主编点评文章

## 不同生境中沼泽红假单胞菌基因型多样性分析

冯有智<sup>1,2</sup> 武敬<sup>1,2,3</sup> 王一明<sup>1,2</sup> 林先贵<sup>1,2\*</sup>

(1. 中国科学院南京土壤研究所土壤与农业可持续发展国家重点实验室 江苏 南京 210008)
(2. 中国科学院南京土壤研究所 香港浸会大学土壤与环境联合开放实验室 江苏 南京 210008)
(3. 中国科学院研究生院 北京 100049)

摘 要: 沼泽红假单胞菌(Rhodopseudomonas palustris, R. palustris)是一种分布广泛的紫色非硫细菌, 代谢方式的多样性赋予了它们重要的生态学意义和应用价值。从湖泊、池塘和河流的 11 个底 泥样品中富集培养紫色非硫细菌, 利用基于 pufM 基因的 PCR-DGGE 技术鉴定为 R. palustris, 再利用 rep-PCR 技术进行基因型指纹图谱分析。结果发现相近生境, 即湖泊中的菌株基因型相似度较高, >80%, 而差异越大的生境中菌株基因型指纹图谱差异也越大。这种基因型差异性分析不仅可以帮助研究者更全面地了解不同环境中 R. palustris 基因型多样性, 也为进一步揭示其生态学意义和进化过程提供基础。

关键词: 沼泽红假单胞菌, 紫色非硫细菌, PCR-DGGE, rep-PCR

# The Genotype Diversity of *Rhodopseudomonas palustris* in Different Habitats

FENG You-Zhi<sup>1,2</sup> WU Jing<sup>1,2,3</sup> WANG Yi-Ming<sup>1,2</sup> LIN Xian-Gui<sup>1,2\*</sup>

(1. State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 210008, China)

(2. Joint Open Laboratory of Soil and the Environment, Institute of Soil Science, Chinese Academy of Sciences and Hongkong Baptist University, Nanjing, Jiangsu 210008, China)

(3. Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract: *Rhodopseudomonas palustris* (*R. palustris*) is a common type of purple phototrophic bacteria found in a wide variety of environments. As a result of the diverse metabolism mechanisms, they are ecologically important and have valuable applications. In this study, we collected eleven sediment samples from lakes, ponds and streams. Samples were cultivated for purple nonsulfur bacteria enrichment. With PCR-DGGE based on *pufM* gene fraction, the enriched bacteria were phylogenetically identified as *R. palustris*. Genotypes from these bacteria were differentiated with rep-PCR for cluster analysis. We found that *R. palustris* from similar habitats, eg. lakes, can be categorized into a group with > 80% fingerprinting similarity. On the contrary, the genotypes of *R. palustris* from distinct habitats are distant. Our results suggest a relationship between the genotype diversity of *R. palustris* and their habitat variances. This finding allows a foundation for further studies on the ecological importance and evolu-

基金项目: 国家自然科学基金项目(No. 40771202, 41001142)

<sup>\*</sup> 通讯作者: ⊠: xglin@issas.ac.cn

收稿日期: 2010-06-10; 接受日期: 2010-09-27

tion pathway of such purple nonsulfur bacteria.

Keywords: Rhodopseudomonas palustris, purple nonsulfur bacteria, PCR-DGGE, rep-PCR

紫色光合细菌是不产氧光合细菌的一个重要分 支<sup>[1],</sup>包括紫色非硫细菌和紫色硫细菌。前者主要以 小分子有机物为碳源和电子供体异养生长,而后者 主要利用还原性的硫化物为电子供体自养生长。紫 色非硫细菌具有极其丰富的代谢模式,可进行光能 异养、光能自养和化能异养生长<sup>[2]</sup>。代谢的多样性 使得它们广泛存活于不同的生态系统中,如土壤、 湖泊、海洋及底泥等<sup>[2-3]</sup>,并具有重要的生态学意义, 如作为初级生产力加快环境中物质和能量的循环<sup>[4]</sup>, 促进水稻增产<sup>[5]</sup>等。代谢方式的多样性也使得其在 不同环境中表现出不同的表型和相应的基因型,因 此具有不同的应用价值,如降解芳香类化合物<sup>[6]</sup>和 生物制氢<sup>[7]</sup>。

