

红纹黄单胞菌α-氨基酸酯水解酶的克隆、 序列分析及热稳定性提高

王辂^{1,2} 叶丽娟² 曹毅^{1*}

(1. 四川大学 生命科学院 四川 成都 610064)(2. 中国医药集团总公司四川抗菌素工业研究所 四川 成都 610052)

摘 要:【目的】克隆红纹黄单胞菌 α -氨基酸酯水解酶基因全序列,对序列进行生物信息 学分析,并提高酶的热稳定性。【方法】利用多聚酶链式反应(PCR)克隆 α -氨基酸酯水解酶 基因全序列;应用生物信息学软件对获得的基因序列及编码的蛋白序列进行分析;通过 同源建模,预测红纹黄单胞菌 α -氨基酸酯水解酶的三维结构;通过定点突变替换氨基酸 序列中高度柔性的位点,提高该酶的热稳定性。【结果】从红纹黄单胞菌(Xanthomonas rubrillineans)中扩增得到 α -氨基酸酯水解酶基因 aeh (GenBank 登录号 JF744990),核苷酸 序列长度 1917 bp,编码 638 个氨基酸。序列比对和同源性分析显示,该酶与白纹黄单胞 菌 Xanthomonas albilineans str. GPE PC73 的肽酶及地毯草黄单胞菌 Xanthomonas axonopodis pv. citri str. 306 的戊二酰-7-氨基头孢烷酸酰化酶氨基酸序列相似性最高,分别为 91%和 83%,系统进化分析表明,该酶与白纹黄单胞菌 Xanthomonas albilineans str. GPE PC73 的肽酶亲缘性最高。基于预测的三维模型,对高度柔性的位点进行饱和突变,从 282 株突变体中筛选得到 3 株 T_{50} 较野生型高 5 °C 以上的突变体。【结论】对红纹黄单胞菌 AEH 的氨基酸序列分析有助于探索同源蛋白的进化过程。对高度柔性位点进行饱和突变 的策略可以用于提高热稳定性。

关键词:α-氨基酸酯水解酶,红纹黄单胞菌,序列分析,热稳定性,定点饱和突变

基金项目: "十二五"重大新药创制科技重大专项(No. 2011ZX09401-403); 四川省国际科技合作与交流研究计划项目(No. 2010HH0036); 四川省国际合作计划项目(No. 2011HH0013); 成都市科技计划项目(No. 10GGYB297SW-182)

^{*}通讯作者: Tel: 86-28-85412842; ⊠: caoyi_01@163.com

收稿日期: 2012-01-11; 接受日期: 2012-04-16

Cloning, bioinformatics analysis and improving thermostability of α-amino acid ester hydrolase from *Xanthomonas rubrillineans*

微生物学通报

WANG Lu^{1,2} YE Li-Juan² CAO Yi^{1*}

 College of Bioscience, Sichuan University, Chengdu, Sichuan 610064, China)
 China National Pharmaceutical Group Sichuan Industrial Institute of Antibiotics, Chengdu, Sichuan 610052, China)

Abstract: [Objective] The study aimed to clone α -amino acid ester hydrolase gene from Xanthomonas rubrillineans, to perform bioinformatics analysis and increase the thermostability of the enzyme. [Methods] The full length of *aeh* was cloned by polymerase chain reaction (PCR). The gene sequence obtained and the putative amino acid sequence were analyzed by bioinformatics software, and the three-dimensional structure of X. rubrillineans AEH was predicted by homology modeling. In order to improve thermostability, sites displaying high degree of flexibility were replaced through site-directed mutagenesis. [Results] Aeh was obtained by PCR from X. rubrillineans (GenBank accession: JF744990). The nucleotide sequence is 1 917 bp length, encoding a polypeptide of 638 amino acids and shares 91% and 83% identity to peptidase from X. albilineans str. GPE PC73 and GL-7-ACA acylase from X. axonopodis pv. citri str. 306 respectively. Based on the predicted model, sites displaying high degree of flexibility were replaced through saturated mutagenesis and 3 variants with 5 °C higher T_{50} than wild type were distinguished from 282 variants by screening. [Conclusion] The sequence analysis of X. rubrillineans AEH was benefit for exploration of evolution history. The strategy of replacing highly flexible residues by saturated mutagenesis can be used for enhancing thermostability.

