Sep. 20, 2014, 41(9): 1925-1931

© 2014 by Institute of Microbiology, CAS DOI: 10.13344/j.microbiol.china.130881

大肠杆菌甲基转移酶 *dcm* 基因的表达对 变铅青链霉菌的多效性影响

高婕 韩铁生 丰俊 贺新义*

(微生物代谢国家重点实验室 上海交通大学生命科学技术学院 上海 200030)

摘 要:【目的】大肠杆菌的 dcm 基因编码的 DNA 甲基转移酶可以特异性地将 5'CCWGG3' (W=A/T)序列中第二个胞嘧啶变成 5-甲基胞嘧啶。Dcm 甲基转移酶发现已有 37 年了,但其确 切的功能不明,本篇主要研究其对变铅青链霉菌的影响。【方法】通过构建克隆、接合转移、 异源表达及 HPLC、酶切、Southern 杂交等方法研究 dcm 基因的表达对变铅青链霉菌的多效性 影响。【结果】首次发现变铅青链霉菌基因组中不含 5-甲基胞嘧啶修饰,将 dcm 基因导入变铅 青链霉菌后,接合子菌落比正常菌落小很多,并有放线紫红素产生。【结论】基因组的表观遗 传修饰能激活沉默放线紫红素基因簇的表达这一现象,为基因组挖掘隐藏的活性天然产物提供 了一条新途径。

关键词:dcm 甲基化,链霉菌,形态分化,放线紫红素

Pleiotropic effects on Streptomyces lividans growth by Dcm expression

GAO Jie HAN Tie-Sheng FENG Jun HE Xin-Yi^{*}

(State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China)

Abstract: [Objective] In *Escherichia coli*, cytosine DNA methylation occurring at the inner cytosine in the sequence 5'CCWGG3', is catalyzed by the DNA cytosine methyltransferase (Dcm) protein. Although *dcm* modification has been studied for nearly 37 years, the biological role for this gene is still unclear. In this study, we focus on the function of *dcm* in *Streptomyces lividans*. **[Methods]** *dcm* gene was isolated from *E. coli* and introduced into *S. lividans* 1326; HPLC-MS, methylation sensitivity assay and Southern blot are used to study the expression of *dcm* in *S. lividans*. **[Results]** The colony of *dcm*-containing exoconjugant is much smaller than wild type, and the production of actinorhodin in either MS agar plate or R5 liquid media was enhanced by two folds. **[Conclusion]** Epigenetic modification of the gonome of *S. lividans* by Dcm can activate the actinordin biosynthesis, providing an alternative way for genomic mining of cryptic bioactive metabolites.

Keywords: dcm modification, Streptomyces, Morphological differentiation, Actinorhodin activation

基金项目: 国家自然科学基金项目(No. 31170083)

^{*}通讯作者: Tel: 86-21-62932943-2131; Fax: 86-21-62932418; 🖂: xyhe@sjtu.edu.cn

收稿日期: 2013-12-13; 接受日期: 2014-01-13; 优先数字出版日期(www.cnki.net): 2014-01-16

DNA 甲基转移酶能将 S-腺苷甲硫氨酸(SAM) 上的甲基转移至特定 DNA 序列的碱基上。在原核 生物中最常见的甲基化修饰是 6-甲基腺嘌呤、5-甲基胞嘧啶及 N4-甲基胞嘧啶^[1]。Dam 甲基转移酶 能识别 GATC 序列,并在腺嘌呤 6 位 N 上加入甲 基,该修饰与细胞生长有关,能调节 DNA 复制及 基因的表达^[2]。Dcm 甲基转移酶由大肠杆菌 K-12 中 *dcm* 基因(1 419 bp)编码。其编码的蛋白能识别 5'CCWGG3' (W=A/T)序列,将第二个胞嘧啶转化成 5-甲基胞嘧啶,后者能自发脱去氨基,变成胸腺嘧 啶 T,产生 C-T 转换^[3]。研究报道, dcm 基因与 II 型限制修饰有关,能保护宿主 DNA 免受自身限制 系统攻击,但其生物学功能一直都没有确切的定 论^[4]。通用链霉菌宿主 Streptomyces lividans 66 具 有复杂的形态和生理分化,对外源 DNA 几乎没有 限制性,因而是研究细菌表观遗传的理想材料,而 天蓝色链霉菌却有较严格的限制修饰系统 ,能阻止 外源修饰 DNA 进入宿主, 故外源 DNA 一般需经 过一定的遗传改造,才能导入天蓝色链霉菌中[5]。 另外本研究前期通过 HPLC-MS 发现 S. lividans 总 DNA 不含有 5-甲基胞嘧啶,而且 G+C 百分含量高 达 72%, 其上含有较多的 dcm 修饰位点。因此, 通过接合转移将 dcm 基因转入变铅青链霉菌 HXY16 (93 kb 硫修饰基因组岛被敲除),研究 dcm 基因在细菌中的功能。

