Jul. 25, 2022, 38(7): 2581-2593 ©2022 Chin J Biotech, All rights reserved

 •合成生物技术
 •

重组大肠杆菌全细胞催化高效合成胆绿素

闫思翰, 邵明龙, 徐美娟, 张显, 杨套伟, 饶志明

江南大学 生物工程学院 工业生物技术教育部重点实验室, 江苏 无锡 214122

闫思翰,邵明龙,徐美娟,张显,杨套伟,饶志明.重组大肠杆菌全细胞催化高效合成胆绿素.生物工程学报,2022,38(7):2581-2593.YAN SH, SHAO ML, XU MJ, ZHANG X, YANG TW, RAO ZM. Efficient production of biliverdin through whole-cell

biocatalysis using recombinant Escherichia coli. Chin J Biotech, 2022, 38(7): 2581-2593.

摘 要: 胆绿素作为一种重要的保护细胞的抗氧化剂,其传统生产方法主要由胆红素的化学氧化 产生,但过程复杂、纯度不高。本研究提出了一种高效、绿色、安全的生产胆绿素的方法。通过 比较,筛选得到了破伤风梭状芽孢杆菌 (Clostridium tetani) 来源的血红素加氧酶 (heme oxygenase, HO) 基因,并成功构建具备转化血红素合成胆绿素能力的重组大肠杆菌 (Escherichia coli) BL21/pETDuet-hoCt。在 pH 7.0、35 ℃、100 mg/L 底物浓度条件下胆绿素产量为 32.9 mg/L。为提 高还原力,构建了基于谷氨酸脱氢酶 (glutamate dehydrogenase, GdhA) 的 NADPH 辅酶再生系统, 获得重组菌 E. coli BL21/pETDuet-gdhAEc-hoCt, 胆绿素产量为 71.5 mg/L。此外,通过引入膜表面 展示系统,构建重组菌 E. coli BL21/pETDuet-gdhAEc-blc/hoCt, 缩短转化时间的同时,胆绿素产量 进一步得到提高,达到 76.3 mg/L,是目前生物法合成胆绿素的最高研究报道。本研究为胆绿素的 绿色生产奠定了良好的基础。

关键词:血红素加氧酶;谷氨酸脱氢酶;锚定蛋白;胆绿素 IXα;生物催化;合成生物学

Received: February 24, 2022; Accepted: April 11, 2022

Supported by: National Key Research and Development Program of China (2019YFA0905300); National Natural Science Foundation of China (31700041); Tianjin Synthetic Biotechnology Innovation Capability Enhancement Action (TSBICIP-KJGG-001-14); Science and Technology Project of Xinjiang Production and Construction Corps (2019AB009); Youth Fund for Basic Scientific Research Program of Jiangnan University (JUSRP12017)

Corresponding author: RAO Zhiming. E-mail: raozhm@jiangnan.edu.cn

基金项目: 国家重点研发计划 (2019YFA0905300); 国家自然科学基金 (31700041); 天津市合成生物技术创新能力提 升行动项目 (TSBICIP-KJGG-001-14); 新疆生产建设兵团科技攻关计划项目 (2019AB009); 江南大学基本科研计划青 年基金 (JUSRP12017)

Efficient production of biliverdin through whole-cell biocatalysis using recombinant *Escherichia coli*

YAN Sihan, SHAO Minglong, XU Meijuan, ZHANG Xian, YANG Taowei, RAO Zhiming

Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China

Abstract: Biliverdin is an important cellular antioxidant. Traditionally, biliverdin is produced by chemical oxidation of bilirubin, which is a complex process and the final product is of low purity. Here we report an efficient, green and safe process for biotechnological production of biliverdin. A heme oxygenase (HO) gene from *Clostridium tetani* was screened, and a recombinant strain *Escherichia coli* BL21/pETDuet-*hoCt* with the ability of transforming heme into biliverdin was constructed. A biliverdin yield of 32.9 mg/L from 100 mg/L substrate was achieved under pH 7.0 and 35 °C. In order to improve the supply of reducing power, an NADPH regeneration system using glutamate dehydrogenase (GdhA) was constructed, resulting in a recombinant strain *E. coli* BL21/pETDuet-*gdhAEc-hoCt* which was capable of producing 71.5 mg/L biliverdin. Moreover, through introduction of a membrane surface display system, a recombinant strain *E. coli* BL21/pETDuet-*gdhAEc-blc/hoCt* was constructed to shorten the transformation time, and the production of biliverdin was further increased to 76.3 mg/L, this is the highest titer of biosynthesized biliverdin reported to date, and the research may thus facilitate the green production of biliverdin.

