生物工程学报 Chinese Journal of Biotechnology http://journals.im.ac.cn/cjbcn DOI: 10.13345/j.cjb.230896

・工业生物技术・

定点突变提高海洋氧化节杆菌 KQ11 右旋糖酐酶的 催化活性

夏冰冰,马岱,叶子凡,杨静文,张洪斌*,胡雪芹*

合肥工业大学 食品与生物工程学院, 安徽 合肥 230009

夏冰冰,马岱,叶子凡,杨静文,张洪斌,胡雪芹. 定点突变提高海洋氧化节杆菌 KQ11 右旋糖酐酶的催化活性[J]. 生物 工程学报, 2024, 40(9): 3072-3082.

XIA Bingbing, MA Dai, YE Zifan, YANG Jingwen, ZHANG Hongbin, HU Xueqin. Site-directed mutagenesis enhances the activity of dextranase from *Arthrobacter oxidans* KQ11[J]. Chinese Journal of Biotechnology, 2024, 40(9): 3072-3082.

摘 要:右旋糖酐酶是一种专一性水解 α-1,6 糖苷键的酶。为了提高海洋氧化节杆菌(Arthrobacter oxidans) KQ11 来源的右旋糖酐酶的酶活,本研究采用了定点突变的方法对参与"隧道状结合位点"的氨基酸进行改造,并在此基础上对 507 位进行了饱和突变,获得了酶活和催化效率提高的突变 酶 A356G、S357W、W507Y、W507F。与野生株(wild type, WT)相比,突变体 W507Y 的比活力提高了 3.00 倍, k_{cat}提高了 3.62 倍, K_m下降了 54%,催化效率 k_{cat}/K_m提高了 8.98 倍。三维结构分析 表明,氢键数目的增加及"隧道状结合位点"间的距离是影响酶活的重要因素。相比于 WT 突变体,W507Y 与"隧道状结合位点"的另一侧氨基酸间的距离缩短,更易产生氢键作用力,加快了底物的 水解和产物排出,使得酶活和催化效率大幅提高。 关键词:右旋糖酐酶;定点突变;比活力:底物通道

Site-directed mutagenesis enhances the activity of dextranase from *Arthrobacter oxidans* KQ11

XIA Bingbing, MA Dai, YE Zifan, YANG Jingwen, ZHANG Hongbin^{*}, HU Xueqin^{*}

School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, China

Abstract: Dextranase is an enzyme that specifically hydrolyzes the α -1,6 glucoside bond. In order to improve the activity of dextranase from *Arthrobacter oxidans* KQ11, site-directed

This work was supported by the Natural Science Foundation of Anhui Province (2108085MC120).

资助项目: 安徽省自然科学基金(2108085MC120)

^{*}Corresponding authors. E-mail: HU Xueqin, huxq@hfut.edu.cn; ZHANG Hongbin, hbzhang@hfut.edu.cn Received: 2023-12-27; Accepted: 2024-03-04

mutagenesis was used to modify the amino acids involved in the "tunnel-like binding site". A saturating mutation at position 507 was carried out on this basis. The mutant enzymes A356G, S357W, W507Y, and W507F with improved enzyme activities and catalytic efficiency were successfully obtained. Compared with wild type (WT), W507Y showed the specific activity increasing by 3.00 times, the k_{cat} value increasing by 3.62 times, the K_m value decreasing by 54%, and the catalytic efficiency (k_{cat}/K_m) increasing by 8.98 times. The three-dimensional structure analysis showed that the increase of the number of hydrogen bonds and the distance between "tunnel-like binding sites" were important factors affecting enzyme activity. Compared with WT, W507Y had a shortened distance from the residues on the other side of the "tunnel-like binding site", which made it easier to generate hydrogen binding forces. Accordingly, the substrate hydrolysis and product efflux were accelerated, which dramatically increased the enzyme activity and catalytic efficiency.

Keywords: dextranase; site-directed mutagenesis; specific activity; substrate tunnel

右旋糖酐酶是一种水解酶,可以专一性地 水解右旋糖酐中的 α-1,6 糖苷键[1]生成小分子量 的右旋糖酐、葡萄糖、异麦芽糖、异麦芽三糖 和低聚异麦芽糖等^[2]。在工业生产中,右旋糖 **酐具有重要的应用价值**^[3]。在制糖工业中,右 旋糖酐酶被用于去除蔗糖过程中产生的右旋糖 酐^[4]。右旋糖酐聚集在牙齿表面容易形成牙菌 斑和龋齿,导致一系列口腔疾病的产生^[5],右 旋糖酐酶可以减少牙菌斑沉淀,阻止右旋糖酐 生物膜的形成^[6],从而达到预防龋齿的目的。 右旋糖酐酶水解右旋糖酐生成系列中低分子量 的右旋糖酐,在食品和医药领域有着重要的利用 价值^[7]。分子量10-70 kDa的右旋糖酐是国际上 公认的代血浆首选药物^[8];低分子量的右旋糖 酐[分子量(molecular weight, Mw)<10 kDa]可与 铁络合后用于治疗缺铁性贫血; 高分子量右旋 糖酐(Mw>1 000 kDa)在食品的生产加工过程中 可以作为食品添加剂。