1 材料与方法

1.1 材料

1.1.1 菌株和质粒:大肠杆菌(Escherichia coli) DH10B 用于克隆构建和质粒扩增,甲基化缺陷型 菌株 ET12567::pUZ8002 用作大肠杆菌-链霉 菌双亲本接合转移的供体。pPM927 和 pIB139 是 双功能链霉菌整合型载体,抗性和整合位点不同。 pBluescript SK 质粒用于质粒构建和扩增。敲除了 硫修饰基因组岛(SLG)的变铅青链霉菌 HXY16 用 作整合型载体 pPM927 的宿主。大肠杆菌 K-12 (Escherichia coli)提供 dcm 完整序列。以上菌种和 质粒详见表 1。

1.1.2 培养条件:大肠杆菌的培养使用LB培养基, 所有链霉菌培养均用 MS 培养基,部分链霉菌发酵 使用了 TSBY 及 R5 培养基。

1.1.3 主要试剂和仪器:限制性内切酶、Taq 酶均系 Fermentas 公司产品 连接酶购自 TaKaRa 公司;DNA 胶回收试剂盒购自 Omega 公司;Spcectinomycin (壮 观霉素), Thiostrepton (硫链丝菌素), Trimethoprim (三甲氧苄胺), Ampicillin (氨苄青霉素)等抗生素均 购自 Sigma;其他所有试剂都购自上海生工生物工 程技术有限公司。

1.2 pPM927-dcm 质粒的制备

以 PrimerF 5'-<u>CATATG</u>ATGCAGGAAAATATAT

表 1 菌株及质粒 Table 1 Strains and Plasmids		
名称 Name	特性 Characteristics	来源 Source
pBluescript II SK(+)	ori (fl), ori (pUC18), bla, lacZa, 2.96 kb	Agilent
pMD18-T	pUC18 衍生的载体,用于克隆末端带有 A 碱基的 PCR 产物	TaKaRa
pPM927	pSAM2 衍生的载体,包含 xis, int, attp, tipA, tsr, spc	[6]
pIB139	apra 抗性, ermE 启动子	[7]
ET12567(pUZ8002)	recF, dam ⁻ , dcm ⁻ , cml, str, tet, km	[8]
DH10B	F^- , recA, lacZ, $\Delta M15$	GIBCO BRL
Streptomyces lividans 1326	野生型菌株 Dnd+,ØHAU3 ^R	Lomovskaya et al. 1972
HXY16	S. lividans 66 衍生菌株, 基因组岛 SLG 从染色体上 attB 自发环出	贺新义

CAGTAACC-3' (*Nde* I 酶切位点)和 PrimerR 5'-<u>GAATTC</u>TTATCGTGAACGTCGGCC-3' (*Eco*R I 酶切位点)为引物, *E. coli* K-12 总 DNA 为模板, 热 启动高保真 KOD 聚合酶 PCR 得到 1 433 bp 的 DNA 片断,并将其构建到 pBluescript SK 载体上, 测序验证插入片段后,再用 *Nde* I 和 *Eco*R I 酶切回 收 *dcm* 基因片段,将其连接在相同酶切处理的 pIB139 中,获得 pGJ139。以 5'-GAATTCCAAGG CGATTAAGTTGGG-3'和 5'-TGGAATTGTGAGCG GATAA-3'为引物, pGJ139 质粒 DNA 为模板,得 到含有红霉素抗性基因启动子 PermE^{*}和 *dcm* 基因 的目的片段,共1 619 bp,并将其连接到 *Eco*R I 酶切处理的 pPM927载体,获得 pPM927-*dcm* 质粒。

