研究报告

偶氮还原酶AZR的结构及其K¹⁰⁹的定点突变研究

柳广飞* 周集体 周 觅 李敬美

(大连理工大学环境与生命学院 大连 116023)

摘 要:利用同源建模构建了*Rhodobacter sphaeroides*的偶氮还原酶AZR的三级结构模型,AZR为 一种α/β型结构的黄素氧化还原蛋白。两类依赖黄素的偶氮还原酶的三级结构对比表明它们具有高 度的相似性。在序列和结构对齐分析的基础上,选择保守位点K¹⁰⁹进行K109A和K109H的定点突变 研究。突变后K109H的最适pH=6,而K109A的最适pH=9。突变未改变AZR的最适温度(30℃)。第 109 位正电荷残基对甲基红的结合有重要影响;而K109H对NADPH的结合并非保守突变。K¹⁰⁹可 能只参与对NADPH的 2'-磷酸基团的结合,而对NADH的结合无影响。

关键词:偶氮还原酶,同源建模,定点突变

Structure Modeling of Azoreductase AZR and Site-directed Mutagenesis of Its K¹⁰⁹ Residue

LIU Guang-Fei^{*} ZHOU Ji-Ti ZHOU Mi LI Jing-Mei

(Institute of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023)

Abstract: Three-dimensional structure model of azoreductase AZR of *Rhodobacter sphaeroides* was constructed using homology modeling method. It is a flavodoxin adopting α/β structure. Structure alignment of two different types of flavin-dependent azoreductases revealed that they possessed high similarity. Based on sequence and structure analysis, site-directed mutagenesis of K109H and K109A were performed. The optimal pH values are pH 6 and pH 9 for K109H and K109A mutant protein, respectively. The optimal temperature (30) is not affected by mutagenesis. Positively charged residues at position 109 is necessary for the binding of methyl red, while K109H is not a conserved mutagenesis for the binding of NADPH. K¹⁰⁹ may only be involved in the binding of the 2'-phosphate group of NADPH and have no effect on the binding of NADH.

Keywords: Azoreductase, Homology modeling, Site-directed mutagenesis

偶氮染料是分子中具有一个或多个偶氮基的芳 香类化合物,由于其易于合成且性质稳定,被广泛 应用于印染、纺织、食品和制药等行业中^[1]。上述 行业产生的染料废水的处理一直备受关注。相对于 传统的物理、化学方法、微生物对染料废水的处理 由于其成本低廉、环境友好而成为人们研究的热点。 细菌细胞内或细胞膜上的偶氮还原酶将电子传递给 偶氮染料实现其脱色降解,发挥着重要的作用。近 年来,人们从废水、土壤、皮肤等不同来源的微生 物中得到了多种偶氮还原酶。这其中除了源自

^{*}通讯作者: Tel: 0411-84706250; Fax: 0411-84706252; 区: guangfeiliu@yahoo.comtc图科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn 收稿日期: 2007-11-09; 接受日期: 2007-12-31

Pigmentiphaga kullae和Xenophilus azovorans的偶氮 还原酶外、大都在分子中含有FMN辅基^[2]。根据序 列对齐分析, 可将已发现的依赖黄素的偶氮还原酶 分为两个家族^[3,4]、分别以Escherichia coli和Bacillus sp. OY1-2 的偶氮还原酶为代表。

许多报道都表明,依赖黄素的偶氮还原酶对偶 氮染料的还原脱色遵循双底物乒乓动力学机理^[5,6]。 电子供体NAD(P)H先占据结合位点、将电子传递给 偶氮还原酶, 当氧化态的电子供体离开以后, 电子 受体(偶氮染料)才能进入活性位点并接受电子而被 还原。对偶氮还原酶结构的研究为在分子水平上更 好地阐释这一过程提供了帮助。有关研究表明、对 于依赖黄素的偶氮还原酶,其FMN辅基的异咯嗪环 附近的残基可能参与对底物的结合^[4,7]。

本实验室前期工作中克隆得到了Rhodobacter sphaeroides的偶氮还原酶AZR的基因并在大肠杆菌 中实现异源表达^[6]。纯化后的AZR的亚基分子量为 18.7 kD^[6], 与Bacillus sp. OY1-2 的偶氮还原酶具有 97%的序列一致性^[8]、属于同一偶氮还原酶家族。本 文利用同源建模方法构建该偶氮还原酶的三级结构 模型、探讨依赖黄素的偶氮还原酶的结构与分类。 并利用定点突变方法对保守位点K¹⁰⁹的功能进行 OUR 研究。