Keywords: heme oxygenase; glutamate dehydrogenase; anchor protein; biliverdin IXα; biocatalysis; synthetic biology

胆绿素 (biliverdin, BV),又称去氢胆红素, 是一种四吡咯色素,为血红素分解代谢的产物, 由 BVIXα、BVIXβ、BVIXγ和 BVIXδ等异构体 组成^[1]。而 BVIXα被认为是一种新型的可回收 利用的抗氧化剂,故胆绿素一词通常特指 BVIXα^[2]。在人体中,谷胱甘肽通过参与谷胱 甘肽循环,以保护水溶性蛋白免受活性氧 (reactive oxygen species, ROS)的伤害,而胆绿 素作为胆绿素-胆红素循环的一个组成部分,同 样可以保护脂质免受 ROS 的伤害^[3]。在医学领 域,胆绿素同样引起了人们的广泛关注,包括 抗病毒药物的制备^[4]、炎症调节剂^[5],以及治疗 肺移植损伤^[6]或肝脏缺血再灌注损伤的药物^[7]。 此外,它还被认为是材料科学^[8]、光遗传学^[9] 和合成生物学^[10]中用于光敏色素的各种发色基 团的重要前体。

目前, 商业胆绿素是从哺乳动物胆汁中提 取的胆红素通过化学氧化的方法获得的^[11-12]。 胆红素在酸性条件下通过化学试剂 FeCl₃、苯醌 或 H₂O₂氧化脱氢的方法制备胆绿素, 而大量使 用化学试剂无疑会带来污染环境、杂质过多和 产生胆绿素异构体^[13]等问题。与传统的化学合 成不同, 利用微生物细胞工厂的生物生产方法 一直被认为是生产药品、材料、燃料和各种化

2583

学品的最佳来源^[14]。此前也报道了几种利用 E. coli和谷氨酸棒杆菌 (Corynebacterium glutamicum) 生产胆绿素的方法, Chen 等^[15]通过在 E. coli 中异源表达集胞藻 (Synechocystis sp. PCC6803) 来源的 ho 基因, 通过发酵条件的优化从头合成 胆绿素, 但该方法受到内源性血红素合成速率 的限制,产量仅为 23 mg/L; 梅建凤等^[16]在 Escherichia coli 中异源表达 Synechocystis sp. PCC6803 来源的 ho 基因,通过全细胞转化的方 法制备胆绿素,但由于 HO 酶活力较低,胆绿素 摩尔转化率仅为 34%; Seok 等^[17]通过在 C. glutamicum 中过表达血红素合成途径中的限速酶 并进行模块优化,以提高前体血红素的产量, 然后强化C.glutamicum来源的HO推动碳代谢流 生产胆绿素,但该方法同样受到内源性血红素合 成速率的限制。此外,有研究团队利用哺乳动物 细胞或 E. coli 生产藻胆素, 但由于藻胆素前体胆 绿素的积累太少,导致藻胆素产量过低^[9,18]。因 此,急需开发一种高效的生产胆绿素的方法。

为满足未来胆绿素在药物制备中的应用需 求,本研究提出了一种高效、绿色、反应温和 的胆绿素制备方法。通过对不同来源的 HO 进 行酶学性质研究,得到一株破伤风梭状芽孢杆 菌 (Clostridium tetani) 来源的酶活力较高的菌 株 E. coli BL21/pETDuet-hoCt。通过对转化条件 的进一步优化和研究发现, 辅酶 NADPH 在转 化过程中扮演着重要角色, 而NADP⁺依赖型的 glutamate dehydrogenase (GdhA, EC 1.4.1.4) 参 与谷氨酸分解代谢产生 α-酮戊二酸和 NADPH^[19],鉴于此,本研究在大肠杆菌中共表 达来源于 C. tetani 的 HO 和 E. coli 来源的 GdhA, 使用该重组菌在仅添加底物血红素和 辅底物谷氨酸的条件下即可高效生产胆绿素。 为提高转化效率,引入膜表面展示系统,缩短 转化时间的同时,转化率又得到进一步提高,