目前对于酶的改造主要集中在提高酶活、 提高温度稳定性、增加产物的产率等方面,分子 改造的方法主要有定点突变^[9]、半理性设计^[10]、 定向进化^[11]等。Kim 等^[12]在 GH66 家族右旋糖

酐酶的 N 端和 C 端进行截短,提高了酶活性; 董冬雪等^[13]在 Aodex 的 N 端和 C 端进行截短, 提高了酶的最适温度; Yang 等^[14]对野生型球毛 壳菌(Chaetomium globosum)的 587 位进行定点 突变,提高了酶活的同时也使得酶在 70 ℃下的 稳定性也有了极大的提高; Klahan 等^[15]对 GH66家族的-3和-4亚位点进行了点突变,获得 了可以产生更高聚合度(degree of polymerization, DP)低聚异麦芽糖的突变体; Chen 等^[16]对香菇 中的糖酐水解酶进行定点突变,突变后酶活提 高了 3.20 倍,催化效率提高了 1.80 倍; Lin 等^[17] 对 GH66 家族右旋糖酐酶 SP5-Badex 进行半理性 设计得到了突变体 E454G, 酶活是突变前的 3.08 倍, 在 45 ℃下的稳定性高于原始酶; Wei 等^[18]对 GH49 家族右旋糖酐酶 Aodex 中 B 因子 值最高的 loop 区进行半理性设计,得到的突变 体 S357V 酶活和热稳定性明显提高。

本研究对右旋糖酐酶 Aodex 进行了三维结构分析,选择了催化域附近参与形成"隧道状结合位点"的 5 个氨基酸进行点突变,并在此基础上进行了饱和突变,以期提高 Aodex 的酶活和催化效率。

1 材料与方法

1.1 材料

右旋糖酐酶 Aodex (GenBank 登录号: KJ571608)与载体 pET-28a 融合,由苏州金唯 智生物科技有限公司合成。大肠杆菌 DMT 和 BL21(DE3)感受态细胞购自北京全式金生物技 术有限公司,分别用于克隆和表达。PCR 所 需要的引物和 DNA 测序由擎科(南京)生物科 技有限公司进行。点突变试剂盒购自北京全 式金生物技术有限公司。

硫酸卡那霉素、异丙基β-D-硫代吡喃半乳糖 苷(isopropyl-β-D-thiogalactopyranoside, IPTG)及 其他化学品和标准样品均购自上海阿拉丁生化 科技股份有限公司。

Luria-Bertani (LB)培养基(g/L): 酵母浸粉 5.0, 胰蛋白胨 10.0, 氯化钠 10.0。

Terrific Broth (TB)培养基(g/L): 酵母浸粉 24.0, 胰蛋白胨 12.0, 甘油 5.0。

1.2 突变体的设计和构建

Aodex (PDB ID: 6NZS) [以下简称为野生株 (wild type, WT)]的晶体结构可从 PDB 数据库中 获得,利用 Discovery Studio $3.0^{[19]}$ 对 Aodex 进行 三维结构的分析,构建了一系列单点突变体,在 单点突变的基础上构建饱和突变体。使用快速 定点突变试剂盒进行 PCR 扩增。PCR 循环程 序: 94 °C 2 min; 94 °C 20 s, 55 °C 10 s, 72 °C 3 s, 25 个循环; 72 °C 10 s。单点突变和饱和突 变的引物设计如表 1 所示。PCR 产物和模板混 合物用 DMT 酶消化, 37 °C孵育 1 h,去除甲基 化模板。之后将 PCR 产物转入 DMT 感受态细 胞中进行培养,测序验证点突变的准确性。最 后将测序正确的质粒转入大肠杆菌 BL21(DE3) 感受态中诱导表达。

1.3 酶的表达和纯化

将突变体菌体接种到含有 0.1 mg/mL 硫

酸卡那霉素的液体 LB 培养基中,在 37 ℃、 220 r/min 条件下活化培养 12 h。活化后的菌液 按照 1%的接种量转接至 TB 培养基中,在 37 ℃、220 r/min 条件下培养,当菌体的 *OD*₆₀₀ 达到 2.0 时,添加终浓度为 0.062 5 mg/mL 的 IPTG,在15℃、220 r/min 条件下诱导培养 36 h。

在 8 000 r/min 条件下将菌体溶液离心 15 min, 得到的菌体沉淀重悬在 20 mmol/L、pH 7.5 的 Tris-HCl 缓冲溶液中,在低温下超声破碎 15 min 后再次离心 15 min,所得上清即为粗酶液。

