

酸马奶中乳酸菌的鉴定及生物学特性的研究

霍小琰 李少英* 郭荣荣

(内蒙古农业大学 食品科学与工程学院 内蒙古 呼和浩特 010018)

摘 要:【目的】对从酸马奶中分离出来的 10 株乳酸菌进行鉴定和生理生化特性研究,为工业生产筛选特性优良的菌种。【方法】通过形态学观察、生理生化特性、分子生物学特性及其对致病菌抑制作用的研究对其进行鉴定,并筛选特性优良菌株。【结果】10 株乳酸菌分别为 2 株 Lactobacillus plantarum、2 株 Enterococcus villorum、2 株 Enterococcus dispar、3 株 Enterococcus durans 和 1 株 Enterococcus raffinosus; 其对 Staphylococcus aureus、Escherichia coli 和 Enteritidis bacillus 有不同程度的抑制作用。【结论】菌株 HZ24、HZ25 具有良好的生物学特性和益生功能,可以应用到食品发酵工业生产中。

关键词: 酸马奶, 乳酸菌, 鉴定, 生物学特性

Identification and biological characteristics of lactic acid bacteria isolated from koumiss

HUO Xiao-Yan LI Shao-Ying* GUO Rong-Rong

(College of Food Science and Engineering, Inner Mongolia Agricultural University, Huhhot, Inner Mongolia 010018, China)

Abstract: [**Objective**] The aim of the present study was to identify the genera and screen potential characteristics bacteria in the lactic acid bacteria isolated from koumiss. [**Methods**] The characteristics of lactic acid bacteria were studied by the experiments on some aspects, such as morphology, physiological and biochemical characteristics, molecular biology and the inhibition of pathogenic bacteria. [**Results**] There were two strains of *Lactobacillus plantarum*, two strains of *Enterococcus villorum*, two strains of *Enterococcus dispar*, three strains of *Enterococcus durans* and one strain of *Enterococcus raffinosus*. The tested bacteria had different degrees of

基金项目:内蒙古自治区高等学校科学研究项目(No. NJ09059);国家自然科学基金项目(No. 31060014)

收稿日期: 2011-11-08; 接受日期: 2012-03-31

^{*}通讯作者: Tel: 86-471-4308034; ⊠: nmglshy@126.com

inhibition to *Staphylococcus aureus*, *Escherichia coli* and *Enteritidis bacillus*. [Conclusion] HZ24 and HZ25 were good potential probiotics which may make great contributions to food fermentation industry.

Keywords: Koumiss, Lactic acid bacteria, Identification, Biological characteristics

酸马奶是以鲜马奶为原料, 主要以乳酸菌和 酵母菌共同发酵而成的一种古老的乳酸酒精发 酵乳饮料。因其具有健胃、驱寒、活血、舒筋、 消食等功能,一直以来都是蒙古族招待贵宾的上 等保健饮品[1]。内蒙古锡林郭勒牧区生产的马奶 酒, 大多数是牧民家庭利用马奶靠自然发酵而成 的,参与发酵的乳酸菌中,乳杆菌属和肠球菌属 为优势菌属[2-3]。乳酸菌在人体内具有抑制病原微 生物生长、维持肠道菌群平衡、调节胃肠功能等 诸多益生作用[4-5]。但是, 由于乳酸菌在生产应用 中面临着尚未解决的难题, 也就是乳酸菌与抗菌 药之间的相互制约问题[6]。因滥用抗菌药、引起 人和动物肠道菌群失调, 给治疗疾病带来诸多不 便,同时也会为人类的健康带来极大隐患[7],从 而用乳酸菌制备微生态制剂代替抗菌药解决这 一弊端倍受学者的关注。另外, 随着工业化生产, 菌种的不断纯化, 菌种单一也是需要解决的问 题。因此, 本课题对从分离自民族乳制品——酸 马奶的 10 株菌株、进行形态学、生理生化特性和 分子生物学研究以及抑菌特性研究, 从而判定菌 株的种属, 筛选具有优良益生特性和发酵特性的 菌株, 为微生态制剂的开发与应用提供理论数 据,同时也为食品发酵生产提供优良菌种。