沼泽红假单胞菌(*Rhodopseudomonas palustris*, *R. palustris*)是紫色非硫细菌中一类重要的微生物, 系统分类学上位于变形菌门(Proteobacteria)的 alpha 分支。传统培养方法<sup>[8]</sup>和现代分子生物学技术<sup>[9]</sup>揭示 *R. palustris* 是水稻土中主要的紫色光合细菌。接种 *R. palustris* 到土壤中可以使得水稻增产 29%<sup>[5]</sup>,它 可以降解多种碳源包括多种芳香类化合物<sup>[10]</sup>,这些 重要的生态学意义和应用价值使得 *R. palustris* 越来 越被重视。

目前微生物多样性研究主要集中在微生物群落 结构水平,但是对于具有多种代谢模式的微生物, 其在不同的生境中会表现出不同的基因型和表型, 有不同的生态学意义和应用价值,因此基因型多样 性研究是一个不可或缺的部分<sup>[11]</sup>。rep-PCR (Repetitive sequence-based PCR)是一种基于随机扩增片 段长度多样性的基因多样性研究方法,可以将微生 物多样性研究精确到菌株水平。该技术已被广泛应 用于以人、畜和植物为宿主的细菌基因型(菌株)多 样性研究中, 如 Escherichia coli<sup>[12]</sup>、Helicobacter pylori<sup>[13]</sup> Bradyrhizobium sp.<sup>[14]</sup> Pseudomonas syringae<sup>[15]</sup>、Rhizobium sp.<sup>[16]</sup>和 Xanthomonas<sup>[17]</sup>, 但 很少应用于微生物生态研究中。将该技术引入代谢 方式多样的紫色非硫细菌研究中可以帮助我们更全 面地了解环境变化对紫色非硫细菌的影响,进而有 助于我们充分了解其生态学意义和进化的过程<sup>[18]</sup>。

在本实验中,我们结合传统方法和现代分子生

物学技术,对 11 个不同生境样品,首先利用特异性 培养基富集纯化紫色非硫细菌,然后用基于*pufM*基 因片段的 PCR-DGGE (Polymerase chain reactiondenaturing gradient gel electrophoresis)技术鉴别为 *R. palustris*,再利用 rep-PCR 技术分析不同生境中 的菌株基因型差异,以期揭示其基因型差异和生境 差异之间的联系,同时也为紫色非硫细菌在不同水 平的多样性研究方面打下方法和理论基础。

#### 1 材料与方法

#### 1.1 底泥采集

底泥样品采用德国 HYDRO-BIOS 自动采集器 收集。采样后的底泥用自封袋密封,回实验室后放 置 4℃保存。不同采样点的编号如表 1 所示。玄武 湖的各采样点之间至少相隔 500 m。

| Table  | 表1不<br>1 Different san | 同采样点<br>upling sites | in this study |
|--------|------------------------|----------------------|---------------|
| 编号     | 采样地点                   | 编号                   | 采样地点          |
| Number | Sites                  | Number               | Sites         |
| 1      | 南京玄武湖1                 | 7                    | 南京玄武湖7        |
| 2      | 南京玄武湖 2                | 8                    | 浙江德清虾塘        |
| 3      | 南京玄武湖 3                | 9                    | 盱眙龙虾塘         |
| 4      | 南京玄武湖 4                | 10                   | 市售光合细菌菌剂      |
| 5      | 南京玄武湖 5                | 11                   | 浙江德清河         |
| 6      | 南京玄武湖 6                |                      |               |