为胆绿素的商业化放大生产提供了参考。

1 材料与方法

1.1 材料

1.1.1 菌株和质粒

本实验中用于质粒保存和蛋白表达的宿主 菌株均为本实验室保存的 E. coli BL21(DE3)。 Clostridium tetani、Synechocystis sp. PCC6803、 褐家鼠 (Rattus norvegicus)、人 (Homo sapiens) 和 Corynebacterium glutamicum ATCC 13032来 源的 heme oxygenase (HO) 基因序列,由苏州 金唯智生物科技有限公司合成,同时根据大肠 杆菌中密码子的偏好性进行了优化,连接至载 体 pETDuet 的 Nde I -Xho I 位点,构建了表达 质粒 pETDuet 的 Nde I -Xho I 位点,构建了表达 质粒 pETDuet-hoCt、pETDuet-hoSP、pETDuethoRn、pETDuet-hoCg、pETDuet-hoHo。以质粒 pETDuet-hoCt 为模板构建重组质粒 pETDuetgdhA-hoCt。本研究所用到的基因信息见表 1。

1.1.2 酶和试剂

*Eco*R I、*Hind* III限制性内切酶、DNA 聚 合酶和*Dpn* I等购自 TaKaRa公司;高保真 PCR 酶、同源重组酶克隆试剂盒、PBS 磷酸盐试剂 均购自南京诺维赞生物科技有限公司;琼脂糖 凝胶 DNA 回收试剂盒、小量质粒提取试剂盒、 细菌 DNA 基因组提取试剂盒均购自上海捷瑞生 物工程有限公司;氨苄霉素、异丙基- -D-硫代 半乳糖苷 (isopropyl- -D-thiogalactoside, IPTG) 均购自生工生物工程 (上海)股份有限公司;氯

Table 1	Gene	used	in	this	study
---------	------	------	----	------	-------

Gene name	Length (bp)	Protein	
ho (Clostridium tetani)	636	WP_035111656	
ho (Synechocystis sp.	723	WP_010871494	
PCC6803)			
ho (Rattus norvegicus)	804	NP_036712	
ho (Corynebacterium	648	WP_011014970	
glutamicum ATCC 13032)			
ho (Homo sapiens)	876	NP_002124	
gdhA (E. coli)	1 344	U00096	

化血红素购自西安雅图生物科技有限公司;细菌膜 蛋白提取试剂盒购自南京莱富赛生物科技有限 公司; Desalting 重力脱盐柱购自武汉晶诚生物 科技股份有限公司。

1.1.3 培养基

LB液体培养基 (g/L): 胰蛋白胨 10, 酵母粉 5, NaCl 10。

LB 固体培养基 (g/L): 胰蛋白胨 10, 酵母粉 5, NaCl 10, 琼脂粉 2。

GY 培养基 (g/L)^[16]: 甘油 20, 酵母粉 20, (NH₄)₂SO₄ 5, NaCl 5, Na₂HPO₄ 15, KH₂PO₄ 3, MgSO₄ 0.5。

1.1.4 主要仪器

PCR 仪, Eppendorf 公司; UVP 凝胶成像 仪, 上海天能; 核酸电泳系统, 北京市六一仪 器厂; 蛋白电泳系统, Bio-Rad 公司; 赛默飞 U3000 高效液相色谱仪, 赛默飞世尔科技有限 公司; 5L发酵罐, 迪必尔生物工程 (上海) 有限公司。

1.2 方法

1.2.1 基因的提取和引物的设计

大肠杆菌基因组的提取按照细菌基因组提 取试剂盒的方法完成。按照 NCBI 上已有的大 肠杆菌来源的 gdhA 基因和 blc 基因序列设计引 物,引物序列参见表 2。