1.3 大肠杆菌-链霉菌接合转移

含有 pPM927-dcm 的 ET12567::pUZ8002 在 2 mL LB 中 37 °C 培养至 OD 值约为 0.6 后, 取 200 μL, 与过量 HXY16 孢子混合, 3 500×g 离心 4 min,并用 400 μL LB 重悬,混合物均匀铺在 MS 培养基上, 30 °C 培养 14 h 后,用浓度为 100 mg/L 的壮观霉素(Spectinomycin)及 50 mg/L 硫链丝霉素 (Thiostrepton)覆盖,并培养 4 d 产生接合转移子 GJ1,对照选用不含 dcm 的 pPM927 与 HXY16 产 生接合转移子 GJ2。

1.4 接合转移子中 dcm 基因的鉴定

1.4.1 酶切验证 *dcm* 基因的表达: *Eco*R II 和 *Mva* I 均能识别并切割 5'CCWGG3'序列,而该序列正好 是 Dcm 修饰位点。*Eco*R II 无法切割被 Dcm 甲 基化的 5'C5mCWGG3',而 *Mva* I 对甲基化不敏感。 酶切使用 20 μ L 反应体系: 总 DNA 1 μ g, 酶 0.5 U, 37 °C 酶切 90 min。阳性对照选用 DH10B (*dcm*⁺菌 株)总 DNA,阴性对照选用 JTU006 (*dcm*⁻)总 DNA。 1.4.2 HPLC-MS 验证接合转移子 5mC 含量:提 取接合转移子总 DNA,溶于 ddH₂O 中,分别用核 酸酶 P1、碱性磷酸酶 CIAP 及核酸酶 DNase I 处 理,用 QIAprep Spin Miniprep 试剂盒过柱纯化^[9]。 HPLC-MS 柱子选用 Agilent TC-C18 (5 μ m, 4.6 mm×250 mm),流动相为 10 mmol/L 醋酸铵(pH 4.5),梯度洗脱条件为:0-10 min,2%;10-40 min, 2%-25%;40-45 min,25%-100%;45-50 min, 100%;50-52 min,100%-2%,流速0.3 mL/min, 柱温 25 °C,在278 nm 处检查吸收峰。

1.4.3 Southern 杂交:提取大小菌落接合转移子和 GJ2 的总 DNA,以 pPM927-*dcm* 质粒 DNA为对照,DNA量均为 10 μ g,经 *Sma* I 酶切后,1% 琼脂糖凝胶电泳分离,并将其转移到带正电荷的尼龙膜(Hybond N, Amersham)上,用紫外交联仪(GS Gene Linker, Bio-Rad 公司)将 DNA 固定、交联在尼龙膜上。地高辛杂交试剂盒(Roche 公司)对 *Sma* I 酶切处理的 pPM927-*dcm* 进行探针标记;将尼龙膜放入杂交管中与变性的探针在 68 °C 的杂交炉中杂交 4 h;结束后在杂交管中分别用低严谨度 10×SSC 洗膜 2 次,每次 5 min,再用高严谨度 2×SSC 洗膜 2 次,每次 15 min;洗膜结束后放射自显影 2 h。

1.5 放线紫红素(ATC)提取和含量检测

接合转移子在 MS 平板上 30 °C 培养 5 d,转 移至 R5 培养基中发酵 7 d, 1 700×g 离心 10 min, 收集上清,1 mol/L HCl 调 pH 至 2-3,加 1/4 体积 氯仿萃取 3-5 次后旋干,并用 200 μL 甲醇溶解, 分光光度计(Bio-Rad smart spec 3000)在 680 nm 处 读数。

