生物工程学报  2022, Vol. 38 Issue (3): 855-867
http://dx.doi.org/10.13345/j.cjb.210464
中国科学院微生物研究所、中国微生物学会主办
0

文章信息

孙山, 谭星, 庞晓燕, 李敏, 郝秀静
SUN Shan, TAN Xing, PANG Xiaoyan, LI Min, HAO Xiujing
纳米抗体技术应用的最新进展
Recent advances in the application of nanobody technology: a review
生物工程学报, 2022, 38(3): 855-867
Chinese Journal of Biotechnology, 2022, 38(3): 855-867
10.13345/j.cjb.210464

文章历史

Received: June 21, 2021
Accepted: September 23, 2021
纳米抗体技术应用的最新进展
孙山1,2 , 谭星1,2 , 庞晓燕1,2 , 李敏1,2 , 郝秀静1,2     
1. 宁夏大学 生命科学学院,宁夏 银川 750021;
2. 宁夏大学 西部特色生物资源保护与利用教育部重点实验室,宁夏 银川 750021
摘要:纳米抗体作为一种可塑性强、较为新颖的抗原识别和调控的工具,具备小尺寸、易表达和筛选及改造、高亲性和稳定性等优势,能够识别传统抗体难以识别的较为隐匿的抗原表位,在诊断治疗各种疾病及检测方面的应用不断深入,且在基础研究中也发挥着不可替代的作用。文中主要介绍了纳米抗体及其衍生结构在小分子化合物及病原微生物检测和疾病的诊断,以及在疾病靶向治疗,细胞、分子成像领域的相关进展,此外还综述了在蛋白质构象研究领域展现的广阔前景。
关键词纳米抗体    特异性    诊断检测    治疗    蛋白结构    
Recent advances in the application of nanobody technology: a review
SUN Shan1,2 , TAN Xing1,2 , PANG Xiaoyan1,2 , LI Min1,2 , HAO Xiujing1,2     
1. Life Science School, Ningxia University, Yinchuan 750021, Ningxia, China;
2. Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Ningxia University, Yinchuan 750021, Ningxia, China
Abstract: As a malleable and novel tool for antigen recognition and modulation, nanobodies have the advantages of small size, easiness of expression, screening and modification, as well as high affinity and stability. Nanobodies are capable of recognizing more cryptic antigenic epitopes that are difficult to be recognized by traditional antibodies, making them increasingly used in the diagnosis and treatment of various diseases and assays. Nanobodies are also playing an irreplaceable role in the basic research. This review summarized the recent development of nanobodies and their derivatives in the detection of small molecules, pathogenic microorganisms and diagnosis of diseases, as well as in the fields of targeted therapies, cellular and molecular imaging. Broad prospects of nanobodies in the field of protein conformation studies were also reviewed.
Keywords: nanobodies    specificity    diagnostic assays    therapeutics    protein structures    

1993年科学家首次报道了骆驼中存在一种天然缺失轻链、通过重链上的可变区结合抗原的重链抗体(heavy chain antibodies, HCAb),之后陆续在羊驼、单峰驼和美洲驼等驼科[1],以及鲨鱼、鳐鱼等软骨鱼中同样发现了类似结构的抗体[2]。人们在重链抗体可变区片段(variable domain of the heavy chain of heavy- chain antibody, VHH) 基础上开发了一种仅由重链可变区构成的单域抗体(single domain antibody, sdAb),长4 nm,直径2.5 nm,分子量为12–15 kDa[3],是目前已知最小的活性抗原结合蛋白,仅为传统抗体大小的十分之一[4],也被称为纳米抗体(nanobody, Nb),其独特的结构和优越的特性使其成为多领域的研究热点。骆驼是丝绸之路文化的象征,宁夏回族自治区位于丝绸之路上,骆驼资源丰富且有着得天独厚的自然养殖条件,全国约有骆驼30万峰,主要分布在内蒙古、新疆、青海、甘肃、宁夏等地区约110万km2的干旱荒漠草原上,本实验室作为西部特色生物资源保护与利用教育部重点实验室,立足西部地区牛羊养殖业、马铃薯产业、中药材产业和生物发酵产业等特色资源和优势产业,针对制约产业发展的关键技术问题开展科学研究,现已开展部分研究工作对驼源纳米抗体在小分子化合物检测和病原菌感染方面进行了基础性探究。

1 纳米抗体优势

纳米抗体抗原结合区由单个域组成,分子量小,组织渗透性高,可快速、均匀扩散,利于其穿透致密组织发挥作用,为各类疾病提供新的治疗方法[5-6];Nb的VHH域与传统抗体的重链可变区(variable region of the heavy chain of conventional antibodies, VH) 域有较高的同源性,同人源抗体VH相比,VHH有较长的互补决定区(complementarity determining region 1, CDR1) 和CDR3区,伸长的CDR3环为纳米抗体的多种研究提供了可能,且与传统抗体的VH结构域[7] (图 1) 相比,Nb的框架区(framework region, FR) 内维持VH/VL相互作用的疏水氨基酸突变为亲水氨基酸,提高了溶解性和稳定性[8],因此通过设计可实现人源化改造;可能由于Nb凸起的对角和灵活的长CDR3环,形成loop环与蛋白质空间构象上的裂隙和空腔结合,从而能识别空腔和隐蔽的凹形表位如酶活性位点和隐匿病毒表位,这意味着Nb有助于预测新的潜在生物靶标及发现新的药理靶点,还可用作酶抑制剂[9];Nb在恶劣环境如极端温度和pH条件下表现出优异的耐受性,更易于储存和运输[10];Nb目前已经容易大规模、低成本地在多种系统中表达,具备易筛选和纯化、相对较低的生产成本等优点,在大肠杆菌和酵母或哺乳动物细胞中目前已可高水平表达,且在烟草植物、拟南芥、水稻、大豆等植物表达系统中已成功表达了纳米抗体,此表达系统显示出了独特的优越性[11-12];此外通过基因工程操作可实现重塑化设计,Nb的可组合性意味着通过寡聚可增加其亲和性或血清半衰期,进而发挥药物在靶器官内的功能,目前除了单价纳米抗体,人们致力于双价VHH、双特异性VHH、多价VHH以及融合VHH的研究,来增强其对目标的特异性以及功能性等特性,即有利于药物发挥其高效作用[13]。纳米抗体具有分子小、水溶性好、亲和性和稳定性高、特异性强、易于表达生产且能进一步修饰等优点,在多个领域内都有极大的应用前景(表 1)。