Keywords: Alpha-amino acid ester hydrolase, *Xanthomonas rubrillineans*, Sequence analysis, Thermostability, Site-directed saturated mutagenesis

β-内酰胺类抗生素,是全球医药领域销售额 最大的品种之一,在抗感染药品中占据重要地 位^[1]。为满足全球对抗菌谱广、药理性质优的抗 生素的需求,人们从未停止过探索新β-内酰胺抗 生素的脚步。自从发现侧链的变化能够改变β-内 酰胺抗生素的性质,半合成β-内酰胺抗生素的序 幕由此拉开^[2]。化学法合成β-内酰胺抗生素在经 历了几十年的辉煌之后,由于酶法合成无可比拟 的选择性^[3]及温和的反应条件^[4],使得人们的目 光逐渐从化学合成法转向酶法。

虽然大肠埃希菌的青霉素酰化酶(Penicillin Acylase, 简称 PA, EC 3.5.1.11)最应早用于酶法生 产β-内酰胺抗生素^[5], 但α-氨基酸酯水解酶 (α-Amino acid ester hydrolase, 简称 AEH, EC 3.1.1.43)具备一系列优点^[6]: 与酰胺的亲和力低 导致底物水解少; 不受水解产物苯甘氨酸的抑 制; 对 D-苯甘氨酸甲酯有构象选择性, 工业上可 以直接使用消旋混合物, 而不必先进行拆分; 其 最适反应 pH 比 PA 低, 也使反应体系中的底物和 产物更稳定, 尤其适合用于催化合成带α-氨基的 β-内酰胺类抗生素, 因而成为非常有前景的 PA 替代品。

虽然 1972 年 Takahashi 等就发现并分离到 AEH, 但直到 10 年前才出现有关 AEH 的基因序 列、酶活性中心以及三维晶体结构的报道^[7-9]。 AEH通常为二聚体或四聚体,能够催化3个反应: α-氨基酸酯的水解; β-内酰胺抗生素的合成; β-内 酰胺抗生素的水解(图 1)。AEH 每个亚基有一个 非常保守的活性中心,是 3 个氨基酸残基 Asp-Ser-His 构成的三元复合体。目前已知三维结 构的 AEH 有 2 个,分别来自柑橘黄单胞菌 Xanthomonas citri 和混浊醋杆菌 Acetobacter turbidans, 为酶的改良铺平了道路。

本研究从红纹黄单胞菌(Xanthomonas rubrillineans CPCC 140817)中克隆到 AEH 的基因, 对其进行了序列比对和同源性分析;为了提高该 酶对突变的包容性(Robustness to mutations)^[10], 为后续定向进化提供一个稳定的起始模板^[11-12], 定点突变了氨基酸序列中的高度柔性位点。本研 究不仅有助于绕开国外专利,定向进化 AEH 以 适应产业化需求,同时也为本土酶法合成β-内酰 胺抗生素创造了条件。

1 材料与方法

1.1 菌株

Xanthomonas rubrillineans CPCC 140817 由

图 1 AEH 催化的头孢克洛合成及苯甘氨酸甲酯水解反应

Fig. 1 Cefaclor synthesis and D-PGM hydrolysis reactions performed by AEH

注: D-PGM: 苯甘氨酸甲酯; 7-ACCA: 3-氯-7-氨基去乙酰氧基头孢烷酸.

Note: D-PGM: D-phenylglycine methyl ester; 7-ACCA: 7-Amino-3-chloro-desacetoxycephalosporanic acid.

中国医药集团四川抗菌素工业研究所保藏; E. coli BL21(DE3)感受态细胞购自北京天根生化公司。

1.2 引物和试剂

用于克隆的聚合酶为上海生工生物工程公司 Pfu聚合酶,定点突变采用TOYOBO的KOD plus 定点突变试剂盒,内切酶Dpn I及T4 DNA 连接 酶购自 Fermentas 公司,质粒小量提取采用 Bio-Tek 公司的OMEGA 试剂盒。其它试剂为进 口或国产分析纯,引物合成与测序由上海 Invitrogen 公司完成。