1.2.2 重组菌的构建

将人工合成的重组载体 pETDuet-hoCt、 pETDuet-hoSP、pETDuet-hoRn、pETDuet-hoCg 和 pETDuet-hoHo 分别转化至 E. coli BL21(DE3) 感受态细胞中, 37 ℃孵育 2 h, 涂布于氨苄抗 性的 LB 固体平板, 37 ℃过夜培养。菌落 PCR 筛选鉴定后挑取阳性转化子至氨苄抗性的 LB液 体培养基中培养 10–12 h, 试剂盒抽提得到重组 质粒送至苏州金唯智生物科技有限公司测序,验 证重组菌株是否构建成功。使用反向 PCR 引物 mcs1-F和 mcs1-R 对其进行线性化, 扩增结束后用 Dpn I 消化 PCR 产物中的模板之后回收备用。

以 E. coli BL21(DE3) 基因组为模板,使用引物 mcs1-gdhA-F 和 mcs1-gdhA-R 扩增 gdhA 基因, 回收的扩增产物与线性化的质粒 pETDuet-hoCt 按照一定比例混合用同源重组试剂盒进行连 接。将连接产物转化至 E. coli BL21(DE3) 感受 态细胞中,37 ℃孵育2h,涂布于氨苄抗性的 LB 固体平板,37 ℃过夜培养。菌落 PCR 筛选 鉴定后挑取阳性转化子至氨苄抗性的 LB 液体 培养基中培养 10-12h,菌落 PCR 筛选鉴定后 挑取阳性转化子至 LB 液体培养基中培养,提 取得到重组质粒 pETDuet-gdhA-hoCt,送至苏州 金唯智生物科技有限公司测序,验证重组菌株 是否构建成功。使用反向 PCR 引物 linker-ho-F 和 mcs2-R 对其进行线性化,扩增结束后用 Dpn I 消化 PCR 产物中的模板之后回收备用。

以 E. coli BL21(DE3) 基因组为模板,使用 引物 mcs2-blc-F 和 linker-blc-R 扩增 blc 基因, 回收的扩增产物与线性化的质粒 pETDuetgdhA-hoCt按照一定比例混合用同源重组试剂盒 进行连接。将连接产物转化至 E. coli BL21(DE3) 感受态细胞中,37℃孵育 2 h,涂布于氨苄抗性 的 LB 固体平板,37℃过夜培养。菌落 PCR 筛 选鉴定后挑取阳性转化子至氨苄抗性的 LB 液体 培养基中培养 10–12 h,菌落 PCR 筛选鉴定后挑 取阳性转化子至 LB 液体培养基中培养,提取得 到重组质粒 pETDuet-gdhA-blc/ hoCt,送至苏州 金唯智生物科技有限公司测序,验证重组菌株是 否构建成功。使用反向 PCR 引物 mcs2-F 和 linker2-ho-R 对其进行线性化,扩增结束后用 Dpn I 消化 PCR 产物中的模板之后回收备用。

以质粒 pETDuet-gfp 为模板,使用引物 linker2-gfp-F 和 mcs2-gfp-R 扩增 gfp 基因,回收 的扩增产物与线性化的质粒 pETDuet-gdhA-blc/ hoCt 按照一定比例混合用同源重组试剂盒进行 连接。将连接产物转化至 E. coli BL21(DE3) 感受 态细胞中, 37 ℃孵育 2 h, 涂布于氨苄抗性的 LB 固体平板, 37 ℃过夜培养。菌落 PCR 筛选鉴定 后挑取阳性转化子至氨苄抗性的 LB 液体培养基 中培养 10-12 h, 菌落 PCR 筛选鉴定后挑取阳性转化子至 LB 液体培养基中培养,提取得到重组 质粒 pETDuet-gdhA-blc/hoCt/gfp,送至苏州金唯智生物科技有限公司测序,验证重组菌株是否构建成功。本研究所使用的菌株和质粒参见表 2。