图 1 VH、VHH结构示意图[7] Fig. 1 Schematic diagram of the structure of VH and VHH[7].
表 1 纳米抗体的特点、优势及应用领域 Table 1 Characteristics, advantages and applications of nanobodies
Properties Advantages Overview on the nanobody-based applications
Small size Allows better penetration through the tissue- and immune-like synaptic cell interface
The blood clearing rate is fast
As targeting modules for drug delivery systems, selective targeting of tumor[14-19]
As imaging tracer agents[20-24]
Detection, neutralization of toxins[25-27]
Increased hydrophilicity High expression yields
High solubility
High stability
Facile production[11, 20, 28]
Intracellular production[29]
As a potential drug in the treatment of gastrointestinal diseases[30-31]
Single-domain nature Easily genetically manipulated to form monovalent, bivalent, bispecific, and multivalent anti-bodies
Antibody fragments that lack the Fc with its N-linked oligosaccharide
For the development of specific and highly effective therapeutic agents[19, 32-33]
Facile to express on a large scale and at low cost[28]
High stability Allows for a variety of treatments, storage, and formats
Allows for repeat or high dose treatment
Optimize drug manufacturing[34]
Extended flexible CDR3 Show thermal resistance and stability against harsh conditions, chaotropic agents and pH extremes cryptic epitopes accessibility Optimize drug manufacturing, can be intravenous, oral, intraperitoneal or intratumor
Oral immunotherapy
Rapid diagnosis of in vitro and in vivo infections
Variable N-terminal of CDR1 Cross the blood-brain barrier (BBB) Optimization of nanobodies to treat neurodegenerative disorders[34-35]
2 检测、诊断和治疗 2.1 小分子化合物检测

纳米抗体在环境污染物、生物毒素等小分子化合物的检测中不仅降低了检测下限,提高了灵敏度和精确度,而且通过优化测定过程,能够实现快速简便的检测,推动免疫检测方法和传感技术的快速发展,Nb在竞争性ELISA法、免疫PCR、荧光偏振免疫分析和横流免疫分析等免疫检测技术的研发中取得了令人满意的成果[36]

中国农业大学Liu等[37]用半抗原CBR1与钥孔血蓝蛋白(keyhole limpet hemocyanin, KLH) 偶联,将CBR1-KLH进行皮下免疫羊驼,然后经提取总RNA、PCR扩增VHH片段、酶切、转化等步骤后成功构建VHH库,构建的文库大小约为1×108 CFU/mL,经过洗脱、淘选、纯化等一系列过程后制备了甲萘威特异性VHHs,开发了基于Nb的免疫测定方法检测谷物中的广谱氨基甲酸酯类杀虫剂甲萘威(carbaryl),且在谷物样品中的可重复性和再现性良好,本课题组参与了其中的部分研究工作,对基于Nb的小分子检测有了一定的研究基础。

Nb在农药兽药残留以及重金属检测中表现出较高的应用价值。Li等[38]研究发现纳米抗体-碱性磷酸酶(alkaline phosphatase, AP) 对除草剂2, 4-二氯苯氧基乙酸(2, 4-d) 表现出优异的敏感性和特异性(IC50=29.2 ng/mL),2, 4-d深埋在CDR3和CDR2形成的袋中,NB3-9的结合袋通过氢键和疏水力与2, 4-d的相互作用,在此基础上开发了以纳米抗体-碱性磷酸酶(AP) 融合为基础的2, 4-d一步荧光酶免疫测定法(one-step fluorescent enzyme immunoassay, FLEIA),通过分析比较确定了FLEIA法可作为一种监测环境中2, 4-d残留的便捷工具。3-苯氧基苯甲酸(3-PBA) 被广泛用作人类拟除虫菊酯类杀虫剂暴露的常见生物标志物,近期El-Moghazy等[39]研制了一种基于纳米抗体的新型电化学竞争免疫传感器用于3-PBA的快速检测,检测限为0.64 pg/mL,检测限远低于胶体金/单克隆抗体/侧向流动免疫分析方法,LOD为130 ng/mL[40]

Nb在检测食品和环境真菌毒素方面展现了强大的应用前景。Wang等[41]开发并优化了PO8-VHH的纳米抗体-多克隆抗体夹心ELISA法测定农产品中的曲霉病菌,能够达到1 μg/mL浓度的检测效果,进而监测农产品曲霉污染。Tang等[42]使用OTA和抗OTA Nb分别与两种尺寸的高效荧光标签-量子点(quantum dot, QD) 共价耦合,制备了OTA标记的GQD结合物(OTA-GQD) 和Nb28标记的RQD偶联物(Nb-RQD) 分别作为能量供体和受体,如图 2所示,开发出一种Nb-FRET (荧光共振能量转移) 免疫传感器用于检测谷物样品中赭曲霉毒素A (ochratoxin, OTA),易于表达、小尺寸的Nbs可以缩短两个QD之间的有效距离,从而提高检测灵敏度,单步测定可以在5 min内完成,检测限为5 pg/mL。

图 2 Nb-FRET免疫传感器[42] Fig. 2 Nb-FRET immunosensor[42].
2.2 病原体感染诊断工具

纳米抗体在病原菌引起的感染诊断方面的突出表现,可以为疾病的早期诊断提供便捷,帮助我们快速控制疾病的恶化并达到治疗的目的。

牛结核病是一种主要由于感染结核分枝杆菌发病且死亡率极高的慢性人畜共患传染病,研究发现牛结核分枝杆菌表达多个分泌蛋白,其中Ag85B是牛结核分枝杆菌主要的分泌蛋白之一[43],本课题组已经成功构建了抗牛结核分枝杆菌VHH抗体库,且以Ag85B蛋白为抗原,采用噬菌体展示技术经淘选并富集及蛋白芯片互作技术筛选得到抗Ag85B的VHH抗体,为牛结核病的诊断和治疗奠定基础[44]

沙门氏菌引发的食物中毒占据食物中毒首列,He等[45]在对免疫骆驼纳米抗体库进行生物淘选后,首次分离出了针对肠炎沙门氏菌的纳米抗体,将C端含有6×His标签标记的3个纳米抗体的质粒亚克隆到大肠杆菌Top10F′中,通过异丙基-β-d-硫代半乳糖苷(isopropyl β-d-thiogalactoside, IPTG) 诱导过夜表达,并用Ni-NTA亲和柱进行纯化,最后开发了一种基于Nb 13的夹心ELISA法用于牛奶样品中的肠炎沙门氏菌检测,检测限可达1.4×105 CFU/mL。

