Cu²⁺对异养 硝化细菌 H1 氨氮氧化过程也有显著促进作用。 Cu²⁺ 也 可 以 促 进 异 养 硝 化 细 菌 *Nitrosomonas europaea* 的生长和氨氮去除速率^[29]。

在原培养基中加入一定浓度的 Cu²⁺对 C16 脱 氮作用产生了影响,0.1 mmol/L 的 Cu²⁺对 C16 的 生长和 NH₄⁺-N 氧化有一定的促进作用。在不同种 类金属离子对 C16 生长和脱氮影响实验中,培养 基中只有 Cu²⁺存在时,明显抑制了 C16 的生长并 且脱氮效果也很差,如图1所示。由于不同金属离 子之间存在协同作用^[29],因此Cu²⁺与其他金属离 子共同存在时,对C16的生长和脱氮过程才有促 进作用。此外,不同浓度Cu²⁺的加入使得培养基 中NH₂OH的累积量明显减少,而且也没有NO₂⁻-N 的积累。由于过量亚硝酸盐的积累对水生态系统会 带来环境和健康问题^[15,32],因此,可考虑在原培养 基中加入0.1 mmol/L的Cu²⁺,以促进C16的生长 和脱氮效率以及避免过量亚硝酸盐的积累。由此可 知,异养硝化细菌硝化产物的积累是可以通过改变 环境条件而去除的。

图 4 不同浓度 Fe²⁺对菌株 C16 硝化性能的影响 Figure 4 Effect of different concentrations of Fe²⁺ on nitrification performance by strain C16 注:误差线采用 2 次测定结果平均值±标准偏差形式表达.

Note: Error bars using $x \pm s$ of two replicates.

2.4 Zn²⁺对 C16 硝化性能的影响

在原培养基的基础上,分别加入不同浓度的 Zn²⁺,以原培养基作为对照,研究Zn²⁺对C16 生 长和脱氮性能的影响。如图 6 所示。在 24 h 时, 随着Zn²⁺浓度的增加,C16 的生长受到抑制(图 6A);0、0.1、1.0、3.0 mmol/LZn²⁺在 24 h 的 NH₄⁺-N 去除率分别为:46.280%±3.701%、42.290%±3.958%、 34.550%±1.585%和25.640%±1.857%(图 6B), NH₂OH的积累量分别为25.234±1.889、14.248±2.148、 12.960±1.496 和 5.836±1.028 mg/L (图 6C);不同浓 度组中 NO_2^{-} -N 的积累与原培养基基本相同(图 6D)。由此可知, Zn^{2+} 对 C16 的生长和氨氮去除是 不利的。而在金属离子种类对 C16 脱氮影响实验 中, Zn^{2+} 也明显地抑制了 C16 的生长和氨氮氧化速 率,如图 1 所示。Kim 等^[28]的研究结果显示, Zn^{2+} 对 PK15 的生长和氨氮去除速率没有任何影响。因 此,在酶活实验中,可以不用考虑 Zn^{2+} 对 C16 的 影响。

2.5 不同金属离子对酶活性的影响

0.1 mmol/L 金属离子对 HAO、Nar 和 Nir 3 种 酶活性的影响,如表 1 所示。在这 4 种金属离子中, Cu²⁺对 HAO 活性有一定的抑制作用,但明显促进 了 Nir 和 Nar 的活性。Mg²⁺明显促进了 HAO 的活 性,但对 Nar 和 Nir 的作用不明显。Mn²⁺和 Fe²⁺ 对这 3 种酶的作用都不明显。

在表 1 中, 0.1 mmol/L Cu²⁺明显增强了 Nar 和 Nir 的活性,根据好氧反硝化途径 $NO_3^- \rightarrow NO_2^- \rightarrow$ $N_2^{[3]}$, NO₃⁻在 Nar 的作用下还原成 NO₂⁻, NO₂⁻又 在 Nir 的作用下发生还原反应。Nar 和 Nir 活性的 增大使得反应向右进行的速率加快,从而使培养基 中 NO₂⁻-N 的积累量减少,也可能使 NH₂OH 的氧 化速率加快。这可以很好地解释在图 5C、D 中, Cu²⁺的加入使得培养基中无 NO₂⁻-N 积累和 NH₂OH 明显减少的现象。0.1 mmol/L Mg²⁺明显促 进了 HAO 的活性,在图 2B 中,0.1 mmol/L Mg²⁺ 也明显促进了氨氮氧化速率。

图 6 不同浓度 Zn²⁺对菌株 C16 硝化性能的影响

Figure 6 Effect of different concentrations of Zn²⁺ on nitrification performance by strain C16 注:误差线采用 2 次测定结果平均值±标准偏差形式表达.