1 材料与方法

1.1 材料

- **1.1.1 样品来源:** 样品采自内蒙古锡林郭勒草原 4 个牧业旗 25 户牧民家庭的酸马奶。
- **1.1.2** 菌株: (1) 试验菌株: 锡林郭勒牧区酸马奶中分离乳酸菌 HZ1、HZ9、HZ15、HZ24、HZ25、HZ28、NN、NN1、NN2、NN3 均由本

实验室保存。

- (2) 标准菌株: Lactobacillus plantarum (植物乳杆菌, CICC 6238), 代号 ZB; Lactococcus lactis subsp. lactis (乳酸乳球菌, IFU 12007), 代号 ZBQ; Lactobacillus delbrueckii subsp. lactis (德氏乳杆菌莱氏曼式亚种, ATCC 10697), 代号 LD; Bifidobacterium breve (短双歧杆菌, JCM 1192), 代号 BB。
- (3) 质控菌株: Escherichia coli (大肠杆菌, CICC 10389); Enteritidis bacillus (肠炎沙门氏菌, CICC 21482); Staphylococcus aureus (金黄色葡萄球菌, CICC 10384)。
- 1.1.3 培养基: MRS 液体培养基、MRS 琼脂培养基、TPY 液体培养基、BLB 培养基、脱脂乳培养基、糖发酵培养基等,参照文献[8-10]中所介绍的材料和方法制备。
- 1.1.4 主要试剂:鉴定所用全部试剂均购于环凯 生物科技有限公司;细菌基因组 DNA 提取试剂 盒(离心柱型)购于北京百泰克生物有限公司; PCR 试剂购于北京全式金生物技术有限公司。

1.2 方法

- 1.2.1 试验菌株的活化与保存:将保存的冻干菌株,接种于脱脂乳培养基中,置于 37°C 培养24 h, MRS 琼脂培养基高层柱状穿刺制成纯培养物,4°C 冰箱保存备用。同时在从脱脂乳培养基中按2%的接种量接在TPY培养基中,置于37°C培养24 h,如此重复2次。将最后一次的TPY液体培养物3000 r/min离心10 min,弃上清液,菌体用灭菌的等量生理盐水离心洗涤3次,待用。
- **1.2.2 生物学特性试验:** 按参考文献[11-15]介绍的方法进行, 主要项目有形态学观察、生理生

化实验、培养特性等。

1.2.3 16S rRNA 序列分析: 将活化好的菌液,按试剂盒要求操作提取各试验菌株的全基因组DNA。根据植物乳杆菌 16S rRNA 的序列设计引物,上游引物: 5'-TGTCGTGAGATGTTGGGTT AAG-3'; 下游引物: 5'-ACTAGCGATTCCGAC TTCATGT-3'。 扩增片段长 275 bp, 引物由生工生物工程(上海)有限公司合成。 PCR 扩增体系为 50 μ L: 模板 DNA 4 μ L; 上游引物(10 μ mol/L) 1 μ L; 下游引物(10 μ mol/L) 1 μ L; 下游引物(10 μ mol/L) 1 μ L; μ C 30 μ C 30 s, 60 °C 30 s, 72 °C 1 min, 共 45 个循环; 72 °C 5 min。 扩增产物琼脂糖凝胶电泳检测,由中美泰和生物技术(北京)有限公司测序。

1.2.4 试验菌株对 3 株致病菌的抑制试验: 用牛津杯法^[5]测定试验菌株的代谢产物对 Escherichia coli、Staphylococcus aureus 和 Enteritidis bacillus 的抑菌直径,同时用乳酸调节空白培养基作为试验对照,用抑菌圈直径的大小来判断乳酸菌抑菌能力的大小。

2 结果与分析

2.1 试验菌的菌体形态特征及生理生化特性由表 1 和表 2 可见, 试验菌株中球菌多呈球

形或者卵圆形,成对或者链状排列;杆菌多为短杆状,均为革兰氏阳性,过氧化氢酶试验阴性,可以利用葡萄糖产酸,但是不产气,并且在酸性条件下部分菌株生长,在碱性条件下全部生长良好,在 40 °C、45 °C下生长良好,在 6.5% NaCl的培养基中生长良好,同时,具有耐热的特性,即在 60 °C 处理 30 min 后仍可生长。