2 结果与分析

2.1 *dcm* 导入变铅青链霉菌形成大小不一的接 合转移子

当 pPM927-dcm 导入 Streptomyces lividans HXY16 后, MS 平板上出现大小形态不同的接合 转移子(图 1B),然而在对照组 GJ2 (仅含有 pPM927 质粒)中,接合转移子形态较一致(图 1A)。为了进 一步确定图 1B 内大小菌落的区别,分别收取该平 板内大菌落、小菌落的孢子进一步培养,发现仅小 菌落中会以一定频率出现大菌落(约为 10⁻³)(图 2B),而大菌落的后代形态较为一致(图 2A)。

图 1 接合转移子形态分化

Figure 1 Morphology differentiation of conjugants

注:A:GJ2在MS平板上30℃培养4d;B:GJ1在MS平 板上30℃培养4d.

Note: A: GJ2 was grown on MS medium at 30 °C for 4 days; B: GJ1 was grown on MS medium at 30 °C for 4 days.

图 2 大、小菌落形态分化

Figure 2 Morphology differentiation of small and big colonies

注:A:大菌落孢子在 30 ℃ MS 培养基生长 4 d; B:小菌落 孢子在 30 ℃ MS 培养基生长 4 d.

Note: A: The spores of big colonies were cultured on MS medium at 30 °C for 4 days; B: The spores of small colonies were cultured on MS medium at 30 °C for 4 days.

2.2 接合转移子中 pPM927-dcm 的鉴定

为了研究清楚菌落大小和 dcm 基因之间的关系,首先检测了 dcm 基因在大小菌落中的存在情况。以 PrimerF 和 PrimerR 为引物,接合转移子总DNA及阳性对照 pPM927-dcm 质粒 DNA 为模板进行 PCR,结果发现仅小菌落和阳性对照有1419 bp 目标片段,而大菌落及对照组 GJ2 (::pPM927)中没有条带,说明仅小菌落中有完整的 dcm 基因序列(图 3)。

图 3 大菌落及小菌落中 dcm 基因的 PCR 验证 Figure 3 PCR confirmation of dcm gene in small and big colonies

注:S:小菌落总 DNA;P:pPM927-dcm 质粒(阳性对照);B: 大菌落总 DNA;G:对照组 GJ2 总 DNA;N:水(阴性对照). Note: S: DNA of small colony; P: Plasmid of pPM927-dcm (positive control); B: DNA of big colony; G: DNA of GJ2; N: ddH₂O (Negative control).

尽管 PCR 结果分析表明 dcm 基因已被导入 HXY16,仍需用限制性酶切实验考察 dcm 基因在 接合转移子中是否表达并行使功能。EcoR II 只能 切割非甲基化的 5'CCWGG3',而 Mva I 可以切割 甲基化和非甲基化的 5'CCWGG3',通过比较两者 对底物 DNA 的切割活性,可以判别 DNA 是否被 Dcm 甲基化。将大菌落、小菌落、DH10B (dcm⁺ 菌株)、JTU006 (dcm⁻)及对照组(GJ2)的 DNA 分别 用 EcoR II (E)及 Mva I (M)酶切,发现仅小菌落经 EcoR II 酶切处理的总 DNA 未被切动,其他均成弥 散条带,说明 dcm 基因在链霉菌小菌落中得以表 达并成功将宿主染色体甲基化(图 4)。

为了进一步确定接合转移子的 DNA 甲基化情况,分别将大菌落、小菌落及对照组(GJ2)总 DNA

图 4 DNA dcm 甲基化酶切鉴定

Figure 4 Identification of *dcm* modification in total DNA 注:E:*Eco*R II 酶切总 DNA; M: *Mva* I 酶切总 DNA. Note: E: *Eco*R II digested total DNA; M: *Mva* I digested total DNA. 酶切处理,并用 LC-MS 检测各菌株 5mC 含量。结果显示仅小菌落中能检测到 5mC,它的含量约为 胞嘧啶的 0.15%-0.32%,而大菌落及对照组 GJ2 均无 5mC (图 5)。