Note: Error bars using $x \pm s$ of two replicates.

表 1 不同金属离子对 HAO、Nar 和 Nir 活性的影响						
Table 1Effect of different metal ions on HAO, Nar and Nir activities						
全屋离子	亚硝酸盐还原酶	活性	硝酸盐还原酶	活性	羟胺氧化还原酶	活性
Metal ions	Nir	Activity	Nar	Activity	HAO	Activity (%)
Wietur Ions	(U/mg protein)	(%)	(U/mg protein)	(%)	(U/mg protein)	netivity (70)
Control	0.007 77	100	0.008 20	100	0.009 46	100
Mg ²⁺	0.008 53	110	0.009 37	114	0.011 69	124
Mn ²⁺	0.009 24	119	0.009 61	117	0.010 29	109
Cu ²⁺	0.010 62	137	0.011 01	134	0.007 94	84
Fe ²⁺	0.008 52	110	0.007 75	95	0.009 79	103

3 结论

 Mg^{2+} 、 Mn^{2+} 、 Fe^{2+} 、 Cu^{2+} 和 Zn^{2+} 5 种金属离子 分别对异养硝化细菌 C16 的生长、脱氮性能、 亚硝酸盐氮积累以及酶活性产生了不同影响。 Mg^{2+} 是 C16 生长和脱氮过程中的一种重要金属离 子;较高浓度 Mn^{2+} 使得 C16 无法生长;原培养基 中缺少 Fe^{2+} 会抑制 C16 的生长和 NH_4^+ -N 氧化速率; Cu^{2+} 加入可避免过量亚硝酸盐积累。不同浓度的 Zn^{2+} 对 C16 的生长和氨氮去除有抑制作用。在酶活实验 中 $0.1 \text{ mmol/L }Mg^{2+}$ 促进了 HAO 的活性 0.1 mmol/L

Cu²⁺明显地促进了反硝化酶 Nar 和 Nir 的活性。

参考文献

- Joo HS, Hirai M, Shoda M. Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by *Alcaligenes faecalis* No. 4[J]. Journal of Bioscience and Bioengineering, 2005, 100(2): 184-191.
- [2] Lv YK, Wang X, Liu BK, et al. Isolation and characterization of heterotrophic nitrifying strain W1[J]. Chinese Journal of Chemical Engineering, 2012, 20(5): 995-1002.
- [3] Zhao B, He YL, Huang J, et al. Heterotrophic nitrogen removal by *Providencia rettgeri* strain YL[J]. Journal of Industrial Microbiology and Biotechnology, 2010, 37(6): 609-616.
- [4] 刘玉香, 王瑶, 李屹, 等. 复合异养脱氮菌群脱氮性能 研究[J]. 太原理工大学学报, 2012, 43(4): 421-424.
- [5] 吕永康, 殷家红, 刘玉香, 等. 一株异养硝化菌的分离 鉴定及其最佳亚硝化条件[J]. 化工学报, 2011, 5(62): 1421-1427.
- [6] Joo HS, Hirai M, Shoda M. Piggery wastewater treatment using *Alcaligenes faecalis* strain No. 4 with heterotrophic nitrification and aerobic denitrification[J]. Water Research, 2006, 40(16): 3029-3036.
- [7] Su JJ, Yeh KS, Tseng PW. A strain of *Pseudomonas* sp. isolated from piggery wastewater treatment systems with heterotrophic nitrification capability in Taiwan[J]. Current Microbiology, 2006, 53(1): 77-81.
- [8] Robertson LA, Van Niel EDWJ, Torremans RAM, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of *Thiosphaera pantotropha*[J]. Applied and Environmental Microbiology, 1988, 54(11): 2812-2818.
- [9] Zhao B, He YL, Hughes J, et al. Heterotrophic nitrogen removal by a newly isolated *Acinetobacter calcoaceticus* HNR[J]. Bioresource Technology, 2010, 101(14): 5194-5200.
- [10] 何霞, 吕剑, 何义亮, 等. 异养硝化机理的研究进展[J]. 微生物学报, 2006, 46(5): 844-847.
- [11] 汪小明, 严子春, 施锦. 金属离子对活性污泥法处理效 能的影响[J]. 石油化工应用, 2008, 27(2): 1-3.
- [12] 孟雪征, 赖震宏, 龙腾锐. 金属离子对好氧活性污泥活 性的影响[J]. 安全与环境学报, 2004, 4(6): 43-45.
- [13] 杨峰晓, 唐赟. 金属离子对嗜热菌 BF80生长及苯酚降解 的影响研究[J]. 微生物学通报, 2008, 35(6): 876-881.
- [14] Hooper AB, Vannelli T, Bergmann DJ, et al. Enzymology of the oxidation of ammonia to nitrite by bacteria[J]. Antonie van Leeuwenhoek, 1997, 71: 59-67.
- [15] Celen E, Kilic MA. Isolation and characterization of aerobic denitrifiers from agricultural soil[J]. Turkish Journal of Biology, 2004, 28(1): 9-14.
- [16] Bell LC, Richardson DJ, Ferguson SJ. Periplasmic and membrane-bound respiratory nitrate reductases in *Thiosphaera pantotropha*: The periplasmic enzyme