1 材料和方法

1.1 菌株和质粒

E. coli JM109 感受态细胞购自大连 TaKaRa 公 司。 质粒 pGEX 4T-1 (Amersham Phamacia)作为克隆 偶氮还原酶基因的表达载体。

1.2 工具酶及主要试剂

限制性内切酶、连接酶及 DNA 回收试剂盒等购 自 TaKaRa 公司; 蛋白分子量标准为 Phamacia 公司 产品; NAD(P)H、BSA、IPTG 等购自 Sigma 公司; Glutathione Sepharose 4B 购自 Amersham; 偶氮染料 甲基红、酸性红14由大连理工大学染料合成实验室 提供。

1.3 同源建模

利用 Swiss PdbViewer 软件,选择 Project Mode, 以基于 SWISS-MODEL 服务器的同源建模方法构建 偶氮还原酶 AZR 的三级结构模型。利用 PyMol 软 件完成对模型的相关分析。

1.4 定点突变

以此前构建的质粒pGEX-AZR^[6]为模板、利用 大引物法经过 3 次PCR, 实现K109A和K109H突变。 突变所用引物如下(下划线标记引入突变位置)。 pGEX5': 5'-GGGCTGGCAAGCCACGTTTGGTG-3'; pGEX3': 5'-GGGCTGGCAAGCCACGTTTGGTG-3'; K109H F: 5'-TGGTGGCGGTCACGGTGGAATAAA TG-3'; K109H R: 5'-TTCCACCGTGACCGCCACCA GCAAC-3'; K109A F: 5'-TGGTGGCGGTGCAGG TGGAATAAATG-3'; K109A R: 5'-TTCCACCTGCA CCGCCACCAGCAAC-3'

产物回收后送 TaKaRa 公司测序验证, 而后经 EcoR /Xho 双酶切引入表达载体中、转化至 E. coli JM109 中进行表达。

1.5 偶氮还原酶的表达和纯化

将表达野生型与突变型AZR的E. coli JM109 菌 株于37 在LB培养基(氨苄青霉素1 mmol/L)中培养 至OD₆₆₀=0.7, 加入 1 mmol/L IPTG诱导 6 h后离心收 集菌体、超声破碎细胞并利用Glutathione Sepharose 4B进行纯化^[6]。非融合蛋白由凝血酶水解得到^[8]。 蛋白浓度由Bradford法分析、以BSA为标准蛋白^[9]。 取 纯 化 后 的 非 融 合 蛋 白 进 行 S D S - P A G E (10%)。

1.6 酶活检测

标准反应体系(2 mL)为 20 mmol/L, pH 7 的磷酸 缓冲溶液、其中含 0.3 mmol/L 的 NAD(P)H, 0.1 mmol/L 的甲基红, 一定量的 AZR, 反应在 30 进行。以加入 NAD(P)H 引发反应。酶活力单位(U) 定义为在反应条件下每分钟还原1 umol 甲基红所需 的酶量。

以Jasco V-560 分光光度计Time-Course监测甲 基红在最大吸收波长下(430 nm)吸光度随时间的变 化、测量酶反应速率。以酸性红14为底物、在30 分别于 20 mmol/L的醋酸缓冲溶液(pH 4~6)、磷酸缓 冲溶液(pH 5~7)和Tris-HCl缓冲溶液(pH 7~10)考察 pH对酶活的影响;在 20 ~70 于 20 mmol/L, pH 7.0 的磷酸缓冲溶液中考察温度对酶活的影响。由 Lineweaver-Burk双倒数图求解Km、Vmax等动力学 参数。

结果与讨论 2

2.1 AZR 的结构模型与依赖黄素偶氮还原酶的 本质

利用 Swiss PdbViewer 软件和 SWISS-MODEL

服务器开展模型构建工作。通过搜索,在蛋白质数 据库(PDB)中发现一个与 AZR 具有 51%的序列一致 性的已知结构的蛋白质,编号为 1NNI,为源自 *Bacillus subtilis* 的蛋白 YhdA。采用 1NNI 作为模板 序列,得到 AZR 的三级结构模型。Ramachandran 图 分析表明模型中所有氨基酸残基均分布在允许的范 围内,模型中蛋白质主链残基的二面角构象合理; Procheck 和 WhatCheck 评价表明模型的结构和均方 根 Z 值大多在允许范围内,模型较为合理。

如图 1, AZR 为 α/β 型结构的黄素氧化还原蛋白, 分子中含有 5 个 α 螺旋, 5 个 β 折叠,螺旋与折叠交替 出现。5 个 β 折叠相互平行,形成一个平面,位于分 子的中间; α 螺旋分列于平面的两侧,一侧 2 个,另 一侧 3 个;在 β 折叠的 C 端非共价结合 1 个黄素单核 苷酸(FMN)分子。