由表 3 可见, 在糖类发酵试验中, 全部的菌 株均可以利用 D-核糖、半乳糖、纤维二糖、果糖、 水杨苷, 均不利用阿拉伯糖, 菌株 HZ1 可以利用 鼠李糖和木糖, 其余菌株均不能利用鼠李糖和木 糖,除了菌株 HZ1 和菌株 HZ2 不能利用葡萄糖、 菌株 HZ1 不能利用麦芽糖、菌株 HZ2 不能利用 乳糖之外,其余菌株均可以利用葡萄糖、麦芽糖 和乳糖。但是试验菌株对于山梨醇、棉籽糖、蜜 二糖、甘露醇、乳糖、蔗糖以及淀粉的发酵特性 各不相同, 其中菌株 HZ1、HZ9、HZ15、HZ16 可以利用棉籽糖; 菌株 HZ24、HZ25 和 NN2 可以 利用山梨醇; 菌株 HZ2、HZ28 不能利用蜜二糖, 其余均可利用蜜二糖;菌株 HZ2、HZ28、NN1 和 NN3 不能利用甘露醇, 其余均可利用甘露醇; 菌株 HZ2、HZ9、HZ15 和 HZ24 不能利用蔗糖. 其 余均可以利用蔗糖; 而淀粉水解试验中, HZ15 和 NN1 可以水解淀粉。

表 1 试验菌株的形态与染色特性 Table 1 Morphous and coloretur property of test strains									
菌株编号 Strains number	镜检结果 The result of microscopic examination	革兰氏染色 Gram staining	菌株编号 Strains number	镜检结果 The result of microscopic examination	革兰氏染色 Gram staining				
HZ1	球菌, 无芽孢	阳性	HZ9	成对, 球菌, 无芽孢	阳性				
HZ24	长杆菌, 无芽孢	阳性	HZ15	成对, 球菌, 无芽孢	阳性				
HZ28	短杆菌, 无芽孢	阳性	HZ25	球菌, 无芽孢	阳性				
NN1	球菌, 无芽孢	阳性	NN	球菌, 无芽孢	阳性				
NN3	球菌, 无芽孢	阳性	NN2	球菌, 无芽孢	阳性				
ZBQ	成链, 球菌, 无芽孢	阳性	ZB	短杆菌, 无芽孢	阳性				

表 2 试验菌株的生理生化结果 Table 2 Biochemistry effect of test strains													
菌株		pH 耐热 30 min (°C)			产酸量	过氧化	柠檬酸盐	G					
编号 Strains number	3.5	4.0	4.5	9.2	9.6	60	40	45	6.5% NaCl	Volume of Toc-acid (%)	氢酶 Catalase	利用试验 Citrate	产气 Glucose aerosis
HZ1	-	_	-	++++	++++	++	++++	+++	++++	0.38	-	+	_
HZ9	-	-	-	++++	++++	++	++++	+++	++	0.37	-	-	-
HZ15	-	-	-	+++	++++	++++	++++	+++	++	0.37	-	-	_
HZ24	+	++	++	++++	-	++++	++++	++	+	0.45	-	-	-
HZ25	-	++	+	++++	++++	++++	++++	++	++	0.47	-	-	-
HZ28	-	-	-	++++	++++	++	++++	+++	+	0.36	-	-	-
NN	-	-	++	++++	++++	+++	++++	+++	++	0.35	_	-	_
NN1	-	-	+++	++++	++++	+++	++++	+++	++	0.36	-	-	-
NN2	-	-	+++	++++	++++	++	++++	+++	++	0.34	-	-	-
NN3	-	-	+++	++++	++++	++	++++	++++	++	0.44	-	-	-
ZB	+	+	+	++++	++++	++	++++	++	++	0.56	-	-	_
ZBQ	-	-	-	++++	++++	-	++++	++++	++	0.42	_	_	_

注: -: 阴性结果; +: 阳性结果; ++、+++、+++: 阳性结果依次增强.

Note: -: Minus; +: Male; ++, +++, ++++: The positive results in order to enhance.