1.3 实验方法

1.3.1 PCR 法扩增 **AEH** 基因: PCR 反应体系: 基因组 DNA 约 100 ng, 引物 10 pmol/L, dNTPs 200 pmol/L, 1×PCR buffer, *Taq* 酶 1.5 U, ddH₂O 补 足总体系至 25 μL。引物序列为表 1 中的 CF 及 CR。梯度 PCR 反应程序如下: 94 °C 3 min; 98 °C 30 s, 50 °C-58 °C 1 min, 72 °C 1.5 min, 共 20 个 循环; 72 °C 10 min。PCR 产物切胶回收, 克隆到 pGEM-T 载体中, 测序验证。

1.3.2 AEH 的氨基酸序列分析及三维结构预测:

将所获得的基因序列经 BLAST (http://blast. ncbi.nlm.nih.gov/BLAST.cgi)与 GenBank 中的非 冗余蛋白数据库进行同源性比对。利用 Swiss-Model软件^[13]预测 AEH 的三维结构,采用 PyMOL^[14]对其三维结构进行进一步分析。

1.3.3 AEH 氨基酸序列分析及定点饱和突变:运行 B-FITTER^[15]分析 1.3.2 中得到的三维结构的 PDB 格式文件。B 值最高的 10 个氨基酸残基及 对应的位置见表 2。首先选择 Gln410、Gly435、 Phe459 三个位点进行定点饱和突变。定点突变采 用 KOD 酶进行反向 PCR。野生型 pET28-aeh 质 粒为模板,引物序列见表 1,具体操作参见试剂 盒说明书。反向 PCR 得到的线性质粒由 T4 DNA 连接酶连接后,转化感受态 E. coli BL21(DE3),获得 AEH 突变体库。

1.3.4 野生型及突变 AEH 的表达及提取: (1) 野 生型 AEH。将测序验证的 pGEM-T-aeh 和 pET28 载体分别经 EcoR I 和 Xho I 酶切后回收,由 T4 DNA 连接酶连接并转化感受态 E. coli BL21 (DE3)。表达及提取条件同突变体。

	表 1 用于 AEH 克隆和定点突变的引物 Table 1 Primers used for cloning and site-directed mutagenesis in this w	/ork	
引物名称 Name of primers	序列 Sequence (5'→3')	内切酶/突变位点 Restriction sites/ Mutation sites	
CF	CG <u>GAATTC</u> ATGCGCCGCATCGCTCCCTGCCTGC	EcoR I	
CR	CCG <u>CTCGAG</u> TCAATGTACCGGCAGACTGATGAAAC	Xho I	
410F	GNNKGGCTGCCCGGCGCAGAGCAAGCC	0410	
410R	GCGCAGCTCAGCGGCCAGCGCTGCAG	Q410	
435F	CNNKCAGGGCGAGTACACCGAGTACGT	G435	
435R	GCCTTGGGCGCCTCGAACGAGACG		
459F	GNNKGGCGACCGCGACATGTGGACCAC	E450	
459R	ACCACCGGGCGCGCGCACGAACGG	г439	

注:带下划线的序列为内切酶位点,黑体为突变位点.

Note: The underlined sequences are the restriction sites, and the mutation sites are in bold.

表 2 红纹黄单胞菌 AEH 中 B 值最高的 10 个氨基酸残基						
Table 2 The 10 amino acids of X. rubrillineans AEH with the highest B-value						
残基	B 值	排名				
Residue	B-value	Rank				
Gln436	50.33	1				
Gly435	46.4	2				
Ala434	44.9	3				
Phe459	41.78	4				
Ala460	41.59	5				
Lys34	40.86	6				
Gln410	40.24	7				
Arg462	39.57	8				
Gln627	38.36	9				
Lys433	37.75	10				

(2) 突变 AEH。用牙签挑取平皿上的转化菌落,接入含有 500 μL 培养基的 2 mL 96 孔深孔板中,培养基组成: 0.1%乳糖, 1%胰蛋白胨, 0.5%酵母提取物, 1% NaCl, 30 mg/L 卡那霉素。深孔板置 30 °C、200 r/min 培养 24 h 后收获菌体。5 000×g 离心 15 min,弃去培养液。参考 Sambrook 的方法^[16]在 96 孔板中制备无细胞提取物:菌体沉淀加入 400 μL 裂解缓冲液,裂解缓冲液组成: 50 mmol/L Tris-HCl (pH 7.5), 1 mmol/L EDTA, 0.5% Triton X-100, 50 mmol/L NaCl 及 1 g/L 溶菌酶, 37 °C 下保温 30 min。裂解完毕, 96 孔板 5 000×g 离心 20 min。上清转移到新 96 孔板中作为母板, 4 °C 保存以备筛选。