#### 1.2 主要试剂和仪器

细菌 DNA 提取试剂盒为 Bacterial DNA Kit (Omega Bio-Tek, USA)。PCR 反应的 r*Taq* 聚合酶和 克隆所需的 pMD 18-T 载体均购自于 TaKaRa 公司, 氨苄青霉素购自于 Sigma 公司, 引物由上海生工公 司合成。PCR 仪为 MyCycler<sup>Tm</sup> PCR (Bio-Rad, Hercules, Calif.); 基因突变仪为 Dcode 通用突变检 测系统 (Bio-Rad, Hercules, Calif.)。垂直板电泳仪为 Mini-PROTEAN<sup>®</sup> Tetra Cell (Bio-Rad, Hercules, Calif.)。

#### 1.3 富集和纯化

富集培养在采样后一周内开始。培养基如下<sup>[19]</sup>: Na<sub>2</sub>H<sub>2</sub>PO<sub>4</sub> 5.5 g, NaC<sub>2</sub>O<sub>4</sub> 2.0 g, NH<sub>4</sub>Cl 1.0 g, MgCl<sub>2</sub> 0.25 g, CaCl<sub>2</sub> 0.05 g, D,L-苹果酸 1.5 g, 添加以下微 量元素: VB<sub>1</sub> (1 g/L) 1 mL, 烟碱酸 (0.1 g/L) 1 mL, 生物素 (0.05 g/L) 1 mL, H<sub>3</sub>BO<sub>4</sub> (10 g/L) 0.3 mL, Na<sub>2</sub>MoO<sub>4</sub> (16 g/L) 0.05 mL, ZnSO<sub>4</sub> (2.4 g/L) 0.1 mL, MnSO<sub>4</sub> (8 g/L) 0.2 mL, CuSO<sub>4</sub> (0.2 g/L) 0.2 mL。 灭菌前 pH 调节到 7.0, 定容至 1 L。

在 125 mL 磨口三角瓶中放入 10 g 底泥, 用灭 菌后的培养液加满三角瓶, 随后密封瓶体。放置在 强度为 2400 lux 的白炽灯下照射, 于 30°C ± 2°C 培 养 3 周。

3 周后,将 10 mL 菌液移至新三角瓶中,加入 115 mL 灭菌培养液,继续厌氧光照培养。如此反复 10 次以获得较纯的紫色非硫细菌。

#### 1.4 细菌总 DNA 提取

取紫色非硫细菌扩大液 2 mL,利用试剂盒 Bacterial DNA Kit 提取细菌总 DNA。具体步骤请参 照该试剂盒使用手册。

#### 1.5 PCR 扩增

**1.5.1 紫色光合细菌** *pufM* 基因扩增:利用紫色光 合细菌光反应中心蛋白 M 亚基编码基因片段 *pufM* 基因的特异性引物对 *pufM*557F (5'-CGCACCT GGACTGGAC-3')和 *pufM*750R (5'-CCCATGGTCCA GCGCCAGAA-3')进行 *pufM* 基因扩增<sup>[9]</sup>。PCR 反应 用试剂盒 Premix *Taq*<sup>®</sup> Version 2.0 Kit (TaKaRa), 50 µL 的 PCR 体系添加 50 ng 的 DNA 模板量。PCR 反应条件: 94°C 3 min; 94°C 0.5 min, 56°C 0.5 min, 72°C 0.5 min, 30 个循环; 72°C 10 min。PCR 扩增产 物在 1.2% (*W/V*) Tris-acetate-EDTA (TAE)琼脂糖凝 胶中电泳验证。

**1.5.2 rep-PCR** 基因扩增:利用 BOX A1R primer (5'-CTACGGCAAGGCGACGCTGACG-3')进行 rep-PCR 扩增<sup>[20]</sup>。rep-PCR 反应用 *Taq*<sup>Tm</sup> Hot Start Version Kit (TaKaRa)。25  $\mu$ L 反应体系中含有 2.5  $\mu$ L 的 10 × PCR Buffer (Mg<sup>2+</sup> Plus), 2  $\mu$ L 的 dNTPs Mixture (Each 2.5 mmol/L), 1  $\mu$ L 的 BOX A1R primer (20  $\mu$ mol/L), 0.125  $\mu$ L 的 TaKaRa *Taq* HS (5 U/ $\mu$ L), 0.5  $\mu$ L 的 BSA (20 g/L)和 50 ng 的 DNA 模板量。反 应条件如下: 95°C 2 min; 94°C 3 s, 92°C 30 s, 50°C 1 min, 65°C 8 min, 35 个循环; 65°C 8 min。