锥虫病是一种由寄生虫引起的睡眠病。Pinto等[46]通过质谱选择后鉴定出一对特异性针对锥虫丙酮酸激酶(TcoPYK) 的Nb对(Nb44/Nb42),并建立了两种异源夹心试验法:侧向流动侧流法(LFAs) 和ELISA法用于检测感染小鼠和牛血浆样本中的寄生虫病,测定LOD分别为220 ng/mL和14 ng/mL,LFAs展示出了良好的特异性(92%)。

2010年在中国首次报道的蜱传病毒发热伴血小板减少综合征布尼亚病毒(severe fever with thrombocytopenia syndrome virus, SFTSV) 可导致人患发热伴血小板减少综合征(severe fever with thrombocytopenia syndrome, SFTS)。吴喜林等[47]通过筛选SFTS获得特异性结合SFTSV表面糖蛋白(glycoprotein, GN) 的纳米抗体VHH,鉴定CDR序列并构建了人源化的VHH-HUFC1 (SNB抗体),通过试验表明SNB抗体可应用于SFTSV的检测试剂盒的研发,即纳米抗体双抗体夹心ELISA检测sGN蛋白从而检出SFTSV病毒,其中SNB01与SNB37的双抗组合检测SFTSV真病毒的灵敏度为3.75×106 gc/mL。

2.3 疾病诊断工具

准确的疾病诊断是指导临床治疗的关键步骤,纳米抗体成像技术及疾病诊断研究需要较高的准确度和灵敏度,不断地应用创新使得Nbs成为疾病诊断的理想选择。Nb拥有体积小、易渗透、快速肾脏清除的优势,可用放射性核素[17]、荧光探针、酶示踪剂、生物素或不同的药物等[48]分子进行标记,与分子成像技术相结合从而优化成像系统,因此Nbs作为良好的示踪剂,成为了体外和体内成像的理想选择。正电子发射断层扫描(positron emission computed tomography, PET) 和单光子发射计算机化断层显像(single-photon emission computed tomography, SPECT)[49-50]中,可分别用正电子发射核素(如18F、68Ga或89Zr) 和γ-发射核素(如99mTc等) 标记Nbs进行成像;在超声成像中,可使用Nbs提高造影剂(如微泡和纳米泡[18]) 的穿透力强及信号,主要用于可视化血管系统[51];特别是在肿瘤诊断领域应用广泛,检测癌细胞本身、生物标志物、可视化与癌细胞周围环境密切相关的成分成为诊断和监测的有效策略,有研究表明[52]在原位临床前模型中,抗HER2的Nbs 2Rs15d成功地检测到HER2阳性的脑病变,除此之外,表皮生长因子受体(epidermal growth factor receptor, EGFR)、前列腺特异性膜抗原(prostate specific membrane antigen, PSMA)、CD20和CD38[50]等也被作为癌细胞成像的目标抗原展开研究;巨噬细胞被认为是许多免疫疗法失败的元凶,巨噬细胞甘露糖受体蛋白(MMR, CD206) 在促肿瘤的巨噬细胞上高度表达,99mTc标记的抗MMR Nbs可用于SPECT/CT对小鼠乳腺癌和肺腺癌的可视化[53];抗血管细胞粘附分子-1 (vasculature cell adhesion molecule-1, VCAM-1) 的Nbs已被用于标记微泡,并应用于肿瘤血管的可视化超声成像,对小鼠注射10 min后肿瘤内可见超声造影信号持续,且信号明显高于对照。此外,还用于炎症性疾病及中枢神经系统等疾病的成像,为了以高灵敏度监测动脉粥样硬化病变,Bridoux等[54]使用了一种基于Nb的示踪剂(cAbVCAM1-5) 靶向血管细胞粘附分子-1 (VCAM-1),将RESCA螯合剂偶联到cAbVCAM1-5 Nb上,并用[18F]AlF进行标记,通过PET/CT可视化载脂蛋白e基因缺陷小鼠动脉粥样硬化斑块。对于光学成像,Nbs被荧光染料标记,并通过非侵入性的体内成像方式、体内显微镜和体外流式细胞仪进行检测[15, 55]。在结直肠癌(colorectal cancer, CRC) 早期初筛以及辅助诊断方面,Nb作为亲和试剂来开发粪便免疫化学检测(fecal immunochemical tests, FITs) 用于检测人类粪便样品中的血红蛋白(hHg) 显示出优异的再现性和精确度,可作为早期结直肠癌的大规模群体筛查工具[56],这克服了结肠镜检查前的饮食限制及检查时的侵入性,提高了患者的可接受度。这些技术有助于我们探究疾病的发生过程及了解发病机制,在早期捕获较高的病变信号,进行无损伤实时成像,方便疾病的预后观察,在内窥镜检查过程中或在荧光引导的手术背景下用于可视化表面病变。

2.4 疾病治疗 2.4.1 靶向肿瘤治疗

Nb在中枢神经系统疾病、循环系统疾病、感染性疾病、肿瘤学和炎症性疾病中均表现出优异的应用价值和前景(表 2),主要聚焦于肿瘤治疗且已经取得了显著成效,纳米抗体-药物偶联[18]、CAR-T[57-58]、光动力疗法(PDT)[59]、靶向放射性核素治疗等治疗方法的不断研发改进为患者带来了新的希望。

表 2 纳米抗体在治疗领域的应用 Table 2 Therapeutic applications of nanobodies
Nanobodies Targets Disease examples References
ALX-0171 RSV F-protein RSV lower respiratory tract infection [76]
T6T16A12 Tetanus neurotoxin (TeNT) Tetanus [77]
Vobarilizumab IL-6R Rheumatoid arthritis [78]
M6495 ADAMTS-5 Osteoarthritis [79]
BI 655088 CX3CR1 Chronic renal disease [80]
LCAR-B38M BCMA Multiple myeloma [81]
EGFR-targeted nanobody EGFR Squamous cell carcinoma of head and neck [82]
PDL1-VHHs PDL1 Cancer therapy [83]
Everestmab GLP-1/GLP-1R Diabetes mellitus type 2 (T2DM) [84]