1.3.5 热稳定性的初步筛选: (1) 热处理。从母板 中吸取无细胞提取物置于 96 孔 PCR 板,在 PCR 仪中 50 °C 保温 30 min。4 °C 冷却 10 min 并在室 温平衡 15 min 后备用。

(2) 酶活测定。按照如下条件分别测定酶的 无细胞提取物热处理前后的活性。反应底物为30 mmol/L 7-ADCA、15 mmol/L D-PGM 溶于 50 mmol/L pH 6.2 的磷酸钠缓冲液, 酶的加量为 50 μL 无细胞提取物每 mL 反应混和物, 30 °C 水 浴 30 min, 间歇振荡。上述条件下, 1 min 生成 1 μmol 头孢氨苄所需的酶量定义为 1 个活力单 位(1 U)。HPLC 法测定反应生成头孢氨苄的量。 HPLC 分析方法如下:分析柱: 菲罗门 C₁₈, 4.6 mm×250 mm, 5 μm; 流动相: A: 甲醇, B: pH 2.1 磷酸铵缓冲液, A:B=30:70; 流速: 1 mL/min; 柱温箱: 35 °C; 检测波长: 254 nm; 头孢氨苄保留 时间: 6.24 min。计算每个突变体热处理前后的活 性比值。

1.3.6 阳性突变株酶活性测定及热稳定性参数 *T*₅₀ 的计算:同时满足如下两个条件的突变体进入酶的纯化步骤:①相对野生型保留 80%的活性;
②热处理前后酶活比值高于 50%。

(1) 阳性突变体的纯化。采用 1.3.4 项下相同 的培养基,在 250 mL 摇瓶中 30 ℃、200 r/min 培 养 24 h。采用 1.3.5 项下相同的方法制备无细胞 提取物。用 Hi-Trap (GE 公司医疗部)纯化无细胞 提取物(pET28-aeh 编码的重组蛋白带有 N-端 6×His 标签),含 20 mmol/L 咪唑的 pH 6.2、 20 mmol/L 磷酸钠,50 mmol/L NaCl 缓冲液洗脱 目的蛋白。超滤离心管(MWCO 50000, Millipore) 浓缩含有目的蛋白的洗脱液,最后用 SDS-聚丙烯 酰胺凝胶电泳(10%丙烯酰胺)验证酶溶液的纯度。

(2) 酶比活力测定。按照 1.3.5 项下方法测定 纯酶溶液的活性。Pierce BCA 蛋白含量测定试剂 盒测定蛋白含量,具体操作参见试剂盒说明书。 根据酶活和蛋白含量计算比活力。

(3) 计算热稳定性参数 *T*₅₀。参照文献[17]计 算 *T*₅₀。吸取纯酶溶液置于 96 孔 PCR 板。PCR 仪设定 35 °C−65 °C 的温度梯度,每列为一个温 度梯度,依次升高。每个突变体酶溶液的 3 个平 行样放置在3行中。不同温度梯度下保温30min。 将装有酶溶液的PCR板于4℃冷却10min并在 室温平衡15min后,分别测定残留酶活。将残留 酶活对温度作图,残留酶活为初始酶活50%的温 度为*T*₅₀。

1.3.7 阳性突变体突变氨基酸的确定: *T*₅₀ 提高 5 ℃以上的突变体采用 OMEGA (Bio-Tek)小量质 粒提取试剂盒提取质粒, 并测序。

2 结果

2.1 aeh 全序列的同源性分析

根据同源序列设计引物, PCR 扩增得到与预 期大小一致的条带。经回收测序分析,确定为α-氨基酸酯水解酶基因,提交 GenBank 获得登录号 JF744990。