表 3 试验菌株的糖发酵结果												
			Table 3	Fermen	tation of c	arbohydr	ate of te	st strain	S			
项目 Item	HZ1	HZ9	HZ15	HZ24	HZ25	HZ28	NN	NN1	NN2	NN3	ZB	ZBQ
Starch	_	-	+	-	_	-	-	+	_	_	_	-
D-ribose	+	+	+	+	+	+	+	+	+	+	+	+
Arabinose	-	-	-	-	-	-	-	-	-	-	-	-
Galactose	+	+	+	+	+	+	+	+	+	+	+	+
Cellobiose	+	+	+	+	+	+	+	+	+	+	+	+
Sorbitol	-	-	-	+	+	-	-	-	+	-	-	-
Fructose	+	+	+	+	+	+	+	+	+	+	+	+
Raffinose	+	+	+	-	-	-	-	-	-	-	-	-
Salicin	+	+	+	+	+	+	+	+	+	+	+	+
Melibiose	+	+	+	+	+	-	+	+	+	+	+	+
Glucose	-	+	+	+	+	+	+	+	+	+	+	+
Maltose	-	+	+	+	+	+	+	+	+	+	+	-
Rhamnose	+	-	-	-	-	-	-	-	_	-	-	-
Xylose	+	_	-	$+\mathbf{W}$	-	_	-	-	_	-	-	-
Manitol	+	+	$+\mathbf{W}$	+	+	-	+	-	+	-	+	-
Sucrose	+	_	-	+	+	-	+	+	+	+	-	+
Lactose	+	+	+	+	+	+	+	+	+	+	+	+

注: -: 阴性结果; +: 阳性结果; +W: 弱阳性.

Note: -: Minus; +: Male; +W: Weakly positive.

综合以上试验结果, 经过对试验菌株的形态 学观察和生理生化特性的研究, 试验菌株均为革 兰氏染色阳性、无芽孢、过氧化氢酶试验阴性、 在 40 ℃、45 ℃ 下生长良好、有一定的耐热性、 可以耐受 6.5% NaCl、不能利用柠檬酸盐, 能在 pH 9.2 和 pH 9.6 环境中生长、部分菌株可以在 pH 4.5 的环境中生长,可以利用 D-核糖、纤维二 塘、果糖、水杨苷、木糖、甘露醇、乳糖等糖类, 同时试验菌株对于棉籽糖、蜜二糖、蔗糖等的利 用不同,依据《伯杰细菌鉴定手册》(1984)、张刚 的《乳酸细菌》以及《乳酸菌试验手册》中的两 歧检索法[10]对菌株进行种的鉴定, 菌株 HZ9、 HZ15 和 HZ28 与 Enterococcus durans (E. durans) 特性相同, 应归入肠球菌属的 E. durans; 菌株 HZ24 和标准 L. plantarum 生理生化特性相同, 归 为L. plantarum; 菌株HZ25虽然镜检观察为球菌, 但生理生化及糖类发酵试验与 L. plantarum 完全 相同, 故也归为 L. plantarum; 菌株 NN 和 NN1 的生理生化特性相同,均归入 E. villorum; 菌株 NN2 和 NN3 归为 E. dispar。

2.2 16S rRNA 序列分析与分子鉴定

用 1.0%琼脂糖凝胶电泳分析 PCR 产物, 试

验菌株和标准菌株均在 275 bp 处出现特异性目的条带,均与预期大小相符合(图 1),将 PCR产物送检测序后,经过与 GenBank 中已发表的标准序列进行同源性比较^[16]。

2.3 试验菌株的 16S rRNA 同源性分析

将 PCR 扩增产物进行序列测定,并将测定结果与其他乳酸菌(Enterococcus molodoratus、Enterococcus raffinosus、Enterococcus mundtii、Enterococcus durans、Enterococcus dispar、Enterococcus villorum、Enterococcus italicus、Lactobacillus plantarum、Lactobacillus pentosus、Lactobacillus casei subsp. casei、Lactobacillus collinodes、Lactobacillus zeae、Lactobacillus paracasei supsp. paracase)进行序列同源性分析。

经过与 GenBank/EMBL/DDBJ 数据库中已发表的标准序列进行同源性比较,上述菌株与其他乳酸菌的同源性分析均大于 86.3%,属于乳酸菌,符合 BLAST 的比对结果。如系统发育树(图 2)所示,从总体上可将这 10 株乳酸菌分为两大群,即菌株 HZ1、HZ9、HZ15、HZ29、NN、NN1、NN2和 NN3 均属于肠杆菌属。其中,在肠球菌属中待测菌株 NN2、NN3 同 E. dispar 在进化树中同源