使用镍柱对 WT 和突变体酶进行亲和纯化。 分别用纯水和缓冲液平衡镍柱,平衡后加入5mL 粗酶液,先用平衡缓冲液进行充分洗脱至无蛋白 流出,之后用40、80、120、160、200、250 mmol/L 咪唑进行梯度洗脱,收集每一步的洗脱液。采用 SDS-PAGE 检测纯化效果。采用 Mw 为10 000 的 超滤管除去蛋白中的咪唑,即可得到纯化蛋白。

1.4 右旋糖酐酶比活力的测定

每分钟内水解右旋糖酐生成 1 μmol 还原糖 所需要的酶量为一个单位酶活(U)。WT 及突变 体酶活的测定均采用 3,5-二硝基水杨酸 (3,5-dinitrosalicylic acid, DNS)法^[20]。将400 μL 底物溶液(由 20 mmol/L、pH 7.5 的 Tris-HCl 缓 冲液配制的3%的右旋糖酐T70)加入试管中,加 入100 μl 适当稀释的酶液,在50 °C下反应1h, 随后加入375 μL DNS 以终止反应,并将混合物 煮沸5 min 显色。在试管中加入5 mL 纯水并混 合均匀,使用紫外分光光度计(安徽中测仪器有 限公司)测定反应液在540 nm 处的吸光度,计 算酶活性。

蛋白质含量的测定采用 Bardford 法,用牛 血清蛋白绘制标准曲线。在 3 mL 考马斯亮蓝溶 液中加入 300 μL 适当稀释的酶液,室温下反应 10 min 后,在 595 nm 处检测吸光度,计算蛋白 质含量。

比活力(U/µg)=酶活(U/mL)/蛋白质含量(µg/mL)。

表 1	单点突变及饱和突变所需要的引物

 Table 1
 Sequences required for single point mutations and saturation mutations

Primer name	Primer sequences $(5' \rightarrow 3')$	Size (bp)
A356G-R		30
A356G-F	ACCGCCGCTCAGATGGTTATAGTTATTG	28
S357W-R	AACCATCTGAGCGGCGCGTGGAACTGCCATA	31
S357W-F	CCACGCGCCGCTCAGATGGTTATAGTTA	28
N358A-F	ATCTGAGCGGCGCGAGCGCATGCCATAGCAGCTGCGTGAAA	41
N358A-R	TGCGCTCGCGCCGCTCAGATGGTTATAGTT	30
H360Y-F	GGCGCGAGCAACTGCTATAGCAGCTGCGTGAAA	33
H360Y-R	ATAGCAGTTGCTCGCGCCGCTCAGATGGTT	30
W507Y-F	TGAACAGCAGTAGCCATTATGAAGATATGGGCAGC	35
W507Y-R	ATAATGGCTACTGCTGTTCAGAATGCAGGT	30
W507G-F	AACAGCAGTAGCCATGGTGAAGATATGG	28
W507G-R	ACCATGGCTACTGCTGTTCAGAATGCAG	28
W507A-F	AACAGCAGTAGCCATGCAGAAGATATGG	28
W507A-R	TGCATGGCTACTGCTGTTCAGAATGCAG	28
W507V-F	AACAGCAGTAGCCATGTTGAAGATATGG	28
W507V-R	AACATGGCTACTGCTGTTCAGAATGCAG	28
W507L-F	AACAGCAGTAGCCATCTGGAAGATATGG	28
W507L-R	CAGATGGCTACTGCTGTTCAGAATGCAG	28
W507I-F	AACAGCAGTAGCCATATTGAAGATATGGG	29
W507I-R	AATATGGCTACTGCTGTTCAGAATGCAG	28
W507N-F	AACAGCAGTAGCCATAATGAAGATATGGG	29
W507N-R	ATTATGGCTACTGCTGTTCAGAATGCAG	28
W507E-F	AACAGCAGTAGCCATGAAGAAGATATGG	28
W507E-R	TTCATGGCTACTGCTGTTCAGAATGCAG	28
W507Q-F	AACAGCAGTAGCCATCAGGAAGATATGG	28
W507Q-R	CTGATGGCTACTGCTGTTCAGAATGCAG	28
W507D-F	TGAACAGCAGTAGCCATGATGAAGATATGGGCA	33
W507D-R	ATCATGGCTACTGCTGTTCAGAATGCAGGTGTTA	34
W507K-F	AACAGCAGTAGCCATAAAGAAGATATGGG	29
W507K-R	TTTATGGCTACTGCTGTTCAGAATGCAG	28
W507M-F	AACAGCAGTAGCCATATGGAAGATATGG	28
W507M-R	CATATGGCTACTGCTGTTCAGAATGCAG	28
W507S-F	AACAGCAGTAGCCATAGCGAAGATATGG	28
W507S-R	GCTATGGCTACTGCTGTTCAGAATGCAG	28
W507T-F	AACAGCAGTAGCCATACCGAAGATATGG	28
W507T-R	GGTATGGCTACTGCTGTTCAGAATGCAG	28
W507C-F	AACAGCAGTAGCCATTGTGAAGATATGG	28
W507C-R	ACAATGGCTACTGCTGTTCAGAATGCAG	28
W507P-F	AACAGCAGTAGCCATCCGGAAGATATGG	28
W507P-R	CGGATGGCTACTGCTGTTCAGAATGCAG	28
W507H-F	ATGATGGCTACTGCTGTTCAGAATGCAG	28
W507H-R	ATGATGGCTACTGCTGTTCAGAATGCAG	28
W507R-F	AACAGCAGTAGCCATCGTGAAGATATGG	28
W507R-R	ACGATGGCTACTGCTGTTCAGAATGCAG	28
W507F-F	TGAACAGCAGTAGCCATTTTGAAGATATGGGCA	33
W507F-R	AAAATGGCTACTGCTGTTCAGAATGCAGGT	30