Altintas等[60]研发了一种核心由EGFR靶向纳米抗体与PEG (EGa1-PEG) 结合的纳米粒子(NANAP),NANAP中装载有多激酶抑制剂17864,在溶酶体吸收和消化后,激酶抑制剂在细胞内释放,抑制EGFR阳性的14C鳞状头颈癌细胞的生长。Fang等[61]将药物美登素(DM1) 与MHC-Ⅱ靶向纳米抗体VHH7结合,通过NIR成像及向健康小鼠和荷瘤小鼠注射VHH7-AF47,解剖后比较荧光信号证实了淋巴瘤在肺、肝、脾、淋巴结等器官中的存在且肝脏中有转移灶,肿瘤浸润导致脾肿大,并证实了VHH7对转移灶的靶向性,用A20细胞系作为模型,VHH7-DM1治疗组肿瘤明显小于对照组,小鼠平均存活时间长于对照组,可显著抑制肝脏病灶转移。CD7分子黏附抗体或抗体衍生物后可快速发生内吞作用,Tang等[62]以单价和双价抗-CD7纳米抗体为基础构建了免疫毒素,并将其编码为PG001和PG002,采用WST-8法测定细胞毒活性,两者分别在纳摩尔(PG001) 和皮摩尔(PG002) 浓度下能诱导T-ALL细胞系的高效抗原特异性凋亡,能有效、选择性地杀伤人白血病细胞,显著延长治疗后小鼠的存活时间。

放射性标记的纳米抗体也有望成为靶向放射性核素治疗的靶向药物。其中α粒放射性核素正在用于临床或临床前评估,2Rs15d是一个HER-2特异性纳米抗体,Pruszynski等[63]利用2Rs15d纳米抗体与偶联剂2-(4-异硫氰基苄基)-1, 4, 7, 10-四氮杂环十二烷-1, 4, 7, 10-四乙酸(p-SCN-Bn-DOTA),并用α发射性核素锕-225标记(α-225Ac),产生225Ac-DOTA-Nb,这种靶向纳米抗体可以为靶细胞提供高致死性和局部化的放射治疗。

纳米抗体可充当光敏剂(photosensitizer, PS) 的载体,用于靶向光动力疗法(photodynamic therapy, PDT),通常临床上使用疏水的光敏剂,不能提供肿瘤特异性。增加肿瘤细胞特异性受体的表达水平可以用于靶向这些细胞,即增加肿瘤对光敏剂的特异性摄取,如过度表达的EGFR等[64]常被用作靶向治疗的靶点。采用纳米抗体的PDT可将周围细胞的损害降低,纳米抗体-PS共轭物选择性地结合到靶标上,并且在照明后能够在体外诱导选择性地杀死肿瘤细胞。

2.4.2 病毒感染治疗

Nb还是中和抗病毒试剂的丰富来源,可作为治疗动、植物病毒感染的理想工具。SARS-冠状病毒-2 (SARS-CoV-2) 的出现导致了一种全球性的流行病,比以往的冠状病毒传播性更强,不同的纳米抗体已经被开发用于高亲和力结合受体结合域(RBD),竞争性地抑制RBD与人血管紧张素转换酶2 (ACE2) 的相互作用并中和病毒[65-67],Nb主要依赖于3个可变环,即图 1中的CDR1、CDR2、CDR3形成的抗原结合位点,Nb相关技术的成熟揭示其可作为高效的中和剂,抵御致病性冠状病毒的侵袭。Strokappe等[68]成功构建了靶向HIV gp41和gp120包膜蛋白的中和性纳米抗体,这些新的双特异性VHH有成为治疗剂或杀菌剂的潜力。BBMV是一种种子传播的植物病毒,Ghannam等[69]通过噬菌体展示生物淘选分离出8个BBMV特异性纳米抗体,其中3个成功地抑制了BBMV在体外的传播且在蚕豆中表达时能中和BBMV。Orlov等[70]分离出抑制葡萄扇叶病毒(grapevine fanleaf virus, GFLV) 的纳米抗体Nb23,在烟草和该病毒的天然宿主葡萄砧木中稳定表达并观察到了对GFLV强烈的特异性抵抗力。

2.4.3 抗菌素治疗

抗生素疗法是治疗细菌性感染的主要手段,但由于抗生素不合理、过度的使用,导致耐药菌甚至超级细菌的出现,对于严重感染的病例,抗生素已经无法发挥其抗菌抑菌的作用。而纳米抗体由于特异性强,能精确结合致病细菌表面抗原,拮抗细菌对宿主细胞的黏附,从而治疗由细菌引起的感染性疾病,成为开发抗菌治疗的新方式。纳米抗体通过拮抗细菌黏附、运动以及细菌毒力因子等不同方式对抗细菌感染,减少致病菌黏附,如通过选择能够抑制细菌在上皮细胞粘附的抗表面抗原的VHH,可用于预防菌源性腹泻[71]。此外,纳米抗体还可以防止细菌或细菌毒素进入细胞,如VHH R303[72]与内化蛋白B (internalin B, Inl B) 上c-Met作用位点结合,能竞争性地抑制李斯特菌入侵赫拉细胞,进一步研究结果表明其可用于治疗和预防李斯特菌病。

2.4.4 纳米抗体作为解毒剂治疗

在许多国家,蛇、蝎子、蜘蛛等的毒液严重危害人类健康。研究表明,纳米抗体具有良好的中和能力,Jinkins等[73]成功分离出对α-眼镜蛇毒素(α-Cbtx) 具有很高亲和力的VHHs (C2和C20),它们能够完全中和α-Cbtx的致死作用。Calderon等[74]开发了一套针对黄腭蛇毒出血性和肌毒成分的纳米抗体,通过小鼠实验确定了Nbs H6、H8和H9具有最好的蛇毒出血作用中和活性,Nbs M28、M35、M43、M67、M85和M88可作为较好的肌毒作用抑制剂。Ahmadi等[75]总结了几种蝎子毒液治疗的抗毒剂,与传统抗毒剂相比,纳米抗体因其具有较高的体外稳定性和低的免疫原性,具有发展为下一代蝎子抗毒血清的潜力,如有研究表明anti-HNc纳米抗体能够对毒蝎的HNc类毒素的侵害提供完全的保护,一种双特异性NbF12-10展现了出色的毒液中和能力,对致命的蝎子蜇伤也能提供全面保护。因此,未来纳米抗体可作为解毒剂以提供安全有效的治疗方法。

3 纳米抗体在蛋白构象研究中的应用

蛋白质作为与疾病相关的活性大分子,其表达或修饰的变化在疾病诊断研究方面发挥重要的作用,Nb已成为能将动态蛋白冻结为单一功能构型的精致工具,针对蛋白质的鉴定和其在细胞内的定位,可以为众多研究提供理论基础。

3.1 VHH与蛋白分子融合

纳米抗体的主要优势之一是可以将多个标签融合在其结构中,例如His标签或绿色荧光蛋白(green fluorescent protein, GFP)[85],可以帮助我们了解蛋白质在细胞或生物体内的定位和功能[86],融合复合物可作为靶向生物分子进行疾病诊断治疗或用于蛋白质的定向失活等。靶向大肠杆菌F4菌毛的VHH域已被成功设计成具有强蛋白酶抗性和低pH值下的稳定性结构,实现了在胃肠道条件下仍能保持功能,Virdi等[87]研究出一种由VHH与IgA的Fc片段融合而成mVHH-IgA的口服抗体,经过冷冻干燥或喷雾干燥等流程最终制备成饲料从而达到保护性治疗的目的,可规模化生产,进而预防断奶仔猪腹泻相关的疾病F4-ETEC。