#### 1.6 DGGE 电泳分析

基因突变仪用于 *pufM* 基因的 DGGE 分析。使用 8%聚丙烯酰胺凝胶,电泳缓冲液为1 × TAE,变性梯度 45%-75%; PCR 产物上样量为 200 ng DNA;

将 DGGE 特征条带割胶, 放入含有 40 μL 去离 子水的 1.5 mL 离心管中, 置于 4°C 冰箱过夜。以此 溶液为模板, 再次使用 *pufM* 基因引物对进行扩增。 PCR 扩增体系和反应条件如上。将扩增后的 PCR 产 物进行 DGGE 验证, 以确定各个*pufM* 基因型的位置 和纯度。如不符, 继续切带、扩增、验证。

#### 1.7 克隆测序以及基因序列比对

将验证后的 *pufM* 基因扩增产物连接到 pMD 18-T vector (TaKaRa),并转化到 *Escherichia coli* DH5α 感受态细胞中,在含有 X-gal、IPTG 和氨苄青 霉素的 LB 培养基上培养过夜。挑取具有氨苄青霉 素抗性的白色转化子,采用 T 载体通用引物 M13 进 行菌落 PCR,扩增产物经 1.2% (*W/V*)琼脂糖凝胶电 泳检测是否为阳性克隆。将含有正确克隆子的细胞 扩大液交由上海 Invitrogen 公司进行测序。将测序 得到的序列在 National Center for Biotechnology Information (NCBI)网站上 BLAST 比对,进行同源 性检索。本实验获得的序列已提交 GenBank,登录 号为 AB588740 和 AB588741。

#### 1.8 rep-PCR 电泳分析

垂直板电泳仪用于 rep-PCR 分析。使用 6%聚丙 烯酰胺凝胶,电泳缓冲液为 1 × TAE, PCR 产物上样 量 4 μL,电压 70 V, 20°C,电泳 13 h;用 SYBR Green I (Invitrogen) (1:10000, *V/V*)染色 30 min,后用 Gel Doc<sup>TM</sup> EQ imager (Bio-Rad)成像拍照。

#### 1.9 数据统计分析

应用 Quantity One 4.4.0 (Bio-Rad)对 rep-PCR 电 泳图谱进行聚类分析,比较不同生境中的基因型差 异;聚类分析用 UPGMA 算法计算。

#### 2 结果与分析

#### 2.1 pufM 基因 PCR 产物琼脂糖凝胶电泳

紫 色 光 合 细 菌 高 度 分 散 在 变 形 菌 门 (Proteobacteria)的 α、β 和 μ 3 个分支上,故无法在 16S rRNA 上研究其多样性<sup>[21]</sup>。但是,紫色光合细菌 保留了相同的光吸收系统,包括编码光反应中心蛋 白的 *pufM* (M 亚基)。*pufM* 基因具有高度保守性,被 广泛应用于紫色光养细菌多样性研究。从图 1 可以 看出,对不同环境中富集获得的紫色非硫细菌, © 中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn *pufM* 557F/750R 引物对都可以很好地进行扩增, PCR产物片段大小为229 bp,与预计条带大小一致。 琼脂糖电泳上无引物二聚体和拖尾,说明引物特异 性很好, PCR 扩增效率很高。



图 1 *pufM* 基因 PCR 产物琼脂糖电泳图 Fig. 1 Agarose electrophoresis of PCR products of *pufM* gene