1.5 WT 和突变体最适温度及温度稳定性的测定

通过稀释或浓缩,使纯化后 WT 和突变体 的酶浓度为 100 μg/mL,在此浓度下进行最适温 度和温度稳定性的测定。

最适温度的测定:在 pH 7.5 的条件下,使 用 1.4 中提及的 DNS 法分别测定 WT 和突变体 在不同温度(40、45、50、55、60、65 ℃)下的 酶活,酶活最高时所在的温度即为酶的最适温 度,记为 100%。

温度稳定性的测定:将 WT 和突变体分别 置于 50 ℃下进行热孵育,每隔 10 min 取样, 直至孵育时间达到 1 h。在 50 ℃下利用 DNS 法 测定每个样品的残余活性,其中未经热孵育的 酶活记为 100%。

1.6 WT 和突变体动力学参数的测定

通过稀释或浓缩,使纯化后 WT 和突变体 的酶浓度为 100 μg/mL,在此浓度下进行动力学 参数的测定。

以右旋糖酐 T70 作为底物测定动力学参数。使用不同浓度的右旋糖酐 T70 (0.2%、 0.4%、 0.6%、 0.8%、 1.0%、 1.2%、 1.4%、 1.6%、 1.8%、 2.0%)作为底物,在 50 ℃下反应 5 min。在 540 nm 处测量反应溶液的吸光度, 测定反应的初始速率, 使用 Lineweaver-Burk 图计算酶的 K_m 和 k_{cato}

1.7 变体酶的三维结构预测

变体酶的三维结构以右旋糖酐酶 Aodex (PDB ID: 6NZS)为模板通过 Swiss-Model (https://swissmodel.expasy.org)同源建模得到。

1.8 数据分析

每个实验独立重复 3 次。数据以 x ± s 表 示,并通过 t 检验进行分析。P≤0.05 时具有统 计学意义。

2 结果与分析

2.1 突变位点的选择及突变体的构建

Ren 等^[21]报道了右旋糖酐酶 Aodex 的晶体 结构, Asp420 和 Asp439 分别作为催化酸碱参与 底物的识别及 α-1,6 糖苷键的水解。同为 GH49 家族的 Dex49A 在催化氨基酸附近存在"底物通 道",当 Tyr463 与 Asp317 间形成氢键作用力 时,二者间会形成一个"隧道状的结合位点", 便于底物的进出,从而有利于底物与催化域的 结合^[22],—Aodex 中同样也存在这样的"底物通 道"和"隧道状结合位点"。

利用 CAVER 3.0^[23]绘制了 Aodex 中"底物通 道"的位置和形状,类比于右旋糖酐酶 Dex49A, 标注出了参与形成"隧道状结合位点"的氨基酸, 如图1所示。本研究选择了参与形成"隧道状结合

图1 WT中的底物通道及隧道状结合位点形状及 位置示意图 绿色为底物通道部分,蓝色为隧 道状结合位点部分,图中标注的为参与形成隧道 状结合位点的氨基酸

Figure 1 Schematic diagram of the shape and location of substrate tunnel and tunnel like binding sites in WT. The green part represents the substrate tunnel, and the blue part represents the tunnel like binding site. The amino acids involved in forming the tunnel like binding site have been labeled in the figure. 位点"的 5 个氨基酸 Ala356、Ser357、Asn358、 His360、Trp507 作为分子改造的位点,利用 Discovery Studio^[19]对 5 个位点分别进行虚拟饱 和突变(表 2),在此基础上选取每个位点中最稳 定的突变体进行构建,成功得到 A356G、 S357W、N358A、H360Y、W507Y 共 5 个单点 突变体。

2.2 单点突变对于酶活的影响

采用镍柱分别对WT及5个单点突变体进行 了亲和纯化。图2表示纯化后WT及部分单点突 变体的 SDS-PAGE 结果,WT 及突变体的分子 量均为 69.9 kDa,条带大小与理论相符,表明 各突变体均纯化成功。

在相同条件下测定了 WT 及各突变体的比活力,结果如图 3 所示。5 个单点突变体中,共有 3 个显示了较好的活性。其中突变体 W507Y 展示出了最高的比活力,为 WT 的 3.00 倍。A356G 的比活力为 WT 的 2.00 倍, S357W 的比活力为 WT 的 1.20 倍。N358A 的酶活有所降低,仅为 WT 的 50%,而 H360Y 的活性几乎完全丧失。