catalyzes the first step in aerobic denitrification[J]. FEBS Letters, 1990, 265(1): 85-87.

- [17] Bedzyk L, Wang T, Rick WY. The periplasmic nitrate reductase in *Pseudomonas* sp. strain G-179 catalyzes the first step of denitrification[J]. Journal of Bacteriology, 1999, 181(9): 2802-2806.
- [18] Moir JWB, Baratta D, Richardson DJ, et al. The purification of a cd1-type nitrite reductase from, and the absence of a copper-ype nitrite reductase from, the aerobic denitrifier *Thiosphaera pantotropha*; the role of pseudoazurin as an electron donor[J]. European Journal of Biochemistry, 1993, 212(2): 377-385.
- [19] 王一明, 彭光浩. 异养硝化微生物的分子生物学研究进展[J]. 土壤, 2003, 35(5): 378-386.
- [20] Ensign SA, Hyman MR, Arp DJ. In vitro activation of ammonia monooxygenase from Nitrosomonas europaea by copper[J]. Journal of Bacteriology, 1993, 175(7): 1971-1980.
- [21] Robertson LA, Kuenen JG. *Heterotrophic nitrification* in *Thiosphaera pantotropha*: oxygen uptake and enzyme studies[J]. Journal of General Microbiology, 1988, 134(4): 857-863.
- [22] 宋琴, 许雷. 异养硝化作用酶学研究进展[J]. 生物技术 通报, 2008(5): 60-62.
- [23] Moir J, Wehrfritz JM, Spiro S, et al. The biochemical characterization of a novel non-haem-iron hydroxylamine oxidase from *Paracoccus denitrificans* GB17[J]. Biochemical Journal, 1996, 319(3): 823.
- [24] Palmer T. Understanding Enzymes[M]. London: Prentice Hall, 1995: 128-154.
- [25] Liu YX, Li Y, Lv YK. Isolation and characterization of a heterotrophic nitrifier from coke plant wastewater[J]. Water Science and Technology, 2012, 65(11): 2084-2090.
- [26] 国家环保总局水和废水检测分析方法编委会.水和废水分 析监测方法[M].北京:中国环境科学出版社,2002:211.
- [27] Frear D, Burrell R. Spectrophotometric method for determining hydroxylamine reductase activity in higher plants[J]. Analytical Chemistry, 1955, 27(10): 1664-1665.
- [28] Kim JK, Park KJ, Cho KS, et al. Aerobic nitrification-denitrification by heterotrophic *Bacillus* strains[J]. Bioresource Technology, 2005, 96(17): 1897-1906.
- [29] 寇明旭, 刘全阳. 金属离子对活性污泥微生物影响研究 进展[J]. 山西建筑, 2007, 33(5): 176-177.
- [30] Loveless J, Painter H. The influence of metal ion concentrations and pH value on the growth of a *Nitrosomonas* strain isolated from activated sludge[J]. Journal of General Microbiology, 1968, 52(1): 1-14.
- [31] 于大禹, 张琳颖, 高波. 异养硝化-好氧反硝化菌异养硝化 性能的影响因素[J]. 化工进展, 2012, 31(12): 2797-2800.
- [32] Croen LA, Todoroff K, Shaw GM. Maternal exposure to nitrate from drinking water and diet and risk for neural tube defects[J]. American Journal of Epidemiology, 2001, 153(4): 325-331.