3.2 VHH与蛋白分子靶向降解

与基因编辑和RNA干扰相比,直接在蛋白质水平上操作生物分子的途径对于蛋白质功能研究更为有效,可以避免潜在的脱靶效应等限制、克服基因失活的局限性和必需基因表型功能的丧失。为了实现感兴趣的蛋白(protein of interesting, POI) 的功能丧失和蛋白溶解,靶向蛋白降解是目前主要研究的一种策略,一种Nb依赖型蛋白降解子可帮助实现POI快速降解及可逆调控,人们利用Nb不断开发出各种诱导型降解子如生长素、光或温度依赖性方式降解的POI。

在生长素依赖性纳米抗体的研究中,Daniel等通过对后期促进复合物/环状体(anaphase-promoting complex/cyclosome, APC/C) 一个亚基ANAPC4的研究,并结合生长素和基于纳米抗体降解技术的优势,创造了一种植物激素诱导蛋白降解子(auxin-inducible degron, AID)-纳米抗体,可以靶向位于不同亚细胞结构的GFP标签蛋白质进行降解,证明了mAID-纳米抗体可对内源性GFP标签蛋白条件性和可逆性地失活,此外还通过建立mAID-纳米抗体在斑马鱼中的降解模型,进一步将生长素降解系统应用于脊椎动物模型生物中[88]

VHH在以GFP为目标的降解技术(degrade green fluorescent protein, deGradFP) 中也得到了广泛的应用,Baudisch等在植物中使用一种特异性抗-GFP纳米抗体对绿色荧光蛋白进行靶向降解,通过实验证明纳米抗体驱动的蛋白质定向降解也可以用于植物,这是deGradFP系统第一次被成功地应用于烟草[89]

3.3 VHH与辅助蛋白结构解析

获得高分辨率下POI结构解析一直是研究的热点,Nb具有紧凑的单个免疫球蛋白结构域结构,能够以较高亲和力结合靶蛋白,同时减少其构象异质性并稳定多蛋白复合物,纳米抗体衍生的巨型抗体(megabodies) 在辅助单粒子冷冻电镜(single-particle cryo-EM) 下确定蛋白质结构方面展示了其优势,Uchański等[90]通过将纳米抗体嫁接到选定的支架蛋白质上以产生稳定和有效折叠的单体嵌合体并开发了巨型抗体,这一研究有助于克服cryo-EM重建的分辨率颗粒大小和在水-空气界面的优先取向问题,能够获得具有高分辨率下的cryo-EM谱图,还能用于获得那些通常遭受严重的优先取向或由于太小而无法进行精确的颗粒排列的膜蛋白的三维重建。通过对极有价值靶标(如真核生物膜蛋白) 的高分辨率结构分析,巨型抗体技术有潜力进一步促进单粒子冷冻电镜多领域研究的迅速发展。

4 小结及展望

纳米抗体不仅能在基础生物研究和医疗领域大放异彩,如创新的荧光纳米探针可以实现细胞及蛋白结构解析和动态实时的细胞分析和可视化,触发机体免疫系统进行治疗等,而且能够在农业如农兽药残留检测、土壤污染检测及修复等方面展现出更广阔的研究潜力。

随着研究的不断深入,Nb优越的特性也将会在更多领域展现其应用价值:其高稳定性或可使其在医学和临床应用中发挥作用,如解决疫苗或抗体药物研发中存在的疗效、安全性、费用等一系列问题及抗生素耐药性的问题,或能实现多途径给药;另外Nb在生物和农业研究领域可以实现产品的安全化生产并减少经济损失;此外,Nb或可在材料研发领域发挥重要作用。宁夏具备独厚的骆驼资源,本课题组已经成功建立了抗牛结核分枝杆菌VHH抗体库,所以未来可能会在动物疫病防控方面致力于寻求一种能够替代抗生素治疗的纳米抗体,并希望能通过饲料喂养或注射的方式达到预防及治疗动物相关疾病的目的。当然我们期待未来Nb更多引人注目的研究成果的问世。