综合以上结果可知,仅小菌落中含有完整并有 功能的 dcm 基因,它的表达影响了菌落的形态。

2.3 Southern 杂交检测大菌落中 dcm 的变化

PCR 扩增在大菌落中没有检测到 dcm 基因, 为了弄清楚 dcm 基因在宿主中的变化,故以地高 辛标记的经 Sma I处理的 pPM927-dcm 质粒 DNA 为探针,与 HXY16、GJ2 (HXY16::pPM927)、大 菌落 1&2 (HXY16::pPM927-dcm)和小菌落 (HXY16::pPM927-dcm)的总 DNA 杂交。通过比较 pPM927-dcm 和 GJ2 的酶切图谱可知,dcm 基因显 示在最大的一条杂交条带中(图 6 中 1 和 6 泳道), GJ2 中最大的条带为 pPM927 载体上的部分序列, HXY16 没有任何杂交信号,大菌落 1&2 中不仅缺 失了 dcm 基因,还缺失了部分 pPM927 载体上的 序列。由此可知,从小菌落恢复到大菌落的原因是 由于接合转移子中原本成功整合的 dcm 基因从链 霉菌总 DNA 中丢失,从而解除了 Dcm 甲基转移

图 6 Southern 杂交检测大菌落中片段缺失 Figure 6 Fragment deletion in big colonies Note: 1: pPM927-dcm; 2: GJ2; 3: HXY16; 4: Big colonies 1; 5: Big colonies 2; 6: Small colonies.

酶对宿主 DNA 的作用,使小菌落重新恢复到了正 常形态。从遗传学角度而言,外源 *dcm* 基因对宿 主 DNA 具有一定的修饰作用,而变铅青链霉菌中 含有非常多 Dcm 修饰位点,故其初级代谢容易受 到影响;宿主为了尽可能克服 *dcm* 基因的表达对 其生长的不利影响,经过体内系列 DNA 重组使其 缺失,并以此方式保证了后代的正常生长。

2.4 dcm 激活 S. lividans 1326 放线紫红素的表达

变铅青链霉菌与天蓝色链霉菌虽然有 99%的 相似性,但是其放线紫红素合成基因簇在正常情况 下是沉默的。将大菌落和小菌落经 MS 培养 5 d, 仅小菌落有明显蓝色色素积累(图 7A);进一步用 R5 液体培养基连续发酵 7 d,发现大菌落和对照组 均无明显颜色变化,但小菌落及 M145 有明显紫红 色色素积累(图 7B),将发酵产物处理后,测 680 nm 处分光光度值,大菌落 *OD*₆₈₀=0.27,小菌落 *OD*₆₈₀=0.54,是大菌落的 2 倍。该结果表明,*dcm* 能激活 *S. lividans* 中放线紫红素的合成。

Small colomies Big colomies M145 GJ2

图 7 大菌落及小菌落放线紫红素的积累

Figure 7 Actinorhodin accumulated in big and small colony

注:A:大菌落及小菌落在 MS 培养基;B:R5 液体培养基中 放线紫红素的积累.

Note: A: Big and small colonies on MS plate; B: Actinorhodin accumulated in R5 liquid fermentation.

3 讨论

dcm 基因自首次在大肠杆菌 E. coli K12 中发 现以来,其确切的生理功能一直未知。部分结果显 示,dcm 甲基化与大肠杆菌中的限制修饰系统有 关,另外,它在真核生物中能通过染色体结构变化、 DNA 稳定性、蛋白之间的相互作用等方式调节基 因的活性^[10]。本研究中,dcm 在变铅青链霉菌中的 表达不仅影响其形态分化,同时也激活了放线紫红 素的表达。Dcm 甲基化酶能抑制大肠杆菌中核糖 体蛋白的表达。研究者发现,在 dcm 缺失的突变 株中,负责核糖体大小亚基合成的 rplC 和 rpsJ 的 表达水平明显增高,然而,将 dcm 基因回补后, 这两个基因的表达水平下降^[11]。同时还发现与核 糖体蛋白合成相关的 S16 基因在其启动子区域含 有大量 5'CCWGG3'序列,如果这些位点被 Dcm 修 饰,核糖体的合成将会被干扰。