图 1 AZR 的三级结构模型 V Fig. 1 3D model of azoreductase AZR

与另一依赖黄素偶氮还原酶家族的代表— *E. coli* AzoR的三级结构^[7]对比表明,尽管两类偶氮 还原酶在氨基酸序列上无同源性可言,但它们的三 级结构非常相似,FMN在分子中的结合位置和方式 也很相似(图 2);两类序列上无同源性却具有相同功 能的偶氮还原酶在本质上是同样呈α/β型结构的黄 素氧化还原蛋白。

2.2 AZR 活性区域的分析

如图 3, 对AZR所属的偶氮还原酶家族的成员 进行的序列对齐分析显示, Pro⁷²-Gly¹¹¹之间的氨基 酸残基具有较高的相似性。其中包括 1 个新的黄素 氧化还原蛋白家族的特征序列(P-X-Y-H/N-6X-L-K-N-S/A-L/I-D)^[8]和 1 个甘氨酸富集区(G-G-G-K/H-G -G)。

图 2 AZR(黑色)与 AzoR(灰色)的结构对比 Fig. 2 Comparison of structures of AZR (black) and AzoR (gray)

图 3 AZR 与其它依赖黄素的偶氮还原酶氨基酸序列的 对齐分析

Fig. 3 Multiple sequence alignment of amino acid sequences of AZR and other flavin-dependent azoreductases

对应AZR的三级结构分析发现,这两处保守区 域分别对应着FMN附近的两个环状结构(图 1)。有报 道认为Loop 1 可能参与对FMN的结合;而位于嘧啶 环附近的Loop 2 可能含有参与NAD(P)H结合的位点 ^[3,10]。特别地,在另一类依赖黄素的偶氮还原酶中也 发现了类似的环状结构^[4,7]。K109 为甘氨酸富集区 (Loop2)中连续6个氨基酸里唯一一个非甘氨酸氨基 酸,且带正电荷,推测可能与底物结合及酶的活性 有密切关系,故选择作为突变对象。

2.3 野生型与突变型 AZR 活性的考察

如图 4, 经纯化后获得野生型与突变型AZR的 纯酶,用于后续性质考察。如图 5, 野生型AZR的活 性最高,突变后酶活下降。野生型AZR的最适pH为 8 左右,在pH=7~8 具有较高活性;突变后K109H的 最适pH=6,而K109A的最适pH=9。二者在各自最适 pH值下的酶活较野生型AZR最适pH下的酶活分别 下降了 30%和 90%左右。K¹⁰⁹位于AZR活性中心附 近的分子表面,突变的引入可能改变了酶表面的电 荷情况,从而改变了其最适pH。由图 6 可见,几种 突变操作未改变该还原酶的最适温度, 30 时酶的 活性最高。

图 4 野生型与突变型 AZR(18.7 kD)的 SDS-PAGE 分析 Fig. 4 SDS-PAGE of wild-type and mutant AZR (18.7 kD) M: Protein molecular weight marker; 1: Wild-type AZR; 2: K109A; 3: K109H

图 5 pH 值对酶活的影响 Fig. 5 Effects of pH on enzymatic activity

图 6 温度对酶活的影响

Fig. 6 Effects of temperature on enzymatic activity

以甲基红和NADPH为底物,考察野生型与突 变型AZR的偶氮还原酶活性。突变型AZR的双倒数 图呈一组平行线,表明还原过程仍符合乒乓动力 学。如表1可见,K109H突变后,V_{max}下降为野生型 的1/5 左右,而当K109A突变后,其活性几乎完全丧 失。分析两种底物的K_m可知,第109 位氨基酸残基 荷正电对甲基红的结合影响很大,而对NADPH的 结合,K109H并非保守替换,空间结构在结合过程 中也发挥影响,尽管都荷正电,杂环的His不能替代 直链的Lys。

表 1 以 NADPH 为辅酶的偶氮还原酶动力学常数 Table 1 Kinetic parameters of azoreductase investigated using NADPH				
Enzyme	$V_{\rm max}$ (U/mg)	K _{m (methyl red)} (mmol/L)	K _{m (NADPH)} (mmol/L)	
Wild-type	68.38	0.27	0.09	
K109H	14.55	0.27	0.68	
K109A	1.13	0.66	0.31	