参考文献
[1]
Hamers-Casterman C, Atarhouch T, Muyldermans S, et al. Naturally occurring antibodies devoid of light chains. Nature, 1993, 363(6428): 446-448. DOI:10.1038/363446a0
[2]
Greenberg AS, Avila D, Hughes M, et al. A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature, 1995, 374(6518): 168-173. DOI:10.1038/374168a0
[3]
Hassanzadeh-Ghassabeh G, Devoogdt N, De Pauw P, et al. Nanobodies and their potential applications. Nanomed Lond Engl, 2013, 8(6): 1013-1026. DOI:10.2217/nnm.13.86
[4]
Chakravarty R, Goel S, Cai WB. Nanobody: the "magic bullet" for molecular imaging?. Theranostics, 2014, 4(4): 386-398. DOI:10.7150/thno.8006
[5]
Hu Y, Liu C, Muyldermans S. Nanobody-based delivery systems for diagnosis and targeted tumor therapy. Front Immunol, 2017, 8: 1442. DOI:10.3389/fimmu.2017.01442
[6]
Abulrob A, Sprong H, Van Bergen En Henegouwen P, et al. The blood-brain barrier transmigrating single domain antibody: mechanisms of transport and antigenic epitopes in human brain endothelial cells. J Neurochem, 2005, 95(4): 1201-1214. DOI:10.1111/j.1471-4159.2005.03463.x
[7]
Sun S, Ding Z, Yang X, et al. Nanobody: a small antibody with big implications for tumor therapeutic strategy. Int J Nanomedicine, 2021, 16: 2337-2356. DOI:10.2147/IJN.S297631
[8]
Li M, Fan X, Liu J, et al. Selection by phage display of nanobodies directed against hypoxia inducible factor-1α (HIF-1α). Biotechnol Appl Biochem, 2015, 62(6): 738-745. DOI:10.1002/bab.1340
[9]
Jobling SA, Jarman C, Teh MM, et al. Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotechnol, 2003, 21(1): 77-80. DOI:10.1038/nbt772
[10]
Dumoulin M, Conrath K, Van Meirhaeghe A, et al. Single-domain antibody fragments with high conformational stability. Protein Sci, 2002, 11(3): 500-515.
[11]
Liu Y, Huang H. Expression of single-domain antibody in different systems. Appl Microbiol Biotechnol, 2018, 102(2): 539-551. DOI:10.1007/s00253-017-8644-3
[12]
Liu W, Song H, Chen Q, et al. Recent advances in the selection and identification of antigen-specific nanobodies. Mol Immunol, 2018, 96: 37-47. DOI:10.1016/j.molimm.2018.02.012
[13]
孔庆明, 姚亚波, 陈睿, 等. 纳米抗体及其在诊断检测中的研究进展. 生物工程学报, 2014, 30(9): 1351-1361.
Kong QM, Yao YB, Chen R, et al. Progress in nanobody and its application in diagnosis. Chin J Biotech, 2014, 30(9): 1351-1361 (in Chinese).
[14]
Debie P, Lafont C, Defrise M, et al. Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours. J Control Release, 2020, 317: 34-42. DOI:10.1016/j.jconrel.2019.11.014
[15]
Feng Y, Zhou Z, McDougald D, et al. Site-specific radioiodination of an anti-HER2 single domain antibody fragment with a residualizing prosthetic agent. Nucl Med Biol, 2021, 92: 171-183. DOI:10.1016/j.nucmedbio.2020.05.002
[16]
Lv G, Sun XR, Qiu L, et al. PET imaging of tumor PD-L1 expression with a highly specific nonblocking single-domain antibody. J Nucl Med, 2020, 61(1): 117-122. DOI:10.2967/jnumed.119.226712
[17]
Yu ZP, Hu M, Li ZQ, et al. Anti-G250 nanobody-functionalized nanobubbles targeting renal cell carcinoma cells for ultrasound molecular imaging. Nanotechnology, 2020, 31(20): 205101. DOI:10.1088/1361-6528/ab7040
[18]
Yu S, Xiong G, Zhao S, et al. Nanobodies targeting immune checkpoint molecules for tumor immunotherapy and immunoimaging (review). Int J Mol Med, 2021, 47(2): 444-454.
[19]
Bathula NV, Bommadevara H, Hayes JM. Nanobodies: the future of antibody-based immune therapeutics. Cancer Biother Radiopharm, 2021, 36(2): 109-122. DOI:10.1089/cbr.2020.3941
[20]
Salvador JP, Vilaplana L, Marco MP. Nanobody: outstanding features for diagnostic and therapeutic applications. Anal Bioanal Chem, 2019, 411(9): 1703-1713. DOI:10.1007/s00216-019-01633-4
[21]
Hu Z, Fang C, Li B, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-Ⅰ/Ⅱ windows. Nat Biomed Eng, 2020, 4(3): 259-271. DOI:10.1038/s41551-019-0494-0
[22]
Chen JS, Chen JW, Bhattacharjee S, et al. Functionalized nanoparticles with targeted antibody to enhance imaging of breast cancer in vivo. J Nanobiotechnology, 2020, 18(1): 135. DOI:10.1186/s12951-020-00695-2
[23]
Shi S, Goel S, Lan X, et al. ImmunoPET of CD38 with a radiolabeled nanobody: promising for clinical translation. Eur J Nucl Med Mol Imaging, 2021, 48(9): 2683-2686. DOI:10.1007/s00259-021-05329-9
[24]
Kang W, Ding C, Zheng D, et al. Nanobody conjugates for targeted cancer therapy and imaging. Technol Cancer Res Treat, 2021, 20: 15330338211010117.
[25]
Tremblay JM, Vazquez-Cintron E, Lam KH, et al. Camelid VHH antibodies that neutralize botulinum neurotoxin serotype E intoxication or protease function. Toxins, 2020, 12(10): 611. DOI:10.3390/toxins12100611
[26]
Mars A, Bouhaouala-Zahar B, Raouafi N. Ultrasensitive sensing of Androctonus australis hector scorpion venom toxins in biological fluids using an electrochemical graphene quantum dots/nanobody- based platform. Talanta, 2018, 190: 182-187. DOI:10.1016/j.talanta.2018.07.087
[27]
Lam KH, Perry K, Shoemaker CB, et al. Two VHH antibodies neutralize botulinum neurotoxin E1 by blocking its membrane translocation in host cells. Toxins, 2020, 12(10): 616. DOI:10.3390/toxins12100616
[28]
Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol, 2007, 77(1): 13-22. DOI:10.1007/s00253-007-1142-2
[29]
Marschall AL, Dübel S. Antibodies inside of a cell can change its outside: can intrabodies provide a new therapeutic paradigm?. Comput Struct Biotechnol J, 2016, 14: 304-308. DOI:10.1016/j.csbj.2016.07.003
[30]
Vandenbroucke K, De Haard H, Beirnaert E, et al. Orally administered L. lactis secreting an anti-TNF nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol, 2010, 3(1): 49-56. DOI:10.1038/mi.2009.116
[31]
Khare T, Palakurthi SS, Shah BM, et al. Natural product-based nanomedicine in treatment of inflammatory bowel disease. Int J Mol Sci, 2020, 21(11): 3956. DOI:10.3390/ijms21113956