#### 2.2 基于 pufM 基因的 DGGE 电泳

微生物遗传多样性研究是生态学研究的一个重要组成部分。目前,微生物遗传多样性研究多集中在整体微生物群落水平上,如16S rRNA或者18S rRNA<sup>[22]</sup>,或者功能微生物群落水平上,如固氮微生物<sup>[23]</sup>。基于 *pufM* 基因的 PCR-DGGE 指纹图谱技术也已应用于不同生态系统中紫色光合细菌的多样性研究<sup>[9,24]</sup>。从图 2 可以看出,利用紫色非硫细菌富集培养基,从11 个不同生境中获得了相同且单一的 *pufM* 基因型条带。9 号泳道中有一个较弱的DGGE 条带,可能该富集液中还存在另一种紫色光合细菌。但是与条带 1 相比,条带 2 的丰度非常低。

将 DGGE 中的特征条带割胶、验证、克隆和 测序,获得的序列在 GenBank 中进行同源性检索 (表 2),发现各生境中富集获得的紫色非硫细菌 (条带 1)的 pufM 基因序列与沼泽红假单胞菌 (Rhodopseudomonas palustris, R. palustris)的 pufM基 因序列同源性最高;而与条带 2 最高的是红假单胞 菌(Rhodopseudomonas sp.)。由于 pufM 基因具有很 高的保守性,且得到的系统发育分析结果与 16S rRNA 结果相一致<sup>[21]</sup>,所以我们认为从不同环 境中富集到的紫色非硫细菌都是 R. palustris,且 R. palustris 可能是一种分布广泛的紫色非硫细菌。



图 2 从不同生境中富集的紫色非硫细菌 *pufM* 基因 DGGE 指纹图谱

Fig. 2 *PufM* gene-based DGGE fingerprinting profiles of the strains enriched from different habitats

|         | 表 2 GenBank 中同源性最高的细菌 |                        |                  |  |  |  |
|---------|-----------------------|------------------------|------------------|--|--|--|
| Table 2 | The phylogene         | tically related bacter | ia in GenBank    |  |  |  |
| 条带      | 物种                    | 登录号                    | 同源性              |  |  |  |
| Band    | Species               | Accession number       | Max identity (%) |  |  |  |
| Band-1  | R. palustris          | AY177968               | 100              |  |  |  |
| Band-2  | Rhodopseudomonas      | s sp. AB498862         | 100              |  |  |  |
|         |                       |                        |                  |  |  |  |

*R. palustris* 代谢方式的多样性使得其在不同的 环境中表现出不同的表型及相应的基因型,如 Oda 等<sup>[6]</sup>发现不同生境中分离出的 4 株野生型 *R. palustris* 具有不同光吸收能力、耐氧能力、固氮能力和厌 氧发酵能力;通过全基因组测序发现,它们的全基 因组只有 70%相同,而大约 10%-18%的基因组具有 个体特异性。因此,尽管获得的紫色非硫细菌都是 *R. palustris*,但是由于来自不同的生境,它们的基 因型可能存在差异,我们需要进一步了解不同生境 中的 *R. palustris* 基因型差异。

#### 2.3 紫色非硫细菌 R. palustris 的 rep-PCR 电泳

PCR-DGGE 技术是分析微生物群落结构的有效 手段之一,但是其分辨率只能到种或亚种水平<sup>[18]</sup>。 为了更深入了解环境的影响,我们应用 rep-PCR 技 术在更高分辨率(菌株水平)下研究各生境之间 *R. palustris* 菌株基因型差异及推测其成因。rep-PCR 共有 3 套引物对,BOX A1R、ERIC 和 REP<sup>[18]</sup>。本实 验中我们采用了 BOX-PCR,因为 BOX A1R 能够产 生最复杂的指纹图谱,对于菌株的区分具有最高的 分辨率。从图 3 可以看出,尽管 DGGE 指纹图谱显 示均为 *R. palustris*,但其 rep-PCR 指纹图谱并不相 同,即说明来自不同生境的 *R. palustris* 菌株具有不 同的基因型,而这种基因型的差异可能是所处的生 境不同而导致。



#### 图 3 从不同生境中富集的 R. palustris 菌株 BOX-PCR 指纹图谱和聚类分析 Fig. 3 BOX-PCR fingerprinting profiles and cluster analysis of R. palustris strains enriched from different habitats