将 aeh 序列在 NCBI 数据库中进行核苷酸和 氨基酸水平的同源性分析。结果如下:在核苷酸 水平上,与白纹黄单胞菌 Xanthomonas albilineans str. GPE PC73 及野油菜黄单胞菌 Xanthomonas campestris pv. campestris str. ATCC 33913 基因组中某一段相似性最高,分别为 88% 和 86%, 两者都来自基因组测序, 没有明确的功 能描述;在氨基酸水平上,与X. albilineans GPE PC73 的肽酶及地毯草黄单胞菌 X. axonopodis pv. citri str. 306 的戊二酰-7-氨基头孢烷酸酰化酶(简 称戊二酰-7-ACA 酰化酶)的氨基酸序列相似性最 高,分别达91%和83%。与两个三维结构已知的 AEH 的氨基酸同源性分别为 82%和 62%。红纹 黄单胞菌 AEH 与以上 4 个同源蛋白质的比对结 果见图 2。可见红纹黄单胞菌 AEH 的活性中心氨 基酸非常保守。

与其它蛋白质的进化树分析结果如图3所示, AEH 与 X. albilineans GPE PC73 的肽酶亲缘关 系最近。

2.2 AEH 的三级结构预测

应用 Swiss-Model 软件对 X. rubrillineans AEH 的三维结构进行同源建模。系统以 X. citri 的 AEH 晶体结构(PDB ID: 1MPX_A)为模板, 经 同源比对等分析, 生成了 X. rubrillineans 的 AEH 的三维结构模型(图 4A)。

2.3 突变位点的确定及突变体库的建立

B-FITTER 分析 X. rubrillineans AEH 的三维 结构模型后发现,高度柔性位点主要集中在以下 5个区域:433-436,459-462,34,410及627(表1)。 34 位和 627 位残基分别接近蛋白的 N-端和 C-端, 相应的氨基酸突变对整体蛋白稳定性产生影响 的机率较小,而462 位处于底物进入活性口袋的 通道入口(图 4B,红色箭头为底物进入活性口袋的 通道入口(图 4B,红色箭头为底物进入活性位点 的通道),是下一步提高特定底物特异性的目标 位点,故而优先考虑433-436,459-460及410 三 个区域。首先进行410、435 和459 三个位点的 突变,三维结构中的位置见图4B。

由于采用饱和突变,根据 95%覆盖率的统计 学规则^[18],每个突变位点挑取 94 个转化子,共 282 株。

2.4 野生型及突变 AEH 的热稳定性及比活力

经初步筛选, 282 株突变体中有 47 株突变体 保留了相对野生型 80%的活性。其中, 有 9 株突 变体热处理前后酶活比值高于 50%。9 株突变体 分离纯化后, 经电泳鉴定为单一条带。按照 1.3.6 所述测定比活力并作残留活性-温度图计算 *T*₅₀。 *T*₅₀ 较野生型提高 5 ℃ 以上的突变体, 其氨基酸 突变及合成头孢氨苄的比活力见表 3。可以看出, 与野生型相比, G435L 催化合成头孢氨苄的的比 活力降低 27%, 另外两株突变体比活力没有损 失。其中 F459N 热稳定性最高, 其与野生型热稳 定性的比较见图 5。

图 2 AEH 氨基酸序列比对分析

Fig. 2 Alignment and analysis of amino acid sequences of AEH

注: YP_003376365: 肽酶(白纹黄单胞菌); NP_642657: GL-7-ACA 酰化酶(地毯草黄单胞菌); 1MPX: AEH(柑橘黄单胞菌); 2B4K: AEH (混浊醋杆菌). 星号代表保守氨基酸残基, 红框表示活性中心.

Notes: YP_003376365: Peptidase, s15 family protein (*Xanthomonas albilineans* str. GPE PC73); NP_642657: GL-7-ACA acylase (*Xanthomonas axonopodis* pv. *citri* str. 306); 1MPX: Alpha-amino acid ester hydrolase (*Xanthomonas citri*); 2B4K: Alpha-amino acid ester hydrolase (*Acetobacter turbidans*). Asterisks indicate conserved amino acids. Red boxes indicate active center.

图 3 利用 ClustalX 构建的 AEH 与同源蛋白的系统进化树 Fig. 3 Phylogenetic tree of AEH based on the homology proteins by ClustalX

注: 括号中数字为 GenBank 登录号. 标尺代表 10%的序列差异.

Note: Numbers in parentheses are GenBank accession numbers. Bar: 10% sequence divergence.

