科微学术

微生物学通报

具核梭杆菌脂多糖诱导THP-1细胞M2极化及对低浓度白介素6产生的作用
作者:
基金项目:

上海交通大学医工交叉项目(YG2021QN38)


Fusobacterium nucleatum lipopolysaccharide induces THP-1 cells to polarize towards M2 and produce a low concentration of IL-6
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [背景] 在结直肠肿瘤等多种肿瘤中普遍存在的具核梭杆菌(Fusobacterium nucleatum)与结直肠肿瘤发生、预后不良、复发及化疗耐药等密切相关。其引发炎症、对肿瘤微环境中巨噬细胞等免疫细胞作用与机制尚待阐明。[目的] 对比分析F.nucleatum脂多糖(Lipopolysaccharide,LPS)与嗜黏蛋白阿克曼氏菌(Akkermansia muciniphila)、大肠杆菌(Escherichia coli)的LPS诱导单核细胞极化、炎性细胞因子表达等活性差异,探讨F.nucleatum在诱发慢性炎症、致癌等过程中的作用与机制。[方法] 分别用A.muciniphilaE.coliF.nucleatum LPS或联合干扰素γ(Interferon-γ,IFN-γ)处理后,观察THP-1、THP-1 M0细胞的细胞形态变化,然后检测M0(CD11B)、M1(CD40CD86)和M2(CD163CD206)巨噬细胞标志基因、TLR3TLR4IL-6IL-10等基因转录水平,以及IL-6、IL-10、C反应蛋白(C Reactive Protein,CRP)翻译水平的表达变化。[结果] 聚丙烯酰胺凝胶电泳(Polyacrylamide Gel Electrophoresis,PAGE)分析显示,A.muciniphilaE.coliF.nucleatum这3种细菌的LPS条带位置、数量存在明显差异。F.nucleatum LPS在具有较强诱导THP-1细胞贴壁的同时,对经佛波肉豆蔻醋酸(Phorbol Myristate Acetate,PMA)处理贴壁的THP-1细胞,无论是单独或是联合IFN-γ处理,诱导形成伪足数、伪足长度及形成梭形细胞比例(M1型巨噬细胞)等均低于A.muciniphilaE.coli LPS。进一步转录水平检测巨噬细胞标志基因表达发现,M1标志基因中,CD40分别上调5 011.0%(P<0.001)、6 048.9%(P<0.001)和1 011.6%(P=0.009 4),CD86分别上调637.3%(P<0.001)、657.9%(P<0.001)和194.1%(P>0.05);M2标志基因中,CD163分别下调39.5%(P=0.001 1)、53.7%(P<0.001)和5.9%(P>0.05),CD206下调18.6%(P>0.05)、88.4%(P=0.005 5)和24.8%(P>0.05)。TLR、白介素家族基因转录水平分析发现,TLR3分别下调32.3%(P=0.044 7)、311.5%(P=0.001 9)、9.6%(P>0.05);IL-6分别上调17 763.2%(P<0.001)、35 458.2%(P<0.001)、1 123.6%(P>0.05);IL-10分别上调729.3%(P<0.001)、1 223.3%(P<0.001)、124.4%(P>0.05)。翻译水平上,A.muciniphilaE.coliF.nucleatum LPS单独或联合IFN-γ处理时,THP-1细胞产生IL-6分别为0.16、6.17、0 pg/mL与410.03、1 334.40、46.20 pg/mL。[结论] F.nucleatum LPS不仅具有较强招募单核细胞并诱导其向M2极化的作用,同时,具有诱导巨噬细胞分泌低浓度IL-6的特性,说明其在引发慢性炎症及肿瘤免疫应答、逃逸等过程中发挥重要作用。综合上述信息,对致癌、免疫激活及肿瘤治疗相关细菌LPS的结构、活性、分子机制等研究将有助于明确革兰氏阴性细菌在慢性炎症、肿瘤发生、免疫调控等中的作用,以期为相关疾病预防与治疗提供新的策略与靶点。

    Abstract:

    [Background] Fusobacterium nucleatum identified in many kinds of tumors is closely related to tumor initiation, poor prognosis, recurrence, and chemotherapy resistance in colorectal tumor. However, the mechanisms of F. nucleatum inducing inflammation and affecting immune cells such as macrophages in tumor microenvironment remain to be elucidated. [Objective] We explored the role and mechanism of F. nucleatum in the process of inducing chronic inflammation and cancer by comparing the monocyte polarization and inflammatory cytokine expression induced by Fusobacterium nucleatum-, Akkermansia muciniphila-, and Escherichia coli-derived lipopolysaccharides (LPSs). [Methods] After the treatment with A. muciniphila LPS, E. coli LPS, F. nucleatum LPS alone or combined with interferon-γ (IFN-γ), we observed the morphological changes of THP-1 and THP-1 (M0) cells. Further, we determined the mRNA levels of macrophage marker genes [including M0 (CD11B), M1 (CD40, CD86), and M2 (CD163, CD206)], TLR3, TLR4, IL-6, and IL-10 as well as the protein levels of IL-6, IL-10, and C-reactive protein. [Results] PAGE results showed that the LPSs from the three microbial species were significantly different in position and number of bands. F. nucleatum LPS possessed stronger activity of inducing adhesion of THP-1 cells. Meanwhile, the group treated with F. nucleatum LPS alone or in combination with IFN-γ had shorter pseudopodia and lower proportion of cells with pseudopodia and spindle-shaped cells (M1 cells) than the groups treated with A. muciniphila LPS and E. coli LPS. The LPSs from A. muciniphila, E. coli, and F. nucleatum up-regulated the mRNA level of CD40 by 5 011.0% (P<0.001), 6 048.9% (P<0.001), and 1 011.6% (P=0.009 4) and that of CD86 by 637.3% (P<0.001), 657.9% (P<0.001), and 194.1% (P>0.05), respectively. The LPSs down-regulated the mRNA level of CD163 by 39.5% (P=0.001 1), 53.7% (P<0.001), and 5.9% (P>0.05) and that of CD206 by 18.6% (P>0.05), 88.4% (P=0.005 5), and 24.8% (P>0.05), respectively. They down-regulated the mRNA level of TLR3 by 32.3% (P=0.044 7), 311.5% (P=0.001 9), and 9.6% (P>0.05), up-regulated that of IL-6 by 17 763.2% (P<0.001), 35 458.2% (P<0.001), and 1 123.6% (P>0.05), and up-regulated that of IL-10 by 729.3% (P<0.001), 1 223.3% (P<0.001), and 124.4% (P>0.05), respectively. The THP-1 cells treated with the LPSs of A. muciniphila, E. coli, and F. nucleatum alone produced IL-6 at 0.16 pg/mL, 6.17 pg/mL, and 0 pg/mL , and those treated with the LPSs in combination with IFN-γ produced IL-6 at 410.03 pg/mL, 1 334.40 pg/mL, and 46.20 pg/mL, respectively. [Conclusion] F. nucleatum LPS possessed a strong activity of recruiting monocytes and inducing them to polarize toward M2. It induced macrophages to produce a much lower amount of IL-6 than the LPSs of A. muciniphila and E. coli, which may play a role in triggering chronic inflammation and tumor immune response and escape. These findings suggest that studying the structure, activity, and mechanism of LPS from carcinogenic, immunomodulating or tumor therapy-associated bacteria will facilitate the elucidation of the role of these bacteria in chronic inflammation and tumorigenesis, which will provide new targets and strategies for the prevention and treatment of these diseases.