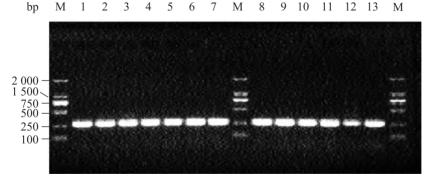


图 1 试验菌株的 16S rRNA 基因扩增电泳图 Fig. 1 Agarose gel electrophoresis of 16S rRNA

注: M: DNA marker DL2000; 1: LD; 2: BB; 3: ZBQ; 4: ZB; 5: NN3; 6: NN2; 7: NN1; 8: NN; 9: HZ28; 10: HZ25; 11: HZ24; 12: HZ1: 13: HZ9.

Note: M: DNA marker DL2000; 1: LD; 2: BB; 3: ZBQ; 4: ZB; 5: NN3; 6: NN2; 7: NN1; 8: NN; 9: HZ28; 10: HZ25; 11: HZ24; 12: HZ1; 13: HZ9.

性最高,位置最近,属于同一个分支,由此可判定菌株 NN2 和 NN3 属于 E. dispar; 菌株 NN 和 NN1 同 E. villorum 在进化树中同源性最高,位置最近,属于同一个分支,由此可判定菌株 NN1 和 NN 属于 E. villorum; 菌株 HZ1 属于 E. raffinosus; 菌株 HZ28 和 HZ9 属于 E. durans。在乳杆菌属中 HZ24、HZ25 同 L. plantarum 在进化树中同源性最高,位置最近,属于同一个分支,由此可判定菌株 HZ24 和 HZ25 属于 L. plantarum,这与传统的生化鉴定和糖类发酵试验结果相符,但是菌株 HZ25 的形态特性为球菌,而 16S rRNA 序列鉴定为 L. plantarum。

2.4 试验菌株对 3 株致病菌的抑制试验结果 将测得的抑菌直径经 SAS 软件的 ANOVA 程

序分析得表 4, 从中可以看出, 10 株试验菌株和 4 株标准菌株中, 仅菌株 HZ9、NN、NN2、NN3 对 S. aureus 没有抑菌作用, 其余的乳酸菌对 S. aureus 均有不同程度的抑菌作用, 抑菌直径均达到 11.32 mm。而试验菌株对 E. coli 和 E. bacillus 的抑菌直径更加明显, 不仅全部有抑菌作用, 而且抑菌直径都高于 11.58 mm, 最高的是菌株 HZ28 对 E. coli 的抑菌直径达 16.30 mm, 并且各试验菌株对致病菌的抑菌差异显著(P<0.05)。

试验选择 E. coli、E. bacillus 作为指示菌,证明了乳酸菌对革兰氏阴性肠道致病菌有抑制作用,而选择 S. aureus 是为了证明试验菌株不仅仅对革兰氏阴性菌有抑制作用,对革兰氏阳性的致病菌也有抑制作用。同时试验参照目前国际上公

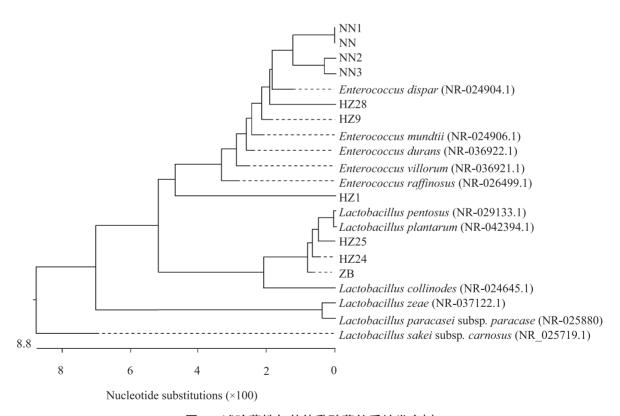


图 2 试验菌株与其他乳酸菌的系统发育树

Fig. 2 The phylogenetic tree of test strains and other lactic acid bacteria

注: 括号中的序号代表菌株的GenBank 登录号; 分支点上的数字代表计算 100次聚类到一起的几率; 刻度尺代表 1%的序列差异. Note: The sequence number in the bracket means the GenBank accession number of the strain; the number at the node means the percentage of occurrence in 100 boot-straped trees; the scale bar means 1% sequence difference.