[32]
Sedykh SE, Prinz VV, Buneva VN, et al. Bispecific antibodies: design, therapy, perspectives. Drug Des Devel Ther, 2018, 12: 195-208. DOI:10.2147/DDDT.S151282
[33]
Zhao Y, Li Y, Wu X, et al. Identification of anti-CD16a single domain antibodies and their application in bispecific antibodies. Cancer Biol Ther, 2020, 21(1): 72-80. DOI:10.1080/15384047.2019.1665953
[34]
Nambulli S, Xiang YF, Tilston-Lunel NL, et al. Inhalable nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Sci Adv, 2021, 7(22): eabh0319. DOI:10.1126/sciadv.abh0319
[35]
Jovčevska I, Muyldermans S. The therapeutic potential of nanobodies. BioDrugs, 2020, 34(1): 11-26. DOI:10.1007/s40259-019-00392-z
[36]
He T, Zhu J, Nie Y, et al. Nanobody technology for mycotoxin detection in the field of food safety: current status and prospects. Toxins (Basel), 2018, 10(5): E180. DOI:10.3390/toxins10050180
[37]
Liu Z, Wang K, Wu S, et al. Development of an immunoassay for the detection of carbaryl in cereals based on a camelid variable heavy-chain antibody domain. J Sci Food Agric, 2019, 99(9): 4383-4390. DOI:10.1002/jsfa.9672
[38]
Li ZF, Dong JX, Vasylieva N, et al. Highly specific nanobody against herbicide 2, 4-dichlorophenoxyacetic acid for monitoring of its contamination in environmental water. Sci Total Environ, 2021, 753: 141950. DOI:10.1016/j.scitotenv.2020.141950
[39]
El-Moghazy AY, Huo J, Amaly N, et al. An innovative nanobody-based electrochemical immunosensor using decorated nylon nanofibers for point-of-care monitoring of human exposure to pyrethroid insecticides. ACS Appl Mater Interfaces, 2020, 12(5): 6159-6168. DOI:10.1021/acsami.9b16193
[40]
Liu Y, Wu A, Hu J, et al. Detection of 3-phenoxybenzoic acid in river water with a colloidal gold-based lateral flow immunoassay. Anal Biochem, 2015, 483: 7-11. DOI:10.1016/j.ab.2015.04.022
[41]
Wang T, Li P, Zhang Q, et al. Determination of Aspergillus pathogens in agricultural products by a specific nanobody-polyclonal antibody sandwich ELISA. Sci Rep, 2017, 7(1): 4348. DOI:10.1038/s41598-017-04195-6
[42]
Tang Z, Liu X, Su B, et al. Ultrasensitive and rapid detection of ochratoxin A in agro-products by a nanobody-mediated FRET-based immunosensor. J Hazard Mater, 2020, 387: 121678. DOI:10.1016/j.jhazmat.2019.121678
[43]
Kuo CJ, Bell H, Hsieh CL, et al. Novel Mycobacteria antigen 85 complex binding motif on fibronectin. J Biol Chem, 2012, 287(3): 1892-1902. DOI:10.1074/jbc.M111.298687
[44]
吴越. 抗牛结核分枝杆菌VHH抗体库的构建与筛选[D]. 银川: 宁夏大学, 2017.
Wu Y. Construction and screening of VHH antibody to bovine M. tuberculosis[D]. Yinchuan: Ningxia University, 2017 (in Chinese).
[45]
He Y, Ren Y, Guo B, et al. Development of a specific nanobody and its application in rapid and selective determination of Salmonella enteritidis in milk. Food Chem, 2020, 310: 125942. DOI:10.1016/j.foodchem.2019.125942
[46]
Pinto Torres JE, Goossens J, Ding J, et al. Development of a nanobody-based lateral flow assay to detect active Trypanosoma congolense infections. Sci Rep, 2018, 8(1): 9019. DOI:10.1038/s41598-018-26732-7
[47]
吴喜林, 吴稚伟, 李彦磊, 等. 一种SFTSV检测试剂盒: CN110684102A[P]. 2020-01-14.
Wu XL, Wu ZW, Li YL, et al. A SFTSV test kit: CN110684102A[P]. 2020-01-14 (in Chinese).
[48]
Schumacher D, Helma J, Schneider AFL, et al. Nanobodies: chemical functionalization strategies and intracellular applications. Angew Chem Int Ed Engl, 2018, 57(9): 2314-2333. DOI:10.1002/anie.201708459
[49]
D'Huyvetter M, Xavier C, Caveliers V, et al. Radiolabeled nanobodies as theranostic tools in targeted radionuclide therapy of cancer. Expert Opin Drug Deliv, 2014, 11(12): 1939-1954. DOI:10.1517/17425247.2014.941803
[50]
Debie P, Devoogdt N, Hernot S. Targeted nanobody-based molecular tracers for nuclear imaging and image-guided surgery. Antibodies, 2019, 8(1): 12. DOI:10.3390/antib8010012
[51]
Hernot S, Unnikrishnan S, Du Z, et al. Nanobody- coupled microbubbles as novel molecular tracer. J Control Release, 2012, 158(2): 346-353. DOI:10.1016/j.jconrel.2011.12.007
[52]
Puttemans J, Dekempeneer Y, Eersels JL, et al. Preclinical targeted α- and β-radionuclide therapy in HER2-positive brain metastasis using camelid single-domain antibodies. Cancers, 2020, 12(4): 1017. DOI:10.3390/cancers12041017
[53]
Movahedi K, Schoonooghe S, Laoui D, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res, 2012, 72(16): 4165-4177. DOI:10.1158/0008-5472.CAN-11-2994
[54]
Bridoux J, Neyt S, Debie P, et al. Improved detection of molecular markers of atherosclerotic plaques using sub-millimeter PET imaging. Molecules, 2020, 25(8): 1838. DOI:10.3390/molecules25081838
[55]
Lecocq Q, De Vlaeminck Y, Hanssens H, et al. Theranostics in immuno-oncology using nanobody derivatives. Theranostics, 2019, 9(25): 7772-7791. DOI:10.7150/thno.34941
[56]
Delfin-Riela T, Rossotti MA, Echaides C, et al. A nanobody-based test for highly sensitive detection of hemoglobin in fecal samples. Anal Bioanal Chem, 2020, 412(2): 389-396. DOI:10.1007/s00216-019-02246-7
[57]
Qiao J, Fu YX. Cytokines that target immune killer cells against tumors. Cell Mol Immunol, 2020, 17(7): 722-727. DOI:10.1038/s41423-020-0481-0
[58]
Varadé J, Magadán S, González-Fernández Á. Human immunology and immunotherapy: main achievements and challenges. Cell Mol Immunol, 2021, 18(4): 805-828.
[59]
Deken MM, Kijanka MM, Beltrán Hernández I, et al. Nanobody-targeted photodynamic therapy induces significant tumor regression of trastuzumab-resistant HER2-positive breast cancer, after a single treatment session. J Control Release, 2020, 323: 269-281. DOI:10.1016/j.jconrel.2020.04.030
[60]
Altintas I, Heukers R, Van Der Meel R, et al. Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells. J Control Release, 2013, 165(2): 110-118. DOI:10.1016/j.jconrel.2012.11.007
[61]