基于 UPGMA 算法的聚类分析数字化显示了不 同生境中 R. palustris 菌株基因型差异程度(图 3)。不 同生境中 R. palustris 基因型形成了不同的组。从人 造湖泊中富集出来的 R. palustris 菌株聚在一起,形 成了一个组(样品1、2、3、4、5、6和10),并与来 自池塘的 R. palustris 菌株分开(样品 8 和 9), 而河流 中的 R. palustris 基因型差异最大(样品 11)。欧式距 离≥ 0.80 的菌株被认为是同一个基因型<sup>[11]</sup>,因此, 来自玄武湖的菌株具有相同的基因型。由于水生生 态系统具有较高的均一性,不同采样点的理化性质 较为相似, 故其中的 R. palustris 菌株基因型也具有 很高的相似度(≥ 0.78), 甚至只有单一的基因型, 这说明高均一性环境中的 R. palustris 基因型也高度 一致[19]。市售光合细菌菌剂(10 号样)是中国科学院 水生生物研究所从武汉东湖中筛选出来的 R. palustris。武汉东湖和南京玄武湖都是著名的城中湖, 具 有类似的自然环境,故聚类分析显示生长在两者中 的 R. palustris 基因型高度相似。湖泊与池塘和河流 中的 R. palustris 基因型差异较大, 如 8、9 和 11 号 样。9号样虽然是龙虾塘,但是其实际是由洪泽湖围 建而成,并且围建时间不长。洪泽湖与玄武湖(7号 样)都是湖泊, 其自然环境可能较为相似, 所以生长 在其中的 R. palustris 基因型也聚在一起, 形成了一

个小组。8 号样是 3 年前由水稻田改建成的虾池。 水稻田是一种人工湿地,由于不断耕作使得其环境 的理化性质与湖泊差异较大,如有机质含量等。因 此,生长在其中的 R. palustris 基因型与湖泊中的 R. palustris 基因型差异较大。11 号样品中的 R. palustris 基因型与其他样品差异最大。水的流量和流速直接 影响水生生态系统的理化性质和生物生境。与玄武 湖、东湖和洪泽湖相比,河水的流量和流速都要远 远大于前三者,进而导致 R. palustris 所处生境与 前三者差异较大,所以在聚类分析图上 11 号样的 R. palustris 基因型远离其他样品。

不同生境产生不同基因型的原因是 R. palustris 具有多种代谢方式。人造湖泊和天然湖泊是寡营养 环境,生长在其中的 R. palustris 主要以光能自养生 长;而对于水稻土,人类的不断耕作和作物的生长 使得其成为富营养环境,故生长在其中的 R. palustris 主要以光能异养生长。长期不同的代谢方式使得 R. palustris 表型和基因型都发生了相应的变化,并 导致其基因型指纹图谱的不同。水流量和流速的不 同使得河流和湖泊产生很大的环境差异,也使得生 长在河流中的 R. palustris 基因型与后者差异最大。 此外,聚类分析还表明生境的改变对 R. palustris 基 因型的影响可能需要较长的时间,如样品 8, 虽已 © 中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn 改建为水塘,但由于时间不长,其中的 R. palustris 基因型仍反映出以前的生境。

#### 3 结论

(1)利用紫色非硫细菌富集培养基和基于 pufM 基因的 PCR-DGGE 指纹图谱技术发现 R. palustris 是一种分布十分广泛的紫色非硫细菌。

(2) rep-PCR 技术揭示了来自不同生境的 R. palustris 菌株具有不同的基因型;相似生境中的 R. palustris 菌株基因型高度相似,如玄武湖和东湖; 反之亦然,如水稻土、河流和湖泊。

