科微学术

微生物学通报

哈密露天煤矿不同环境介质微生物群落特征分析
作者:
基金项目:

自然资源部中国地质调查局地质调查项目(DD20208081)


Microbial community characteristics of different environmental media in Hami open-pit coal mine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [37]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    【背景】干旱区露天煤矿开采过程中产生的粉尘颗粒物加剧了土壤生态环境的恶化和矿区空气质量的下降,针对煤矿区土壤和粉尘颗粒物的微生物群落组成的研究鲜有报道。【目的】研究新疆哈密南湖乡露天煤矿土壤、粉尘及大气PM2.5颗粒物中的微生物群落结构和多样性特征,并预测潜在的功能类群。【方法】采用高通量测序技术,对煤矿露天采坑区和电厂粉煤灰堆放区的土壤、粉尘及大气PM2.5颗粒物的微生物真菌及细菌群落组成进行比对分析。【结果】矿区优势真菌类群来自子囊菌门(Ascomycota)和担子菌门(Basidiomycota),优势细菌类群来自变形菌门(Proteobacteria)和放线菌门(Actinobacteria)。真菌和细菌群落的丰富度及α多样性在整个矿区内无显著性差异,大气PM2.5颗粒物的细菌群落生态位宽度显著大于露天采坑区和粉煤灰区。矿区内的土壤和PM2.5颗粒物样本中均发现了一些丰度差异显著的功能类群,真菌特征功能类群为腐生营养型类群,细菌特征功能类群主要包括甲烷营养型类群、几丁质酶类细菌类群等。【结论】露天煤矿区粉尘可能对区域内土壤和PM2.5颗粒物的微生物群落结构产生重要影响,具有煤组分降解功能的特定微生物类群可能是维持矿区土壤生态安全的重要微生物学机制之一。

    Abstract:

    [Background] In open-pit coal mining in arid areas, the dust is destined to aggravate soil environment deterioration and air quality decline. A few studies on the microbial community structure in soil and dust particles in coal districts are available. [Objective] To study the microbial community structure and diversity of soil, dust, and atmospheric PM2.5 from different functional regions in the open-pit coal mine in Nanhu Township, Hami, Xinjiang. [Methods] Illumina NovaSeq was employed for high-throughput sequencing to characterize the community structure and functional diversity of bacteria and fungi in the three media in the open pit area and fly ash area. [Results] Ascomycota and Basidiomycota dominated the fungi, while Proteobacteria and Actinobacteria were the dominant bacterial phyla in the coal district. The abundance and diversity of fungal and bacterial communities showed no significant difference in the entire coal district, but the niche breadth of bacterial communities in atmospheric PM2.5 was significantly larger than that in the open pit area and the fly ash area. Some functional groups with significant difference in abundance were found between soil and atmospheric PM2.5 in the coal district, such as saprophytic trophic fungi, methanotrophic bacteria, and chitinase-producing bacteria. [Conclusion] The dust produced in open-pit coal mining has important impact on the microbial community structure in soil and atmospheric PM2.5 in the coal district. The specific coal components-degrading microbes are among the main contributors to the soil ecological safety in mining area.