		菌直径多重比较(单位: mm) · of the lactic acid bacteria (uni	it: mm)
试验菌株 Test strains	金黄色葡萄球菌 Staphylococcus aureus	肠炎沙门氏菌 Enteritidis bacillus	大肠杆菌 Escherichia coli
HZ1	12.28±0.55 ^{BCD}	14.27±051 ^{ABC}	11.58±0.93 ^E
HZ9	$0\pm0^{\mathrm{E}}$	12.83±0.95 ^{CDE}	12.81±0.73 ^{DE}
HZ15	12.94±1.20 ^{ABC}	14.80±1.19 ^A	12.95±1.43 ^{BCDE}
HZ24	13.65±2.04 ^{AB}	14.20±0.50 ^{ABC}	13.93±0.80 ^{BCD}
HZ25	12.92±1.34 ^{ABC}	14.66±1.80 ^{AB}	13.17±1.24 ^{BCDE}
HZ28	11.32±0.46 ^{CD}	13.02±0.96 ^{BCDE}	16.30±1.46 ^A
NN	$0\pm0^{\mathrm{E}}$	12.76±0.77 ^{CDE}	13.10±0.78 ^{BCDE}
NN1	12.09±1.25 ^{BCD}	11.86±0.70 ^{DE}	13.31±1.33 ^{BCDE}
NN2	$0\pm0^{\mathrm{E}}$	11.88±0.50 ^{DE}	12.15±0.55 ^{CDE}
NN3	$0\pm0^{\mathrm{E}}$	11.70±0.74 ^E	11.98±0.76 ^{CDE}
ZB	14.38±1.37 ^A	14.20±1.10 ^{ABC}	14.50±0.38 ^{AB}
ZBQ	12.14±0.08 ^{BCD}	13.63±0.39 ^{ABCD}	12.54±0.59 ^{BCDE}
BB	10.96±0.36 ^D	13.05±0.79 ^{BCDE}	12.26±0.55 ^{CDE}
LD	12.96±1.22 ^{ABC}	12.94±0.85 ^{BCDE}	14.13±2.22 ^{BC}

注: 同列肩标大写字母相同差异不显著, 不同者表示差异显著(P<0.05).

Note: In a column, data followed by a common letter were not significantly different at 5% level, otherwise significantly different (P<0.05).

布的益生菌——*Bifidobacterium breve* 作为对照,可以发现 10 株试验菌株中 HZ1、HZ15、HZ24、HZ25、HZ28、NN1 对 *S. aureus* 均有抑制作用; 10 株菌中只有 HZ1 和 NN3 对 *E. coli* 的抑菌直径小于 *B. breve*,其余的均大于 *B. breve*;同样, 10 株菌中有 4 株菌对 *E. bacillus* 的抑制直径大于 *B. breve* 的抑制直径,其余 6 株菌虽然抑菌直径小于 *B. breve*,但是对 *E. bacillus* 也有不同程度的抑制作用。

3 讨论

一般来说,温度是影响菌株发酵的重要因素 之一,温度升高有利于缩短凝乳和发酵时间,但 是有些菌株在温度较高的条件下生长状况不好, 产酸能力差,不利于风味物质的形成。本研究的 试验菌株均可以在 37 °C、40 °C 和 45 °C 条件下生长,且生长状态良好,而且均可以耐受 60 °C、30 min 的高温处理,生长状况良好,说明试验菌株生长温度范围宽,可以应用于工业生产中,这与严以兰^[17]报道的试验结果相吻合。10 株试验菌株均可以在含有 6.5% NaCl 的培养基中生长,并且生长状况良好,即有一定的耐盐性,说明试验菌株均有应用在发酵香肠、干酪等高盐度的发酵食品中的潜力^[14]。