(3) 本实验在基因型水平上揭示了不同生境中 *R. palustris* 基因型的差异,为紫色非硫细菌多样性 研究开辟了新的方向,建立了方法和理论基础。

#### 参考文献

- Overmann J, Garcia-Pichel F. The Phototrophic Way of Life.//Dworkin M, Falkow S, Rosenberg E, *et al.* The Prokaryotes. Berlin, Heidelberg, New York: Springer, 2006: 32–85.
- [2] Imhoff JF, Trüper HG. The genus *Rhodospirillum* and related genera//Balows A, Trüper HG, Dworkin M, *et al.* eds. The Prokaryotes: 2<sup>nd</sup>. New York: Springer-Verlag, 1992: 2141–2155.
- [3] Hiraishi A, Ueda Y. *Rhodoplanes* gen. nov., a new genus of phototrophic bacteria including *Rhodopseudomonas rosea* as *Rhodoplanes roseus* comb. nov. and *Rhodoplaneslegans* sp. nov.. *Int J Syst Bacteriol*, 1994, **44**(4): 665–673.
- [4] Eiler A. Evidence for the ubiquity of mixotrophic bacteria in the upper ocean: implications and consequences. *Appl Environ Microbiol*, 2006, **72**(12): 7431–7437.
- [5] Harada N, Nishiyama M, Otsuka S, et al. Effects of inoculation of phototrophic purple bacteria on grain yield of rice and nitrogenase activity of paddy soil in a pot experiment. Soil Sci Plant Nutr, 2005, 51(3): 361–367.
- [6] Oda Y, Larimer FW, Chain PSG, et al. Multiple genome sequences reveal adaptations of a phototrophic bacterium to sediment microenvironments. Proc Natl Acad Sci USA, 2008, 105(47): 18543–18548.
- [7] Basak N, Das D. Photofermentative hydrogen production using purple non-sulfur bacteria Rhodobacter sphaeroides OU001 in an annular photobioreactor: a case study. *Biomass Bioenerg*, 2009, **33**(6/7): 911–919.
- [8] Harada N, Otsuka S, Nishiyama M, et al. Characteristics of phototrophic purple bacteria isolated from a Japanese paddy soil. Soil Sci Plant Nutr, 2003, 49(4): 521–526.
- [9] Feng YZ, Lin XG, Wang YM, et al. Free-air CO<sub>2</sub>

enrichment (FACE) enhances the biodiversity of purple phototrophic bacteria in flooded paddy soil. *Plant Soil*, 2009, **324**(1/2): 317–328.

- [10] Sasikala C, Ramana CV. Biodegradation and metabolism of unusual carbon compounds by anoxygenic phototrophic bacteria. *Adv Microb Physiol*, 1998, **39**(3): 339–377.
- [11] Bent SJ, Gucker CL, Oda Y, et al. Spatial distribution of rhodopseudomonas palustris ecotypes on a local scale. *Appl Environ Microbiol*, 2003, 69(9): 5192–5197.
- [12] Dombek PE, Johnson LK, Zimmerley ST, et al. Use of repetitive DNA sequences and the PCR to differentiate *Escherichia coli* isolates from human and animal sources. *Appl Environ Microbiol*, 2000, 66(6): 2572–2577.
- [13] Akopyanz N, Bukanov NO, Westblom TU, et al. DNA diversity among clinical isolates of helicobacter-pylori detected by PCR-based rapd fingerprinting. *Nucleic Acids Res*, 1992, **20**(19): 5137–5142.
- [14] Vinuesa P, Rademaker JLW, de Bruijn FJ, et al. Genotypic characterization of Bradyrhizobium strains nodulating endemic woody legumes of the Canary Islands by PCR-restriction fragment length polymorphism analysis of genes encoding 16S rRNA (16S rDNA) and 16S–23S rDNA intergenic spacers, repetitive extragenic palindromic PCR genomic fingerprinting, and partial 16S rDNA sequencing. Appl Environ Microbiol, 1998, 64(6): 2096–2104.
- [15] Little EL, Bostock RM, Kirkpatrick BC. Genetic characterization of *Pseudomonas syringae* pv. syringae strains from stone fruits in California. *Appl Environ Microbiol*, 1998, 64(10): 3818–3823.
- [16] Laguerre G, vanBerkum P, Amarger N, et al. Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis. Appl Environ Microbiol, 1997, 63(12): 4748-4758.
- [17] Rademaker JLW, Hoste B, Louws FJ, et al. Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int J Syst Evol Microbiol, 2000, 50(2): 665–677.
- [18] Ishii S, Sadowsky MJ. Applications of the rep-PCR DNA fingerprinting technique to study microbial diversity, ecology and evolution. *Environ Microbiol*, 2009, 11(4): 733-740.
- [19] Oda Y, Wanders W, Huisman LA, et al. Genotypic and phenotypic diversity within species of purple nonsulfur bacteria isolated from aquatic sediments. Appl Environ Microbiol, 2002, 68(7): 3467–3477.
- [20] Rademaker JLW, Louws FJ, de Bruijn FJ. Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting//Akkermans ADL, van Elsas JD, de Bruijn FJ, eds. Molecular Microbial Ecology Manual. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1997: 1–26.