2.3 饱和突变对于酶活的影响

对单点突变得到的酶活最高的 W507Y 突变体所在的 507 位进行饱和突变。对饱和突变体进行镍柱纯化, SDS-PAGE结果如图4所示,饱和突变体均纯化成功。在相同条件下测定了WT 和各突变体的比活力,结果如图 5 所示。

表 2 虚拟饱和突变结果

Table 2 Virtual saturation mutation results	5
---	---

Index	Mutation	Mutation energy (kcal/mol)	Effect
1	Ala356>Gly	-0.92	Stabilizing
2	Ser357>Trp	-0.58	Stabilizing
3	Asn358>Ala	-0.61	Stabilizing
4	His360>Tyr	-1.26	Stabilizing
5	Trp507>Tyr	-0.78	Stabilizing

除单点突变得到的 W507Y 外, 饱和突变还 成功得到了另一个突变体 W507F, 其比活力是 WT 的 1.28 倍。而其余突变体的活力均有不同 程度的降低。

2.4 突变对于酶学性质的影响

单点突变得到的5个突变体中,有3个突变体表现出了比活力的提高,饱和突变得到的突

图 2 镍柱纯化 WT 及单点突变体的 SDS-PAGE 分析 M: 蛋白质标准分子量; 泳道 1-4 分别为 WT、A356G、S357W 和 W507Y 纯化后的蛋白结果 Figure 2 SDS-PAGE analysis for nickel column purification of WT and single point mutants. M: Protein standard molecular weight; Lane 1-4 show the purified protein results of WT, A356G, S357W, and W507Y, respectively.

Figure 3 Schematic diagram of relative enzyme activity of WT and single point mutants.

图 4 饱和突变体的 SDS-PAGE 分析 M: 蛋白质标准分子量; 泳道 1 代表 WT, 泳道 2–20 代表各饱 和突变体

Figure 4 SDS-PAGE analysis for saturated mutants. M: Protein standard molecular weight; Lane 1 represent WT; Lane 2–20 represent the saturation mutants.

图 5 WT 及饱和突变体的相对酶活

Figure 5 Relative activity of WT and saturated mutants.

变体中额外得到了一个比活力有所提高的突变体。因此对这 4 个突变体进行了酶学性质的测定。图6展示了WT和各突变体的最适温度和在 50 ℃下的温度稳定性。

除 W507F 外,其余突变体的最适温度均为 55 ℃,相较于 WT 提高了 5 ℃,A356G、 S357W 和 W407Y 在 45-60 ℃下均能保持较高 的酶活性;而 W507F 的温度敏感性较高,当 温度达到 60 ℃时,酶活急剧下降;当温度提 升至 65 ℃时,W507Y 和 W507F 的酶活几乎全 部丧失。

四个突变体在 50 ℃下均表现出了高于 WT 的稳定性。WT 在 50 ℃下孵育 1 h 后,酶活仅

图 6 WT 和各单点突变体的最适温度和温度稳定 性 A: WT 和各单点突变体的最适温度.B: WT 和各单点突变体在 50 ℃下的温度稳定性

Figure 6 Optimal temperature and temperature stability of WT and each single point mutant. A: Schematic diagram of optimal temperature for WT and various single point mutants. B: Schematic diagram of temperature stability of WT and various single point mutants at 50 °C.

剩余 15%左右, W507Y 和 W507F 在 50 ℃下表 现出了最好的稳定性, 孵育 1 h 后, 酶活仍剩余 80%以上, A356G 和 S357W 在 50 ℃下孵育 1 h, 酶活剩余 60%以上。这表明对催化域附近 loop 环上的 356、357、507 位点进行突变可以有效 改善酶的热稳定性。

表 3 展示了 WT 和突变体的动力学常数,结 果显示,4 个突变体的 Km 值均有不同程度的降低,表明4个突变体具有比WT更好的底物亲和 力,其中对底物亲和力最好的是W507Y,其Km 值降低了 54%。4个突变体的kcat/Km 值均有不同 程度的增加,表明这4 个突变体的催化能力均 高于 WT,水解底物的能力均有所增加。其中 *k*_{cat}/*K*_m值最大的是 W507Y,为 WT 的 9.98 倍。

2.5 突变体的分子对接及结构分析

以WT为模板,利用Swiss-Model在线网站 对酶活有所提高的 4 个突变体分别进行同源建 模,进行分子对接分析和结构分析。

WT 和 A356G 的分子对接结果如图 7 所

表 3 WT 和各突变体的动力学常数

Table 5 Dynamic constants of wir and various muta

Туре	$K_{\rm m} ({\rm mmol/L})$	$k_{\text{cat}} (\text{s}^{-1})$	$k_{\text{cat}}/K_{\text{m}} \text{ (mmol/(L \cdot s))}$
WT	5.89±0.17	9.06±0.6	$1.54{\pm}0.05$
A356G	4.27 ± 1.1	50.01±1.3	$11.71{\pm}0.4$
S357W	5.22±1.1	$47.40{\pm}1.1$	$9.08{\pm}0.2$
W507Y	2.72 ± 0.56	41.83±0.8	15.38±0.6
W507F	3.67 ± 0.56	19.56±0.7	$8.08{\pm}0.3$