    参考文献
    [1] Liu GJ, Vassilev SV, Gao LF, Zheng LG, Peng ZC. Mineral and chemical composition and some trace element contents in coals and coal ashes from Huaibei coal field, China[J]. Energy Conversion and Management, 2005, 46(13/14): 2001-2009
    [2] 胡潇涵, 张琳, 孔利锋, 王天娇. 新疆准东露天煤矿降尘、土壤以及植物中的重金属污染风险研究[J]. 新疆环境保护, 2020, 42(4): 24-32 Hu XH, Zhang L, Kong LF, Wang TJ. Studies on pollution risks of heavy metals in dustfall, soil and plant around the opencast coal mines in eastern Junggar Basin in Xinjiang[J]. Environmental Protection of Xinjiang, 2020, 42(4): 24-32(in Chinese)
    [3] Li KJ, Gu YS, Li MZ, Zhao L, Ding JJ, Lun ZJ, Tian W. Spatial analysis, source identification and risk assessment of heavy metals in a coal mining area in Henan, Central China[J]. International Biodeterioration & Biodegradation, 2018, 128: 148-154
    [4] 樊强, 李素英, 关塔拉, 武晓霞, 王冉, 任丽娟. 露天煤矿生产中产生的粉尘对周边植物和土壤的影响[J]. 北方环境, 2013, 25(9): 104-108 Fan Q, Li SY, Guan TL, Wu XX, Wang R, Ren LJ. The ecological effect on plant and soil around opencast coal mine from the mineral dust[J]. Northern Environment, 2013, 25(9): 104-108(in Chinese)
    [5] Cheng HX, Li M, Zhao CD, Li K, Peng M, Qin AH, Cheng XM. Overview of trace metals in the urban soil of 31 metropolises in China[J]. Journal of Geochemical Exploration, 2014, 139: 31-52
    [6] 李长春, 张光胜, 姚峰, 王宇, 李昊东. 新疆准东煤田五彩湾露天矿区土壤重金属污染评估与分析[J]. 环境工程, 2014, 32(7): 142-146 Li CC, Zhang GS, Yao F, Wang Y, Li HD. Assessment of soil heavy metal pollution in area of xingjiang Zhundong wucaiwan surface coal mine[J]. Environmental Engineering, 2014, 32(7): 142-146(in Chinese)
    [7] Moreno T, Trechera P, Querol X, Lah R, Johnson D, Wrana A, Williamson B. Trace element fractionation between PM10 and PM2.5 in coal mine dust: implications for occupational respiratory health[J]. International Journal of Coal Geology, 2019, 203: 52-59
    [8] 滕应, 黄昌勇, 骆永明, 龙健, 姚槐应. 铅锌银尾矿区土壤微生物活性及其群落功能多样性研究[J]. 土壤学报, 2004, 41(1): 113-119 Teng Y, Huang CY, Luo YM, Long J, Yao HY. Microbial activities and functional diversity of community in soils polluted with Pb-Zn-Ag mine tailings[J]. Acta Pedologica Sinica, 2004, 41(1): 113-119(in Chinese)
    [9] 范继香, 郜春花, 卢朝东, 张强, 靳东升, 李建华. 矿区土壤微生物多样性研究概述[J]. 山西农业科学, 2010, 38(3): 55-58 Fan JX, Gao CH, Lu CD, Zhang Q, Jin DS, Li JH. Review on mine soil microorganism diversity research[J]. Journal of Shanxi Agricultural Sciences, 2010, 38(3): 55-58(in Chinese)
    [10] 弋嘉喜, 李娟. 矿区复垦土壤微生物多样性研究进展[J]. 农业科技与信息, 2018(11): 42-45 Yi JX, Li J. Research progress on microbial diversity of reclaimed soil in mining area[J]. Agricultural Science-Technology and Information, 2018(11): 42-45(in Chinese)
    [11] 于方明, 姚亚威, 谢冬煜, 王雪茹, 林嘉敏, 刘媛, 刘可慧, 李艺. 泗顶矿区6种土地利用类型土壤微生物群落结构特征[J]. 中国环境科学, 2020, 40(5): 2262-2269 Yu FM, Yao YW, Xie DY, Wang XR, Lin JM, Liu Y, Liu KH, Li Y. Study on the soil microbial community structure associated with six land use in Siding mining area[J]. China Environmental Science, 2020, 40(5): 2262-2269(in Chinese)
    [12] 李梦杰. 重金属污染矿区微生物多样性分析[D]. 西安: 西安建筑科技大学硕士学位论文, 2016 Li MJ. Microbial diversity in mine environment with metal pollution[D]. Xi’an: Master’s Thesis of Xi’an University of Architecture and Technology, 2016(in Chinese)
    [13] Jiang BH, Zhang B, Li L, Zhao Y, Shi Y, Jiang Q, Jia LP. Analysis of microbial community structure and diversity in surrounding rock soil of different waste dump sites in Fushun western opencast mine[J]. Chemosphere, 2021, 269: 128777
    [14] Chen J, Nan J, Xu DL, Mo L, Zheng YX, Chao LM, Qu HT, Guo YQ, Li FS, Bao YY. Response differences between soil fungal and bacterial communities under opencast coal mining disturbance conditions[J]. CATENA, 2020, 194: 104779
    [15] Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea[J]. The ISME Journal, 2011, 5(10): 1571-1579
    [16] Quast C, Pruesse E, Yilmaz P, Gerken J, Glckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools[J]. Nucleic Acids Research, 2012,41(D1): D590-D596
    [17] Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, et al. Towards a unified paradigm for sequence-based identification of fungi[J]. Molecular Ecology, 2013, 22(21): 5271-5277
    [18] Wickham H. ggplot2: Elegant Graphics for Data Analysis[M]. Springer, 2009
    [19] Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. Picante: R tools for integrating phylogenies and ecology[J]. Bioinformatics, 2010, 26(11): 1463-1464