Fang T, Duarte JN, Ling JJ, et al. Structurally defined αMHC-Ⅱ nanobody-drug conjugates: a therapeutic and imaging system for B-cell lymphoma. Angew Chem Int Ed, 2016, 55(7): 2416-2420. DOI:10.1002/anie.201509432
[62]
Tang J, Li J, Zhu X, et al. Novel CD7-specific nanobody-based immunotoxins potently enhanced apoptosis of CD7-positive malignant cells. Oncotarget, 2016, 7(23): 34070-34083. DOI:10.18632/oncotarget.8710
[63]
Pruszynski M, D'Huyvetter M, Bruchertseifer F, et al. Evaluation of an anti-HER2 nanobody labeled with 225Ac for targeted α-particle therapy of cancer. Mol Pharm, 2018, 15(4): 1457-1466. DOI:10.1021/acs.molpharmaceut.7b00985
[64]
De Bruijn HS, Mashayekhi V, Schreurs TJL, et al. Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging. Theranostics, 2020, 10(5): 2436-2452. DOI:10.7150/thno.37949
[65]
Wrapp D, De Vlieger D, Corbett KS, et al. Structural basis for potent neutralization of betacoronaviruses by single-domain camelid antibodies. Cell, 2020, 181(5): 1004-1015. DOI:10.1016/j.cell.2020.04.031
[66]
Huo J, Le Bas A, Ruza RR, et al. Neutralizing nanobodies bind SARS-CoV-2 spike RBD and block interaction with ACE2. Nat Struct Mol Biol, 2020, 27(9): 846-854. DOI:10.1038/s41594-020-0469-6
[67]
Yao H, Cai H, Li T, et al. A high-affinity RBD-targeting nanobody improves fusion partner's potency against SARS-CoV-2. PLoS Pathog, 2021, 17(3): e1009328. DOI:10.1371/journal.ppat.1009328
[68]
Strokappe NM, Hock M, Rutten L, et al. Super potent bispecific llama VHH antibodies neutralize HIV via a combination of gp41 and gp120 epitopes. Antibodies, 2019, 8(2): 38. DOI:10.3390/antib8020038
[69]
Ghannam A, Kumari S, Muyldermans S, et al. Camelid nanobodies with high affinity for broad bean mottle virus: a possible promising tool to immunomodulate plant resistance against viruses. Plant Mol Biol, 2015, 87(4/5): 355-369.
[70]
Orlov I, Hemmer C, Ackerer L, et al. Structural basis of nanobody recognition of grapevine fanleaf virus and of virus resistance loss. PNAS, 2020, 117(20): 10848-10855. DOI:10.1073/pnas.1913681117
[71]
Salhi I, Bessalah S, Snoun D, et al. Construction of a nanobodies phage display library from an Escherichia coli immunized dromedary. Iran J Biotechnol, 2020, 18(1): e2247.
[72]
King MT, Huh I, Shenai A, et al. Structural basis of VHH-mediated neutralization of the food-borne pathogen Listeria monocytogenes. J Biol Chem, 2018, 293(35): 13626-13635. DOI:10.1074/jbc.RA118.003888
[73]
Jenkins T, Fryer T, Dehli R, et al. Toxin neutralization using alternative binding proteins. Toxins, 2019, 11(1): 53. DOI:10.3390/toxins11010053
[74]
Calderon HB, Coronel VOY, Rey OAC, et al. Development of nanobodies against hemorrhagic and myotoxic components of Bothrops atrox snake venom. Front Immunol, 2020, 11: 655. DOI:10.3389/fimmu.2020.00655
[75]
Ahmadi S, Knerr JM, Argemi L, et al. Scorpion venom: detriments and benefits. Biomedicines, 2020, 8(5): 118. DOI:10.3390/biomedicines8050118
[76]
Al-Baradie RS. Nanobodies as versatile tools: a focus on targeted tumor therapy, tumor imaging and diagnostics. Hum Antibodies, 2020, 28(4): 259-272. DOI:10.3233/HAB-200425
[77]
De Smit H, Ackerschott B, Tierney R, et al. A novel single-domain antibody multimer that potently neutralizes tetanus neurotoxin. Vaccine X, 2021, 8: 100099. DOI:10.1016/j.jvacx.2021.100099
[78]
Mir MA, Mehraj U, Sheikh BA, et al. Nanobodies: the "magic bullets" in therapeutics, drug delivery and diagnostics. Hum Antibodies, 2020, 28(1): 29-51. DOI:10.3233/HAB-190390
[79]
Cao P, Li Y, Tang Y, et al. Pharmacotherapy for knee osteoarthritis: current and emerging therapies. Expert Opin Pharmacother, 2020, 21(7): 797-809. DOI:10.1080/14656566.2020.1732924
[80]
Low S, Wu H, Jerath K, et al. VHH antibody targeting the chemokine receptor CX3CR1 inhibits progression of atherosclerosis. MAbs, 2020, 12(1): 1709322. DOI:10.1080/19420862.2019.1709322
[81]
Jindal V, Khoury J, Gupta R, et al. Current status of chimeric antigen receptor T-cell therapy in multiple myeloma. Am J Clin Oncol, 2020, 43(5): 371-377. DOI:10.1097/COC.0000000000000669
[82]
Liu Y, Scrivano L, Peterson JD, et al. EGFR-targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic therapy. Mol Pharm, 2020, 17(4): 1276-1292. DOI:10.1021/acs.molpharmaceut.9b01280
[83]
Li SF, Jiang KP, Wang T, et al. Nanobody against PDL1. Biotechnol Lett, 2020, 42(5): 727-736. DOI:10.1007/s10529-020-02823-2
[84]
Pan H, Su Y, Xie Y, et al. Everestmab, a novel long-acting GLP-1/anti GLP-1R nanobody fusion protein, exerts potent anti-diabetic effects. Artif Cells Nanomed Biotechnol, 2020, 48(1): 854-866. DOI:10.1080/21691401.2020.1770268
[85]
Kubala MH, Kovtun O, Alexandrov K, et al. Structural and thermodynamic analysis of the GFP: GFP-nanobody complex. Protein Sci, 2010, 19(12): 2389-2401. DOI:10.1002/pro.519
[86]
Rodriguez EA, Campbell RE, Lin JY, et al. The growing and glowing toolbox of fluorescent and photoactive proteins. Trends Biochem Sci, 2017, 42(2): 111-129. DOI:10.1016/j.tibs.2016.09.010
[87]
Virdi V, Palaci J, Laukens B, et al. Yeast-secreted, dried and food-admixed monomeric IgA prevents gastrointestinal infection in a piglet model. Nat Biotechnol, 2019, 37(5): 527-530. DOI:10.1038/s41587-019-0070-x
[88]
Daniel K, Icha J, Horenburg C, et al. Conditional control of fluorescent protein degradation by an auxin-dependent nanobody. Nat Commun, 2018, 9(1): 3297. DOI:10.1038/s41467-018-05855-5
[89]
Baudisch B, Pfort I, Sorge E, et al. Nanobody-directed specific degradation of proteins by the 26S-proteasome in plants. Front Plant Sci, 2018, 9: 130. DOI:10.3389/fpls.2018.00130
[90]
Uchański T, Masiulis S, Fischer B, et al. Megabodies expand the nanobody toolkit for protein structure determination by single-particle cryo-EM. Nat Methods, 2021, 18(1): 60-68. DOI:10.1038/s41592-020-01001-6