Fig.	4	The	three-dimensional	structure	of	Х.	ru-
brilli	nean	s AEI	H				

注: A: 基于柑橘黄单胞菌 AEH (PDB ID: 1MPX_A) 的红纹 黄单胞菌 AEH 蛋白的晶体结构图; B: 3 个高度柔性位点的 位置及底物通道.

Notes: A: The predicted three-dimensional structure of *X. ru-brillineans* AEH based on *X. citri* AEH (PDB ID: 1MPX_A); B: The location of three highly flexible residues and the sub-strate tunnel of *X. rubrillineans* AEH.

表 3	突变体酶热稳定性及活性				
Table 3	Table 3 Thermal stability and specific				
activity of variants					
	热处理前比活力*	半失活温度*			
突尖株名称	Specific activity be-	T			
Name of variants	fore heat treatment	$(^{\circ}\mathbf{C})$			
	(U/mg)	(C)			
WT	576±17	43±0.5			
G435L	418±9	49±0.8			
F459N	602±11	54±0.7			
F459C	583±23	53±0.7			

注:*: 表中比活力及半失活温度为3个平行样的平均值.

Note: *: The specific activity and T_{50} values are averages of three parallel samples.

3 讨论

在氨基酸水平上,与红纹黄单胞菌 AEH 相 似性最高的 X. albilineans GPE PC73 的肽酶。属 于 Pfam 数据库所定义的 S15 家族^[19],这种蛋白 家族的特征是含有αβ-水解酶折叠结构域, AEH

图 5 X. rubrillineans AEH 野生型及突变体 F459N 纯 化后的热稳定性曲线图

Fig. 5 Thermostability curve of purified wild-type and variant F459N of X. rubrillineans AEH

注:分别测定酶溶液在不同温度下(35°C-65°C)处理 30 min 后的头孢氨苄合成活性. 野生型和突变体 F459N 35 ℃下的 比活力数值标准化至100%.

Notes: Activity in the synthesis of cephalexin was measured after the enzyme solutions were treated at various temperatures (35 °C -65 °C) for 0.5 h. The specific activities of wide-type and variant F459N at 35 °C were normalized to 100%.

也具有相同的结构域。其次是地毯草黄单胞菌 X. axonopodis pv. citri str. 306 的戊二酰-7-ACA 酰 化酶,催化戊二酰-7-ACA水解为7-ACA的反应。 戊二酰-7-ACA 酰化酶的底物与 AEH 的底物具 有一定的结构相似性,与功能上的相似性一致。 从构建的进化树(图3)中可以看出, AEH 在黄单胞 菌中分布非常广泛, 与 AEH 亲缘关系最近的肽 酶也来自黄单胞菌, 不排除两种酶来自共同的祖 先蛋白的可能性。

克隆及异源表达 AEH 的目的是将其应用于 工业化生产β-内酰胺抗生素。其中热稳定性这一 指标无论对于蛋白质工程(稳定性高的模板可以 避免突变体酶由于不稳定而无法显示其优越 性)^[20], 还是后续工业化生产中酶的操作稳定 性^[21]都具有重大意义。因此将提高 AEH 的热稳 定性作为酶改造的第一步。通过纯粹理性设计仅 突变少量氨基酸残基就能提高酶稳定性的普遍 规律尚未发现。所以本研究在提高红纹黄单胞菌 AEH 热稳定性的过程采用了半理性的策略,在结 构信息已知的情况下减少筛选量增加获得阳性 克隆的成功率。

筛选方法的可靠性对于提高热稳定性至关重 要。本文通过三方面避免假阳性: ①热处理快速 升温,快速降温,保证处理温度的准确性;②严 格控制初筛过程中无细胞提取物活性测定的一 系列条件:③初筛获得的阳性克隆纯化后评价比 活力,排除可能因点突变引起的表达量差异造成 酶活性的变化。最终获得 3 株 T50 较野生型提高 5℃ 以上的突变体, 说明该热稳定筛选方法的可 行性。

热稳定性的提高不能以牺牲酶活为代价。因 此在初筛步骤设置了两个标准:活性和热稳定 性。3株T50较野生型提高5℃以上的突变体中, G435L 催化合成头孢氨苄的的比活力降低 27%, 而在初筛步骤 G435L 活性降低小于 20%, 说明无 细胞提取物形式和纯酶形式在测定活性方面有 一定偏差, 应以更精确的纯酶形式的比活力为 准。获得 F459N 及 F459C 的 T50 较野生型分别提 高 10 ℃ 和 9 ℃, 且比活力没有损失, 可以作为 AEH 定向进化的起始模板。