    参考文献
    [1] WHO. https://www.iarc.fr/faq/latest-global-cancer-data-2020-qa/[M]. 2020
    [2] McAllister F, Housseau F, Sears CL. Microbiota and immune responses in colon cancer:more to learn[J]. Cancer Journal:Sudbury, Mass, 2014, 20(3):232-236
    [3] Waldner MJ, Foersch S, Neurath MF. Interleukin-6:a key regulator of colorectal cancer development[J]. International Journal of Biological Sciences, 2012, 8(9):1248-1253
    [4] Nakamura K, Smyth MJ. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment[J]. Cellular & Molecular Immunology, 2020, 17(1):1-12
    [5] Solinas G, Germano G, Mantovani A, Allavena P. Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation[J]. Journal of Leukocyte Biology, 2009, 86(5):1065-1073
    [6] Ostuni R, Kratochvill F, Murray PJ, Natoli G. Macrophages and cancer:from mechanisms to therapeutic implications[J]. Trends in Immunology, 2015, 36(4):229-239
    [7] Gao SK, Hu JW, Wu XW, Liang ZH. PMA treated THP-1-derived-IL-6 promotes EMT of SW48 through STAT3/ERK-dependent activation of Wnt/β-catenin signaling pathway[J]. Biomedicine & Pharmacotherapy, 2018, 108:618-624
    [8] Zhang RT, Zhang Y, Zhang AW, Zhang XF, Yan YL. Effect of rL-hIFN-λ1 on polarization of human THP-1 macrophage cell line[J]. Journal of Jiangsu University:Medicine Edition, 2018, 28(6):489-493(in Chinese)张日婷, 张垚, 章安伟, 张烜烽, 严玉兰. rL-hIFN-λ1对THP-1源巨噬细胞极化作用的影响[J]. 江苏大学学报(医学版), 2018, 28(6):489-493
    [9] Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, Seifi B, Mohammadi A, Afshari JT, Sahebkar A. Macrophage plasticity, polarization, and function in health and disease[J]. Journal of Cellular Physiology, 2018, 233(9):6425-6440
    [10] Yahaya MAF, Lila MAM, Ismail S, Zainol M, Afizan NARNM. Tumour-associated macrophages (TAMs) in colon cancer and how to reeducate them[J]. Journal of Immunology Research, 2019, 2019:2368249
    [11] Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization:tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes[J]. Trends in Immunology, 2002, 23(11):549-555
    [12] Waskito LA, Salama NR, Yamaoka Y. Pathogenesis of Helicobacter pylori infection[J]. Helicobacter, 2018, 23(Suppl 1):e12516
    [13] Routy B, Gopalakrishnan V, Daillère R, Zitvogel L, Wargo JA, Kroemer G. The gut microbiota influences anticancer immunosurveillance and general health[J]. Nature Reviews Clinical Oncology, 2018, 15(6):382-396
    [14] Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillère R, Fluckiger A, Messaoudene M, Rauber C, Roberti MP, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371):91-97
    [15] Yang NY, Zhang Q, Li JL, Yang SH, Shi Q. Progression of periodontal inflammation in adolescents is associated with increased number of Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythensis, and Fusobacterium nucleatum[J]. International Journal of Paediatric Dentistry, 2014, 24(3):226-233
    [16] Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma[J]. Genome Research, 2012, 22(2):292-298
    [17] Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment[J]. Cell Host & Microbe, 2013, 14(2):207-215
    [18] McCoy AN, Araujo-Perez F, Azcarate-Peril A, Yeh JJ, Sandler RS, Keku TO. Fusobacterium is associated with colorectal adenomas[J]. PLos One, 2013, 8(1):
    [19] Yang YZ, Weng WH, Peng JJ, Hong LM, Yang L, Toiyama Y, Gao RY, Liu MF, Yin MM, Pan C, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of MicroRNA-21[J]. Gastroenterology, 2017, 152(4):851-866
    [20] Yu T, Guo FF, Yu YN, Sun TT, Ma D, Han JX, Qian Y, Kryczek I, Sun DF, Nagarsheth N, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy[J]. Cell, 2017, 170(3):548-563
    [21] Hashemi Goradel N, Heidarzadeh S, Jahangiri S, Farhood B, Mortezaee K, Khanlarkhani N, Negahdari B. Fusobacterium nucleatum and colorectal cancer:a mechanistic overview[J]. Journal of Cellular Physiology, 2019, 234(3):2337-2344
    [22] Parhi L, Alon-Maimon T, Sol A, Nejman D, Shhadeh A, Fainsod-Levi T, Yajuk O, Isaacson B, Abed J, Maalouf N, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression[J]. Nature Communications, 2020, 11:3259
    [23] Gholizadeh P, Eslami H, Kafil HS. Carcinogenesis mechanisms of Fusobacterium nucleatum[J]. Biomedicine & Pharmacotherapy, 2017, 89:918-925
    [24] Takeuchi O, Akira S. Pattern recognition receptors and inflammation[J]. Cell, 2010, 140(6):805-820
    [25] Fuke N, Nagata N, Suganuma H, Ota T. Regulation of gut microbiota and metabolic endotoxemia with dietary factors[J]. Nutrients, 2019, 11(10):2277
    [26] Kounalakis NS, Corbett SA. Lipopolysaccharide transiently activates THP-1 cell adhesion[J]. Journal of Surgical Research, 2006, 135(1):137-143
    [27] Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide[J]. BMC Cancer, 2015, 15:577
    [28] Huang X, Li Y, Fu MG, Xin HB. Polarizing macrophages in vitro[J]. Methods in Molecular Biology:Clifton, NJ, 2018, 1784:119-126
    [29] Bao Qelger, Sadia Nawab, Fan SX, Cao B, Li YX, Tian MZ, Zhang SH, Ma W, Deng ZX. New anti-tumor mechanism of ω-3 polyunsaturated fatty acids:inhibiting Fusobacterium nucleatum adherence to host cells[J]. Microbiology China, 2021, 48(3):820-829(in Chinese)其力格尔, Sadia Nawab, 范殊璇, 曹博, 李雨昕, 田明振, 张商浩, 马伟, 邓子新. ω-3多不饱和脂肪酸抗肿瘤新途径:抑制具核梭杆菌黏附宿主细胞[J]. 微生物学通报, 2021, 48(3):820-829
    [30] Jorgovanovic D, Song MJ, Wang LP, Zhang Y. Roles of IFN-γ in tumor progression and regression:a review[J]. Biomarker Research, 2020, 8:49
    [31] Hsiao YW, Liao KW, Hung SW, Chu RM. Tumor-infiltrating lymphocyte secretion of IL-6 antagonizes tumor-derived TGF-β1 and restores the lymphokine-activated killing activity[J]. The Journal of Immunology, 2004, 172(3):1508-1514
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

岳晔,薛松,季林华,范殊璇,贺正文,傅翔,其力格尔,马伟,邓子新. 具核梭杆菌脂多糖诱导THP-1细胞M2极化及对低浓度白介素6产生的作用[J]. 微生物学通报, 2021, 48(12): 4817-4827

复制
分享
文章指标
  • 点击次数:590
  • 下载次数: 1150
  • HTML阅读次数: 2416
  • 引用次数: 0
历史
  • 收稿日期:2021-03-24
  • 录用日期:2021-05-26
  • 在线发布日期: 2021-12-03
文章二维码