核糖体的表达水平直接影响到体内蛋白质的 合成及微生物的生长速率,当核糖体的表达受到干 扰时,菌体生长速率下降,形态分化就会受到影 响^[12]。本研究实验结果显示 *dcm* 基因的表达导致 了变铅青链霉菌形成了极小的菌落,根据生物信息 学分析,与变铅青链霉菌核糖体合成相关的基因, 在它们的启动子区域找到了至少18个*dcm* 修饰位 点。其中,8个基因与30S核糖体相关,7个基因 负责合成50S核糖体。如果这些位点被 *dcm* 甲基 化修饰,链霉菌核糖体的合成可能受到影响,这可 能是小菌落产生的原因。

dcm 激活变铅青链霉菌中放线紫红素合成的机 理尚不清楚。放线紫红素对其产生菌有一定的毒 性,需要通过ActA蛋白及时泵出体外^[13]。ActR是 ActA 的调节蛋白, 能与 DNA 启动子部分结合, 阻 碍其转录。当胞内产生少量的放线紫红素后,放线 紫红素及其前体物质 S-DNPA 能与 ActR 结合,并 将 ActR 从 DNA 上释放 激活外排泵 ActA 的表达, 从而解除放线紫红素的细胞毒性, 若解毒过程没有 及时完成,则由于反馈抑制,大量放线紫红素无法 继续合成^[14]。对比变铅青链霉菌与天蓝色链霉菌中 放线紫红素基因簇,前者调控基因 actR 有 4 个氨基 酸突变,因此猜想,这些突变可能使变铅青链霉菌 中ActR 失去了与放线紫红素或其前体结合的能力, 无法进一步激活 ActA 转运蛋白的表达,当放线紫 红素无法排出时,由于其细胞毒性,合成受到影响。 然而,当 dcm 基因导入变铅青链霉菌后,由于 ActR 含有多个 dcm 修饰位点,经过一系列体内调控,恢 复了与配体结合的能力,外排系统被激活,毒性解 除,故小菌落能再次产生放线紫红素(图 8)。

另外,许多研究显示,天蓝色链霉菌中菌落形态分化及放线紫红素的合成等与 *adpA* 基因相关^[15]。AdpA 同源序列高度保守,经生物信息学分析发现,其包含7个*dcm* 修饰位点。此外,SAM 是初级代谢及次级代谢中有名的甲基供体,据相关研究表明,其可激活变铅青链霉菌放线紫红素的表达,并影响其形态分化^[16]。在天蓝色链霉菌和变铅青链霉菌中,编码转糖苷酶的基因 *tgdA* 能影响链霉菌的形态分化和放线紫红素的合成^[17],其包含5个*dcm* 修饰位点,虽然以上几种机理与 *dcm*

图 8 阻遏蛋白通过配体识别的方式控制放线紫红素的合成

Figure 8 actR can regulate the export of actinorhodin by ligand recognition

注: A 和 B 显示了天蓝色链霉菌中配体(L: 放线紫红素或 S-DNPA)如何激活 S. coelicolor 中转运蛋白 ActA 的表达, 放线紫红素 一旦合成, 即能与 ActR 结合并将其从 DNA 上释放, 激活转运蛋白的转录 ;C 和 D 为 S. lividans 中放线紫红素合成相关的猜想: S. lividans 中 ActR 蛋白有 4 个氨基酸位点突变, 放线紫红素或其前体无法与 ActA 结合, 故其表达受影响; 然而, 当 dcm 基因导入 后, 受其调控等影响, 使 ActR 又恢复了重新结合的能力, 激活外排系统, 解除细胞毒性, 故放线紫红素能大量合成.

Note: A and B shows how the ligand (actinorhodin or S-DNPA) trigger the expression of ActA in *S. coelicolor*. When the actinorhodin is synthesized, it binds to ActR repressor and release it from DNA, and thus activates the transcription of export pump; C and D shows the mechanism in *S. lividans*: 4 mutations occurred on ActR in *S. lividans*, so actinorhodin may not bind to the repressor as usual and the expression of actA will be influenced; However, as there are 7 *dcm* modification sites among the sequence, once the modification happened, the repressor may regain the ability to bind with ligands, toxic towards the cell is erased, actinorhodin produced again.