以甲基红和NADH为底物,考察野生型与突变型AZR的偶氮还原酶活性。突变型AZR的双倒数图呈一组平行线,表明还原过程仍符合乒乓动力学。如表2可见,K109H突变后,V_{max}几乎未有变化,而当K109A突变后,其V_{max}几乎下降为野生型的1/7。分析两种底物的K_m可知,与前述利用NADPH为辅酶的情况类似,甲基红的结合依赖于该处存在荷正电的氨基酸,K109H突变对其结合没有影响,而K109A突变则使其K_m增大了2.5倍;而与利用NADPH为辅酶的情况不同,K¹⁰⁹突变对NADH的结合几乎没有影响,因此,K109可能参与对NADPH的2'-磷酸基团的结合。

表 2 以 NADH 为辅酶的偶氮还原酶动力学常数 Table 2 Kinetic parameters of azoreductase investigated using NADH				
Enzyme	V _{max} (U/mg)	$K_{m (methyl red)} (mmol/L)$	K _{m (NADH)} (mmol/L)	
Wild-type	0.91	0.06	0.38	
K109H	0.87	0.05	0.34	
K109A	0.13	0.15	0.36	

3 结论

利用同源建模法,构建了 R. sphaeroides 的偶氮 还原酶 AZR 的三级结构模型, AZR 为一 α/β 型的黄

素氧化还原蛋白、蛋白分子呈三明治结构。

尽管两类依赖黄素的偶氮还原酶在序列上无相 似性可言,但它们的三级结构非常接近,都是α/β型 的黄素氧化还原蛋白,FMN 辅基的结合位置与方式 也很相似。蛋白质的三级结构比其氨基酸序列的保 守性更高。这一认识为发现新的偶氮还原酶及其编 码基因和深入研究 AZR 的功能奠定了基础。

第 109 位氨基酸荷正电对甲基红的结合有重要 影响;而K109H对NADPH的结合并非保守突变,其 结合不仅需要该处荷正电,还与空间结构有关。K¹⁰⁹ 可能只参与NADPH的磷酸基团的结合,而对NADH 的结合无影响。

参考文献

- Raffi F, Hall JD, Cerniglia CE. Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by *Clostridium* species from the human intestinal tract. *Food Chem Toxicol*, 1997, **35**(9): 897–901.
- [2] Chen H. Recent advances in azo dye degrading enzyme research. Curr Protein Pept Sci, 2006, 7(2): 101–111.
- [3] Chen H, Hopper SL, Cerniglia CE. Biochemical and molecular characterization of an azoreductase from *Staphylococcus aureus*, a tetrameric NADPH-dependent flavoprotein. *Microbiology*, 2005, **151**(5): 1433–1441.

- [4] Liu ZJ, Chen H, Shaw N, et al. Crystal structure of an aerobic FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch Biochem Biophys, 2007, 463(1): 68–77.
- [5] Nakanishi M, Yatome C, Ishida N, et al. Putative ACP phosphodiesterase gene (acpD) encodes an azoreductase. *J Biol Chem*, 2001, 276(49): 46394–46399.
- [6] Yan B, Zhou J, Wang J, et al. Expression and characteristics of the gene encoding azoreductase from *Rhodobacter* sphaeroides AS1.1737. FEMS Microbiol Lett, 2004, 236(1): 129–136.
- [7] Ito K, Nakanishi M, Lee WC, et al. Three-dimensional structure of AzoR from *Escherichia coli*: An oxidereductase conserved in microorganisms. J Biol Chem, 2006, 281(29): 20567–20576.
- [8] Liu G, Zhou J, Lv H, et al. Azoreductase from Rhodobacter sphaeroides AS1.1737 is a flavodoxin that also functions as nitroreductase and flavin mononucleotide reductase. Appl Microbiol Biotechnol, 2007, 76(6): 1271–1279.
- [9] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem*, 1976, 72(1-2): 248-254.
- [10] Liger D, Graille M, Zhou CZ, et al. Crystal structure and functional characterization of yeast YLR011wp, an enzyme with NAD(P)H-FMN and ferric iron reductase activities. J Biol Chem, 2004, 279(33): 34890–34897.

稿件书写规范

论文中有关正、斜体的约定

物种的学名:菌株的属名、种名(包括亚种、变种)用拉丁文斜体。属的首字母大写,其余小写,属以上 用拉丁文正体。病毒一律用正体,首字母大写。

限制性内切酶:前三个字母用斜体,后面的字母和编码正体平排,例如:*Bam*HI、*Eco*RI、*Msp*I、*Sau*3AI等。 氨基酸和碱基的缩写:氨基酸缩写用3个字母表示时,仅第一个字母大写,其余小写,正体。碱基缩写 为大写正体。

基因符号用小写斜体,蛋白质符号首字母大写,用正体。