益生菌在到达肠道之前先要活着通过胃,由于胃中的胃酸可以抵御大部分微生物的存活和通过,因而在开发益生菌的时候首先要考察其对酸的耐受能力^[2,18]。本研究中菌株 HZ24 可以在pH 3.5 的培养基中生长, HZ24 和 HZ25 可以在

pH 4.0 的条件下生长, HZ24、HZ25、NN、NN1、NN2 和 NN3 可以在 pH 4.5 条件下生长, 说明这些菌株可以在低酸度的条件下生长, 具有益生菌的开发潜力。同时, 菌株 HZ24、HZ25 还具有较强发酵人体难以利用的蜜二糖和纤维二糖的能力, 这一特性在生产实践中具有开发和利用的价值。

乳酸菌中的一部分种属是动物肠道的益生菌群,其代谢可以产生乳酸、乙酸等有机酸、细菌素、双乙酰等天然抑菌物质,具有维持肠道内菌群平衡的功能^[2]。本试验测定了 10 株试验菌株对 2 株革兰氏阴性肠道致病菌和 1 株革兰氏阳性致病菌的抑菌活性,10 株均可抑制 E. coli 和 E. bacillus,并且抑菌圈直径和 B. breve、L. plantarum差异显著;对 S. aureus 也有一定的抑制作用,其中菌株 HZ24、HZ25 对 3 株致病菌的抑制作用与益生菌 L. plantarum 和 B. breve 的差异不显著。因此,HZ24、HZ25 具有益生菌的开发潜力。

4 结论

- (1) 试验菌株经形态、生理生化鉴定和 16S rRNA 序列测定, 其中 2 株鉴定为 Lactobacillus plantarum、2 株为 Enterococcus villorum、2 株为 Enterococcus dispar、3 株为 Enterococcus durans 和 1 株为 Enterococcus raffinosus。
- (2) 通过抑菌试验可知, 试验菌株对 E. coli、E. bacillus 有不同程度的抑制作用, 菌株 HZ1、HZ15、HZ24、HZ25、HZ28 和 NN1 对 S. aureus 有不同程度的抑制作用。其中菌株 HZ24、HZ25 对 3 株致病菌的抑制作用与益生菌 L. plantarum 和 B. breve 的差异不显著。因此, HZ24、HZ25 具有益生菌的开发潜力。
- (3) 菌株 HZ24、HZ25 生长温度范围广,属于中温菌,并具有耐热性、耐酸性、耐盐性、具有发酵二糖的优良特性和抑菌的益生功能,可以应用到食品发酵工业生产中。

参考文献

- [1] 陈葙南. 双歧杆菌的生理功效及应用研究进展[J]. 科技创新导报, 2010(11): 2-3.
- [2] 周雨霞. 内蒙古牧区传统乳制品中乳杆菌生物学特性及其益生作用的研究[D]. 呼和浩特: 内蒙古农业大学博士学位论文, 2006: 94-95.
- [3] 李少英, 乌尼, 李培峰, 等. 内蒙古牧区乳与乳制品中乳酸菌资源及其生态分布[J]. 生态学杂志, 2006, 25(12): 1495-1499.
- [4] 李少英, 乌尼. 马奶酒中乳酸菌的分离及其生物学特性的研究[J]. 内蒙古农业大学学报: 自然科学版, 2002, 23(4): 59-66.
- [5] 吴慧芬, 毛盛勇, 姚文, 等. 猪源乳酸菌产乳酸及其抑菌特性研究[J]. 微生物学通报, 2005, 32(1): 79-83.
- [6] 张灼阳, 刘畅, 郭晓奎. 乳酸菌耐药性的研究进展[J]. 中国微生态学杂志, 2007, 19(5): 478-480.
- [7] Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteria[J]. International Journal of Food Microbiology, 2005, 105(3): 281–295.
- [8] Fuller R. Probiotics: an overview[M]//Gibson SAW. Human Health: The Contribution of Microorganisms. London: Springer-Verlag, 1992: 63-73.
- [9] 赵胜娟, 赵暄, 罗红霞, 等. 新疆传统乳制品中乳酸菌的分离鉴定[J]. 中国乳品工业, 2007, 35(11): 8-11.
- [10] 陈天寿. 微生物培养基的制造与应用[M]. 北京: 中国农业出版社, 1995: 78-97.
- [11] 内村泰, 岗田早苗. 乳酸菌试验手册(日文版)[M]. 日本东京: 朝仓书店, 1992, 6: 29-72.
- [12] von Weymarn N, Hujanen M, Leisola M. Production of D-mannitol by heterofermentative lactic acid bacteria[J]. Process Biochemistry, 2002, 37(11): 1207–1213.
- [13] Hemme D, Foucaud-Scheunemann C. Leuconostoc,