图 7 WT、A356G 及 S357W 的分子对接结果示意图 A: WT、A356G 及 S357W 分子对接后配体的 位置及形状. 青色、黄色和红色棒状结构分别为与 WT、A356G、S357W 对接后配体的形状和位置,品 红色为空腔 3 的位置. B-D: WT(B)、A356G(C)、S357W(D)分别与异麦芽三糖配体的对接结果. 灰白色 氨基酸为与配体产生氢键作用的氨基酸,氢键用绿色虚线表示

Figure 7 Diagram of molecular docking results of WT, A356G and S357W. A: The position and shape diagram of the ligand of WT, A356G and S357W after molecular docking. The blue, yellow, and red-shaped structures represent the shape and position of ligands after docking with WT, A356G, and S357W, respectively, while the magenta represents the position of cavity 3. B–D: Schematic diagram of the docking results of WT (B), A356G (C), and S357W (D) with isomaltotriose ligands, respectively. Gray white amino acids are amino acids that for hydrogen bonds with ligands, with hydrogen bonds indicated by green dashed line.

示。356 位的丙氨酸突变为甘氨酸后,配体异 麦芽三糖的位置向空腔 3 延伸(图 7A)。除此之 外,A356G 与配体对接后,配体与周围氨基酸 产生了更多的氢键作用力,这些氢键作用力主 要集中在 His391、Ser392 和 Phe393 中,其中 His391 是组成空腔 3 的氨基酸,Ser392 和 Phe393 则是空腔 3 附近的氨基酸。空腔 3 中的 Gln418 和 Asp420 发挥催化作用,而空腔 3 的整 体部分则承担着容纳底物及排出产物的作用。 356 位氨基酸突变后配体与空腔 3 产生了更多的 相互作用力,导致 A356G 具有更高的底物亲和 力,表现出比活力和催化效率提高。

S357W 与配体对接后,虽然配体的位置并 没有向空腔 3 延伸,但与组成空腔 3 的 His391 产生了氢键作用力,同时与周围的氨基酸也产 生了更多的作用力,从而导致 S357W 表现出了 更高的底物亲和力、更高的比活力和更快的催 化速率。

在饱和突变的酶活测定结果中发现,所有的 饱和突变体中,只有W507Y和W507F的比活力 有所增加,其余突变体则是表现出了不同程度 的酶活的降低。而比活力有所增加的突变体中, 507位氨基酸均是含有苯环的芳香族氨基酸。

目前有研究发现,在GH31^[24]和GH66^[25]家 族右旋糖酐酶的催化域附近存在一个色氨酸 (tryptophan, Trp)或酪氨酸(tyrosine, Tyr),它们 在游离酶和配体-酶复合物的晶体结构中表现出 了极大的构象差异。这些氨基酸均是具有大侧 链-苯环的芳香族氨基酸,在催化过程中发挥着 "转运"的作用。酶分子的催化域和底物结合发 挥水解作用后,这些氨基酸的侧链便会发生大 幅度的翻转,连带着附近相关氨基酸发生位 移,使得催化空腔发生改变,便于水解后产物 和水分子排出。

507位的色氨酸在Aodex中也是发挥着类似 的作用,因此突变成同样含有苯环侧链的酪氨 酸和苯丙氨酸(phenylalanine, Phe)后比活力没有 下降; 而突变成其余没有芳香侧链的氨基酸 后,这种"转运功能"丧失,使突变体的酶活降 低甚至丧失。其中,色氨酸被突变为苯丙氨酸 后,大侧链苯环仍旧发挥"转运"功能,507位与 357位氨基酸间的距离由 6.5 Å 缩短为 6.2 Å, 距 离的缩短导致分子间相互作用力增强,更有利 于底物的进入和产物的排出。而色氨酸被突变 成酪氨酸后,"转运作用"依旧存在,同时,侧链 上增加的酚羟基使 507 位氨基酸更易与"隧道状 结合位点"另一侧的Ser357形成氢键,二者间的 距离由 6.5 Å 缩短为 5.5 Å, 分子间的相互作用 增强(图 8),更有利于底物的进入和产物的排 出,从而大幅提高酶活。

图 8 WT、W507Y、W507F "隧道状结合位点"的氨基酸分布示意图

Figure 8 Schematic diagram of amino acid distribution at the tunnel like binding sites of WT, W507Y, and W507F.