致谢: 衷心感谢德国马克斯-普朗克学会煤炭研 究所 Manfred T Reetz 教授赠送 B-FITTER 软件。

参考文献

- [1] Elander RP. Industrial production of β-lactam antibiotics[J]. Applied Microbiology and Biotechnology, 2003, 61(5/6): 385-392.
- [2] Abraham EP. The β -lactam antibiotics[J]. Scientific American, 1981, 244: 64-74.
- [3] Pollard DJ, Woodley JM. Biocatalysis for pharmaceutical intermediates: the future is now[J]. Trends in Biotechnology, 2007, 25(2): 66-73.
- [4] Woodley JM. New opportunities for biocatalysis: making pharmaceutical processes greener[J].

1455

Trends Biotechnology, 2008, 26(6): 321-327.

- [5] Tao JH, Xu JH. Biocatalysis in development of green pharmaceutical processes[J]. Current Opinion in Chemical Biology, 2009, 13(1): 43–50.
- [6] Hewitt L, Kasche V, Lummer K, et al. Structure of a slow processing precursor penicillin acylase from *Escherichia coli* reveals the linker peptide blocking the active-site cleft[J]. Journal of Molecular Biology, 2000, 302(4): 887–898.
- [7] Barends TRM, Polderman-Tijmes JJ, Jekel PA, et al. The sequence and crystal structure of the α -amino acid ester hydrolase from *Xanthomonas citri* define a new family of β -lactam antibiotic acylases[J]. The Journal of Biological Chemistry, 2003, 278(25): 23076–23084.
- [8] Polderman-Tijmes JJ. Jekel PA, Jeronimus-Stratingh CM, et al. Identification of the catalytic residues of α -amino acid ester hydrolase from Acetobacter turbidans by labeling and site-directed mutagenesis[J]. The Journal of **Biological** Chemistry, 2002, 277(32): 28474-28482.
- [9] Barends TRM, Polderman-Tijmes JJ, Jekel PA, et al. Acetobacter turbidans α-amino acid ester hydrolase: how a single mutation improves an antibioticproducing enzyme[J]. The Journal of Biological Chemistry, 2006, 281(9): 5804–5810.
- [10] Bloom JD, Labthavikul ST, Otey CR, et al. Protein stability promotes evolvability[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(15): 5869–5874.
- [11] D'Amico S, Marx JC, Gerday C, et al. Activity-stability relationships in extremophilic enzymes[J]. The Journal of Biological Chemistry, 2003, 278(10): 7891-7896.

- [12] Bommarius AS, Blum JK, Abrahamson MJ. Status of protein engineering for biocatalysts: how to design an industrially useful biocatalyst[J]. Current Opinion in Chemical Biology 2010, 15(2): 194–200.
- [13] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling[J]. Bioinformatics, 2006, 22(2): 195-201.
- [14] The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.
- [15] Reetz MT, Carballeira JD. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes[J]. Nature Protocols, 2007, 2(4): 891–903.
- [16] 萨姆布鲁克 J, 拉塞尔 DW. 分子克隆实验指南[M]. 第3版. 北京: 科学出版社, 2002: 1252.
- [17] Li YG, Drummond DA, Sawayama AM, et al. A diverse family of thermostable cytochrome P450s created by recombination of stabilizing fragments[J]. Nature Biotechnology, 2007, 25(9): 1051–1056.
- [18] Firth AE, Patrick WM. Statistics of protein library construction[J]. Bioinformatics, 2005, 21(15): 3314–3315.
- [19] Punta M, Coggill PC, Eberhardt RY, et al. The Pfam protein families database[J]. Nucleic Acids Research, 2012, 40(D1): D290–D301.
- [20] Eijsink VGH, Gåseidnes S, Borchert TV, et al. Directed evolution of enzyme stability[J]. Biomolecular Engineering, 2005, 22(1/3): 21-30.
- [21] Synowiecki J. Some applications of thermophiles and their enzymes for protein processing[J]. African Journal of Biotechnology, 2010, 9(42): 7020-7025.