- [21] Achenbach LA, Carey J, Madigan MT. Photosynthetic and phylogenetic primers for detection of anoxygenic phototrophs in natural environments. *Appl Environ Microbiol*, 2001, **67**(7): 2922–2926.
- [22] Tian F, Yu Y, Chen B, et al. Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rRNA gene clone libraries analysis. *Polar Biol*, 2009, **32**(1): 93–103.
- [23] Wartiainen I, Eriksson T, Zheng WW, et al. Variation in the active diazotrophic community in rice paddy-nifH PCR-DGGE analysis of rhizosphere and bulk soil. Appl Soil Ecol, 2008, 39(1): 65–75.
- [24] Karr EA, Sattley WM, Jung DO, et al. Remarkable diversity of phototrophic purple bacteria in a permanently frozen antarctic lake. Appl Environ Microbiol, 2003, 69(8): 4910–4914.

 $\phi$ 

### 征订启事

| 刊物名称     | 邮发代号   | 刊期  | 年价(元) | 网址                                    | E-mail                   |
|----------|--------|-----|-------|---------------------------------------|--------------------------|
| 微生物学通报   | 2-817  | 月 刊 | 576   | http://journals.im.ac.cn/wswxtbcn     | tongbao@im.ac.cn         |
| 微生物学报    | 2-504  | 月 刊 | 660   | http://journals.im.ac.cn/actamicrocn/ | actamicro@im.ac.cn       |
| 武汉植物学研究  | 38-103 | 双月刊 | 180   | http://whzwxyj.cn                     | editor@rose.whiob.ac.cn  |
| 畜牧兽医学报   | 82-453 | 月刊  | 360   | www.xmsyxb.com                        | xmsyxb@263.net           |
| 遗传       | 2-810  | 月刊  | 600   | www.chinagene.cn                      | yczz@genetics.ac.cn      |
| 遗传学报     | 2-819  | 月刊  | 600   | www.jgenetgenomics.org                | jgg@genetics.ac.cn       |
| 云南植物研究   | 64-11  | 双月刊 | 150   | http://journal.kib.ac.cn              | bianji@mail.kib.ac.cn    |
| 植物遗传资源学报 | 82-643 | 双月刊 | 120   | www.zwyczy.cn                         | zwyczyxb2003@163.com     |
| 植物学报     | 2-967  | 双月刊 | 480   | www.chinbullbotany.com                | cbb@ibcas.ac.cn          |
| 中国实验动物学报 | 2-748  | 双月刊 | 120   | www.calas.org.cn                      | A67761337@126.com        |
| 中国生态农业学报 | 82-973 | 双月刊 | 210   | www.ecoagri.ac.cn                     | editor@sjziam.ac.cn      |
| 中国生物工程杂志 | 82-673 | 月刊  | 960   | www.biotech.ac.cn                     | biotech@mail.las.ac.cn   |
| 中国水产科学   | 18-250 | 双月刊 | 180   | www.fishscichina.com                  | zgsckx@cafs.ac.cn        |
| 中国水稻科学   | 32-94  | 双月刊 | 120   | www.ricesci.cn                        | cjrs@263.net             |
| 作物学报     | 82-336 | 月刊  | 600   | www.chinacrops.org/zwxb               | xbzw@chinajournal.net.cn |

#### 2011年部分生物、农林类学术期刊联合征订表(2-2)