3 讨论与结论

本研究从右旋糖酐酶 Aodex 入手, 基于酶 的三维结构分析,对 Aodex"隧道状结合位点" 的5个氨基酸进行定点突变,成功获得了3个比 活力有所提高的突变体 A356G、S357W 和 W507Y, 其比活力分别为 WT 的 2.00、1.20 和 3.00 倍。k_{cat}/K_m值分别增加了 6.61、4.89 和 8.98 倍,在最适温度、温度稳定性方面均有不同程 度的提升。在此基础上,对比活力表现最好的 507位点进行饱和突变,成功得到了另一个突变 体 W507F, 其比活力是 WT 的 1.28 倍, k_{cat}/K_m 值增加了 2.47 倍,最适温度和温度稳定性相较 于WT也有所提升。4个突变体的分子对接和三 维结构分析显示, A356G 和 S357W 比活力增加 是因为配体与周围的氨基酸,特别是空腔3中 的氨基酸产生了更多的相互作用,而W507Y和 W507F比活力增加是因为突变后与"隧道状结合 位点"另一侧氨基酸的距离缩短,相互作用增 强,底物催化和产物排出的速率加快。本研究 为改造右旋糖酐酶、提高酶活和催化效率提供了 思路和理论依据。

REFERENCES

- 刘乐,丁一,王紫玄,房耀维,王淑军,吕明生.海洋 氧化节杆菌 KQ11 右旋糖苷酶催化位点关键氨基酸[J]. 食品科学,2019,40(6):113-120.
 LIU L, DING Y, WANG ZX, FANG YW, WANG SJ, LÜ MS. Dextranase from *Arthrobacter oxydans* KQ11: identification of key residues in catalysis[J]. Food Science, 2019, 40(6):113-120 (in Chinese).
- [2] 张洪斌, 吴定涛, 黄丽君, 胡雪芹, 王旭. 一株产右旋 糖酐酶青霉的分离及酶的纯化和性质[J]. 微生物学 报, 2011, 51(4): 495-503.
 ZHANG HB, WU DT, HUANG LJ, HU XQ, WANG X. Purification, characterization of an extracellular dextranase from an isolated *Penicillium* sp.[J]. Acta Microbiologica Sinica, 2011, 51(4): 495-503 (in Chinese).

- [3] 刘乐,丁一,王淑军,房耀维,吕明生.海洋氧化节杆 菌 KQ11 右旋糖酐酶清除甘蔗制糖中右旋糖酐的研究[J]. 食品研究与开发,2019,40(2): 7-12.
 LIU L, DING Y, WANG SJ, FANG YW, LÜ MS. Dextrans removal from sugarcane juice using dextranase from marine bacterium *Arthrobacter oxydans* KQ11[J]. Food Research and Development, 2019, 40(2): 7-12 (in Chinese).
- [4] EGGLESTON G, MONGE A. Optimization of sugarcane factory application of commercial dextranases[J]. Process Biochemistry, 2005, 40(5): 1881-1894.
- [5] 仇元新,方绍伟,秦宗长,胡涛.右旋糖苷酶与氟化钠 对口腔多菌种生物膜形成的影响[J]. 解放军预防医学 杂志,2016,34(4):483-486. QIU YX, FANG SW, QIN ZC, HU T. Effects of exogenous dextranase and sodium fluoride on formation of multispecies biofilms[J]. Journal of Preventive Medicine of Chinese PLA, 2016, 34(4): 483-486 (in Chinese).
- [6] 喻譞,田媛媛,杨英明,房宏志,胡涛,杨惠.不同蔗 糖浓度下外源性右旋糖酐酶协同氟化钠对 S. Mutans 生物膜形成的影响[J].临床口腔医学杂志,2017, 33(6): 326-330.
 YU X, TIAN YY, YANG YM, FANG HZ, HU T, YANG H. Effects of exogenous dextranase and sodium fluoride on biofilm formation of Streptococcus mutans in different sucrose concentration medium[J]. Clinical Stomatology, 2017, 33(6): 326-330 (in Chinese).
- [7] 李配婷,范广宇,蓝雨丝,刘楠楠. 右旋糖酐酶结构、性质及其应用研究进展[J]. 食品工业科技, 2022, 43(19): 471-478.
 LI PT, FAN GY, LAN YS, LIU NN. Research progress on the structure, properties and application of dextranase[J]. Science and Technology of Food Industry, 2022, 43(19): 471-478 (in Chinese).
- [8] 张方. 右旋糖酐 40 葡萄糖注射液在前循环缺血性脑 卒中治疗中的应用效果[J]. 河南医学研究, 2021, 30(1): 101-103.
 ZHANG F. Application of spiranhydride 40 glucose injection in the treatment of anterior circulation ischemic stroke[J]. Henan Medical Research, 2021,
- [9] DAI LY, NIU TL, LUO RJ, ZHANG LG, ZHANG SQ, KANG Y, CHI J, FENG XL, SHI JZ, TIAN Y, GAO BC, LI ZJ. Improvement of cannabidiolic acid synthetase activity through molecular docking and site-directed mutagenesis[J]. Industrial Crops and

30(1): 101-103 (in Chinese).

Products, 2024, 208: 117860.