修饰是否有关还不得而知 ,后续更多的研究相信能

揭示相关奥秘。

参考文献

- Marinus MG. Location of DNA methylation genes on the Escherichia coli K-12 genetic map[J]. Molecular Genetics and Genomics, 1973, 127(1): 47-55.
- [2] Barras F, Marinus MG. The great GATC: DNA methylation in *E. coli*[J]. Trends in Genetics, 1989, 5(5): 139-143.
- [3] Bhagwat AS, Sohail A, Roberts RJ. Cloning and characterization of the dcm locus of *Escherichia coli* K-12[J]. Journal of Bacteriology, 1986, 166(3): 751-755.
- [4] Raleigh EA, Wilson G. Escherichia coli K-12 restricts DNA containing 5-methylcytosine[J]. Proceedings of the National Academy of Sciences, 1986, 83(23): 9070-9074.
- [5] Zhou H, Wang Y, Yu Y, et al. A non-restricting and non-methylating *Escherichia coli* strain for DNA cloning and high-throughput conjugation to *Streptomyces coelicolor*[J]. Current Microbiology, 2012, 64(2): 185-190.
- [6] Smokvina T, Mazodier P, Boccard F, et al. Construction of a series of pSAM2-based integrative vectors for use in actinomycetes[J]. Gene, 1990, 94(1): 53-59.
- [7] Wilkinson CJ, Hughes-Thomas ZA, Martin CJ, et al. Increasing the efficiency of heterologous promoters in actinomycetes[J]. Journal of Molecular Microbiology and Biotechnology, 2002, 4(4): 417-426.
- [8] Choi SU, Lee CK, Hwang YI, et al. Cloning and functional analysis by gene disruption of a gene encoding a γ-butyrolactone autoregulator receptor from *Kitasatospora setae*[J]. Journal of Bacteriology, 2004, 186(11): 3423-3430.
- [9] Wang L, Chen S, Xu T, et al. Phosphorothioation of DNA in

bacteria by dnd genes[J]. Nature Chemical Biology, 2007, 3(11): 709-710.

- [10] Métivier R, Gallais R, Tiffoche C, et al. Cyclical DNA methylation of a transcriptionally active promoter[J]. Nature, 2008, 452(7183): 45-50.
- [11] Militello KT, Simon RD, Qureshi M, et al. Conservation of Dcm-mediated cytosine DNA methylation in *Escherichia coli*[J]. FEMS Microbiology Letters, 2012, 328(1): 78-85.
- [12] Blanco G, Rodicio MR, Puglia AM, et al. Synthesis of ribosomal proteins during growth of *Streptomyces coelicolor*[J]. Molecular Microbiology, 1994, 12(3): 375-385.
- [13] Alguel Y, Meng C, Terán W, et al. Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials[J]. Journal of Molecular Biology, 2007, 369(3): 829-840.
- [14] Hopwood DA. How do antibiotic-producing bacteria ensure their self-resistance before antibiotic biosynthesis incapacitates them?[J]. Molecular Microbiology, 2007, 63(4): 937-940.
- [15] Nguyen KT, Tenor J, Stettler H, et al. Colonial differentiation in *Streptomyces coelicolor* depends on translation of a specific codon within the *adpA* gene[J]. Journal of Bacteriology, 2003, 185(24): 7291-7296.
- [16] Kim DJ, Huh JH, Yang YY, et al. Accumulation of S-adenosyl-L-methionine enhances production of actinorhodin but inhibits sporulation in *Streptomyces lividans* TK23[J]. Journal of Bacteriology, 2003, 185(2): 592-600.
- [17] Xie P, Zeng A, Lv X, et al. A putative transglycosylase encoded by SCO4132 influences morphological differentiation and actinorhodin production in *Streptomyces coelicolor*[J]. Acta Biochimica et Biophysica Sinica, 2013, 45(4): 296-302.