    [20] Zhang JL, Ding Q, Huang JH. spaa: species association analysis[CP]. R package version 0.2, 2013, 1
    [21] Oksanen J, Blanchet FG, Friendly M, Kinde continental scale[J]. Applied and Envir?nmental Microbiology, 2009, 75(15): 5111-5120
    [39] Zhao XQ, Sun Y, Huang J, Wang H, Tang D. Effects of soil 陨幥敡vy张繭et条呬删po剬剬ut鑩屯睮圠卯兮吠轭坩塣睲药罢葩繡杬丠剡聣奴桩恶ities猠塡祮孤 community diversity in different land use types in mining areas[J]. Environmental Science and Pollution Research International, 2020, 27(16): 20215-20226
    [40] Ji HB, Zhang Y, Bararunyeretse P, Li HX. Characterization of microbial 杣歯mm晵灮轩ti剥晳丠of朠孳屯il鑳尠睦干坯靭圠塧彯畬牤缠葭剩恮癥騠剴噡孩lings猠塡祮孤 identification of mercury-resistant strain[J]. Ecotoxicology and Environmental Safety, 2018, 165: 182-193
    [41] Espitia-Pérez L, da Silva J, Espitia-Pérez P, Brango H, Salcedo-Arteaga S, Hoyos-Giraldo LS, de Souza CT, Dias JF, Agudelo-Castañeda D, Valdés Toscano A, et al. Cytogenetic instability in populations with residential proximity to open-pit coal mine in northern Colombia in relation to PM10 and PM2.5 levels[J]. Ecotoxicology and Environmental Safety, 2018, 148: 453-466
    [42] Xu LK, Campos LC, Canales M, Ciric L. Drinking water biofiltration: behaviour of antibiotic resistance genes and the association with bacterial community[J]. Water Research, 2020, 182: 115954
    [43] Yan X, Wang JL, Hu XW, Yu BB, Gao BW, Li ZL, Chen JH, Zhang M?, Liu XY.?Contrasting effects of microbial fertiliser and organic fertiliser on soil bacterial community in coal mine dump of Inner Mongolia[J]. Chemistry and Ecology, 2021, 37(4): 384-398novelty of soil Proteobacteria[J]. The ISME Journal, 2009, 3(8): 992-1000
    [28] Al-Sadi AM. High fungal diversity and dominance by Ascomycota in dam reservoir soils of arid climates[J]. International Journal of Agriculture and Biology, 2017, 19(4): 682-688
    [29] Strąpoć D, Mastalerz M, Dawson K, Macalady J, Callaghan AV, Wawrik B, Turich C, Ashby M. Biogeochemistry of microbial coal-bed methane[J]. Annual Review of Earth and Planetary Sciences, 2011, 39: 617-656
    [30] Wang BB, Wang YF, Cui XY, Zhang YM, Yu ZS. Bioconversion of coal to methane by microbial communities from soil and from an opencast mine in the Xilingol grassland of northeast China[J]. Biotechnology for Biofuels, 2019, 12: 236
    [31] Zhao OY, Feng SD, Jia HB, Zhang XN, Wei S, Wei W, Yang ZX, Li YL. Biodegradation of high molecular weight polycyclic aromatic hydrocarbons mixture by a newly isolated Fusarium sp. and co-metabolic degradation with starch[J]. Polycyclic Aromatic Compounds, 2018, 38(1): 32-41
    [32] Gupta RK, Spiker JK, Crawford DL. Biotransformation of coal by ligninolytic Streptomyces[J]. Canadian Journal of Microbiology, 1988, 34(5): 667-674
    [33] Yuan HL, Li ZJ, Ying JY, Wang ET. Cadmium(II) removal by a hyperaccumulator fungus Phoma sp. F2 isolated from blende soil[J]. Current Microbiology, 2007, 55(3): 223-227
    [34] González-Guerrero M, Melville LH, Ferrol N, Lott JNA, Azcón-Aguilar C, Peterson RL. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices[J]. Canadian Journal of Microbiology, 2008, 54(2): 103-110
    [35] Chihomvu P, Stegmann P, Pillay M. Identification and characterization of heavy metal resistant bacteria from the Klip River[R]. Proceedings of the International Conference on Ecological, Environmental and Biological Sciences, WASET, Cape Town, South African. 2014, 2526
    [36] Sánchez-Castro I, Gianinazzi-Pearson V, Cleyet-Marel JC, Baudoin E, van Tuinen D. Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site[J]. Science of the Total Environment, 2017, 598: 121-128
    [37] 董书博, 李宁, 许继飞, 李静泉. 矿区高硫煤覆盖对土壤细菌群落组成和多样性的影响[J]. 微生物学通报, 2021, 48(3): 710-721 Dong SB, Li N, Xu JF, Li JQ. Influence of high-sulfur coal cover on composition and diversity of soil bacterial community in mining areas[J]. Microbiology China, 2021, 48(3): 710-721(in Chinese)
    [38] Lauber CL, Hamady M, Knight R, Fierer N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at th
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邢浩,杜古尔·卫卫,薛娜娜,宋文娟,赵莉,戚冉. 哈密露天煤矿不同环境介质微生物群落特征分析[J]. 微生物学通报, 2022, 49(11): 4525-4537

复制
分享
文章指标
  • 点击次数:400
  • 下载次数: 958
  • HTML阅读次数: 984
  • 引用次数: 0
历史
  • 收稿日期:2022-03-21
  • 最后修改日期:2022-05-11
  • 录用日期:2022-05-11
  • 在线发布日期: 2022-11-07
  • 出版日期: 2022-11-20
文章二维码