- [10] MIAO HB, XIANG X, HAN NY, WU Q, HUANG ZX. Improving the thermostability of serine protease PB92 from *Bacillus alcalophilus via* site-directed mutagenesis based on semi-rational design[J]. Foods, 2023, 12(16): 3081.
- [11] ZHANG BJ, CHI HB, SHEN J, TAO Y, LU ZX, LU FX, ZHU P. Improved catalytic performance and molecular insight for lipoxygenase from *Enterovibrio norvegicus via* directed evolution[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1305582.
- [12] KIM YM, SHIMIZU R, NAKAI H, MORI H, OKUYAMA M, KANG MS, FUJIMOTO Z, FUNANE K, KIM D, KIMURA A. Truncation of N- and C-terminal regions of *Streptococcus* mutans dextranase enhances catalytic activity[J]. Applied Microbiology and Biotechnology, 2011, 91(2): 329-339.
- [13] 董冬雪,王焕宇,王雪莲,张皓,魏桐,胡经飞,吕明生,王淑军.海洋右旋糖酐酶分子改造及其催化 性质研究[J]. 江苏海洋大学学报(自然科学版), 2021, 30(2): 16-21.
 DONG DX, WANG HY, WANG XL, ZHANG H, WEI T, HU JF, LÜ MS, WANG SJ. Research on molecular modification of marine dextranase and its catalytic properties[J]. Journal of Jiangsu Ocean University (Natural Science Edition), 2021, 30(2): 16-21 (in Chinese).
- [14] YANG L, ZHOU ND, TIAN YP. Characterization and application of dextranase produced by *Chaetomium globosum* mutant through combined application of atmospheric and room temperature plasma and ethyl methyl sulfone[J]. Process Biochemistry, 2019, 85: 116-124.
- [15] KLAHAN P, OKUYAMA M, JINNAI K, MA M, KIKUCHI A, KUMAGAI Y, TAGAMI T, KIMURA A. Engineered dextranase from *Streptococcus* mutans enhances the production of longer isomaltooligosaccharides[J]. Bioscience, Biotechnology, and Biochemistry, 2018, 82(9): 1480-1487.
- [16] CHEN JJ, LIANG X, CHEN TJ, YANG JL, ZHU P. Site-directed mutagenesis of a β-glycoside hydrolase from *Lentinula edodes*[J]. Molecules, 2018, 24(1): 59.
- [17] LIN QR, WANG HY, XU YY, DONG DX, MIAO QZ, LU J, LYU MS, WANG SJ. Study of key amino acid residues of GH66 dextranase for producing high-degree polymerized isomaltooligosaccharides and

improving of thermostability[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 961776.

- [18] WEI Z, CHEN JL, XU LX, LIU NN, YANG J, WANG SJ. Improving the thermostability of GH49 dextranase AoDex by site-directed mutagenesis[J]. AMB Express, 2023, 13(1): 7.
- [19] PAWAR SHRAVANI S, ROHANE SACHIN H. Review on discovery studio: an important tool for molecular docking[J]. Asian Journal of Research in Chemistry, 2021, 14(1): 1-3.
- [20] RU WJ, XIA BB, ZHANG YX, YANG JW, ZHANG HB, HU XQ. Development of thermostable dextranase from *Streptococcus* mutans (SmdexTM) through *in silico* design employing B-factor and Cartesian-ΔΔG[J]. Journal of Biotechnology, 2022, 360: 142-151.
- [21] REN W, LIU L, GU LD, YAN WL, FENG YL, DONG DX, WANG SJ, LYU MS, WANG CH. Crystal structure of GH49 dextranase from *Arthrobacter* oxidans KQ11: identification of catalytic base and improvement of thermostability using semirational design based on B-factors[J]. Journal of Agricultural and Food Chemistry, 2019, 67(15): 4355-4366.
- [22] LARSSON AM, ANDERSSON R, STÅHLBERG J, KENNE L, JONES TA. Dextranase from *Penicillium minioluteum*: reaction course, crystal structure, and product complex[J]. Structure, 2003, 11(9): 1111-1121.
- [23] PRLIC A, CHOVANCOVA E, PAVELKA A, BENES P, STRNAD O, BREZOVSKY J, KOZLIKOVA B, GORA A, SUSTR V, KLVANA M, MEDEK P, BIEDERMANNOVA L, SOCHOR J, DAMBORSKY J. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures[J]. PLoS Computational Biology, 2012, 8(10).
- [24] TSUTSUMI K, GOZU Y, NISHIKAWA A, TONOZUKA T. Structural insights into polysaccharide recognition by *Flavobacterium johnsoniae* dextranase, a member of glycoside hydrolase family 31[J]. The FEBS Journal, 2020, 287(6): 1195-1207.
- [25] SUZUKI N, KIM YM, FUJIMOTO Z, MOMMA M, OKUYAMA M, MORI H, FUNANE K, KIMURA A. Structural elucidation of dextran degradation mechanism by *Streptococcus* mutans dextranase belonging to glycoside hydrolase family 66[J]. The Journal of Biological Chemistry, 2012, 287(24): 19916-19926.

(本文责编 郝丽芳)