- characteristics, use in dairy technology and prospects in functional foods[J]. International Dairy Journal, 2004, 14(6): 467–494.
- [14] Ricciardi A, Parente E, Piraino P, et al. Phenotypic characterization of lactic acid bacteria from sourdoughs for Altamura bread produced in Apulia (Southern Italy)[J]. International Journal of Food Microbiology, 2005, 98(1): 63–72.
- [15] 郭荣荣, 鹿茸, 李少英. 新分离的植物乳杆菌应用于发酵香肠中的生物学特性研究[J]. 食品与发酵工业, 2010, 36(6): 201-204.
- [16] 杜晓华, 艾日登才次克, 李莉, 等. 蒙古国地区 酸乳中乳酸菌的鉴定及耐酸菌株筛选[J]. 微生物 学通报, 2009, 36(7): 994-1000.
- [17] 严以兰. 自然发酵乳中优良乳酸菌株的筛选及发酵条件研究[D]. 成都: 四川农业大学硕士学位论文, 2007; 18-20.
- [18] 王晓丽,王永山,诸玉梅,等.5株乳酸菌的分离鉴定与生物学特性研究[J]. 江苏农业科学,2011(1):390-392.

征稿简则

1 刊物简介与栏目设置

《微生物学通报》是由中国科学院微生物研究所和中国微生物学会主办的,以微生物学应用基础研究及技术创新与应用为主的综合性学术期刊。刊登内容包括:工业微生物学、海洋微生物学、环境微生物学、基础微生物学、农业微生物学、食品微生物学、兽医微生物学、药物微生物学、医学微生物学、病毒学、酶工程、发酵工程、代谢工程等领域的最新研究成果,产业化新技术和新进展,以及微生物学教学研究和改革等。设置的栏目有:研究报告、专论与综述、生物实验室、高校教改纵横、名课讲堂、教学与科研成果展示、显微世界、专题专栏、专家论坛、书讯、会讯等。

2 投稿方式

投稿时请登陆我刊主页 http://journals.im.ac.cn/wswxtbcn, 点击作者投稿区,第一次投稿请先注册,获得用户名和密码,然后依照提示提交稿件,详见主页"投稿、征稿须知"。

作者必须在网站投.doc 格式的电子稿,图与文字编好页码、图号后合成一个文件上传。凡不符合(投稿须知)要求的文稿,本部恕不受理。

3 写作要求

来稿要求论点明确, 数据可靠, 简明通顺, 重点突出。

3.1 图表

文中的图表须清晰简明, 文字叙述应避免与图表重复。所有小图的宽度应小于 8 cm (占半栏), 大图的宽度应小于 17 cm (通栏)。

3.2 参考文献及脚注

参考文献按文内引用的先后顺序排序编码,未公开发表的资料请勿引用。我刊的参考文献需要注明著者(文献作者不超过3人时全部列出,多于3人时列出前3人,后加"等"或"et al.",作者姓前、名后,名字之间用逗号隔开)、文献名、刊名、年卷期及页码。国外期刊名可以缩写,但必须标准,不加缩写点,不用斜体。参考文献数量不限。

参考文献格式举例:

- 期刊: [1] 刘杰, 成子强, 史宣玲. SARS 冠状病毒 nsp14 基因的克隆和表达[J]. 微生物学通报, 2007, 34(2): 1-3.
 - [2] Kajiura H, Mori K, Tobimatsu T, et al. Characterization and mechanism of action of a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase[J]. Journal of Biological Chemistry, 2001, 276(39): 36514–36519.
- 图书: [3] 钱存柔, 黄仪秀. 微生物实验教程[M]. 北京: 北京大学出版社, 2000: 4.
 - [4] 董志扬, 张树政, 方宣钧, 等. 海藻的生物合成及抗逆机理//华珞等. 核农学进展[M]. 北京: 中国农业出版 社, 1996: 115-120.

脚注(正文首页下方):

基金项目: 基金项目(No.) *通讯作者: Tel: ; Fax: ; E-mail: 收稿日期: 2012-00-00; 接受日期: 2012-00-00

(下转 p. 957)