表 2 本研究中使用的引物、质粒及菌株

Table 2 Primer, plasmid and strain used in this study

Strains, plasmids and primers	Illustration	Sources
Strains		
E. coli BL21(DE3)	Cloning and expression of host	Laboratory stock
E. coli BL21/pETDuet	Harboring pETDuet	Laboratory stock
E. coli BL21/pETDuet-gfp	Harboring pETDuet-gfp	Laboratory stock
E. coli BL21/pETDuet-hoCt	Harboring pETDuet-hoCt	This work
E. coli BL21/pETDuet-hoSP	Harboring pETDuet-hoSP	This work
E. coli BL21/pETDuet-hoRn	Harboring pETDuet-hoRn	This work
E. coli BL21/pETDuet-hoCg	Harboring pETDuet-hoCg	This work
E. coli BL21/pETDuet-hoHo	Harboring pETDuet-hoHo	This work
<i>E. coli</i> BL21/pETDuet-gdhAEc	Harboring pETDuet-gdhAEc	This work
E. coli BL21/pETDuet-gdhAEc-hoCt	Harboring pETDuet-gdhAEc-hoCt	This work
E. coli BL21/pETDuet-gdhAEc-blc/hoCt	Harboring pETDuet-gdhAEc-blc/hoCt	This work
E. coli BL21pETDuet-gdhAEc-blc/hoCt/gfp	Harboring pETDuet-gdhAEc-blc/hoCt/gfp	This work
Plasmids	81 8 8 8 8 8 8 8 8	
pETDuet-gfp	pETDuet derivative with <i>gfp</i>	Laboratory stock
pETDuet-hoCt	pETDuet derivative with ho (C. tetani)	Gene synthesis
pETDuet-hoSP	pETDuet derivative with ho (Svnechocvstis sp. PCC6803)	Gene synthesis
pETDuet-hoRn	pETDuet derivative with ho (Rattus norvegicus)	Gene synthesis
pETDuet-hoCg	pETDuet derivative with ho (C. glutamicum)	Gene synthesis
pETDuet-hoHo	pETDuet derivative with ho (Homo sapiens)	Gene synthesis
pETDuet-gdhAEc	pETDuet derivative with gdhA (E. coli)	This work
pETDuet-gdhAEc-hoCt	pETDuet derivative with gdhA (E. coli) and ho (C. tetani)	This work
pETDuet-gdhAEc-blc/hoCt	pETDuet-gdhAEc-hoCt derivative with blc (E. coli)	This work
pETDuet-gdhAEc-blc/hoCt/gfp	pETDuet-gdhAEc-blc/hoCt derivative with gfp	This work
Primer name	Sequence $(5' \rightarrow 3')$	Size (bp)
mcs1-F	AAGCTTGCGGCCGCATAAT	19
mcs1-R	TGGATCCTGGCTGTGGTGAT	21
mcs2-F	CTCGAGTCTGGTAAAGAAACCGCTG	25
mcs2-R	CATATGTATATCTCCTTCTTATACTTA ACTA ATATACTA A	45
11052 10	GATGG	10
mcs1- <i>gdh4</i> -F	ATCACCACAGCCAGGATCCAATGGATCAGACATATTCT	51
	CTGGAGTCATTCC	01
mcs1- <i>gdhA</i> -R	AAGCATTATGCGGCCGCAAGCTTTTAAATCACACCCTG	45
	CGCCAGC	10
linker- <i>ho</i> -F	GGTCGGGAGGCGGTGGCTCCATGGAGAATACCTTTCT	50
	GAACGAAATCCGT	
linker2-ho-B	TCCGCCCGAGCCACCGCCACCCTTAAAGCGGTCGAAC	45
	TCCAGCTC	10
mcs2- <i>blc</i> -F	GTATAAGAAGGAGATATACATATGATGCGCCTGCTCCC	45
11052 010 1	TCTCGTT	10
linker- <i>blc</i> -R	GGAGCCACCGCCTCCCGACCCTCCGCCACCTGAGCCG	69
	CCACCTCCACTACCAGGCTGCTGTACCCAAAT	07
linker2- <i>9fn</i> -F	GGTGGCGGTGGCTCGGGCGGAGGTGGGTCGGGTGGCG	75
WP 1	GCGGATCAATGGGTAAGGGAGAAGAACTTTTCACTGGA	, -
mcs2- <i>ofn</i> -R	CGGTTTCTTTACCAGACTCGAGTTAGTGGTGGTGGTGG	70
$ \alpha r $	TGGTGTTTGTATAGTTCATCCATGCCATGTGT	

☎: 010-64807509

1.2.3 酶的表达与纯化

HO 的表达:从-80 ℃冰箱取出菌种,于氨 苄抗性的 LB 平板划线活化,挑取单菌落接入 含有氨苄青霉素 (50 µg/mL) 抗性的 10 mL LB 液体培养基中。37 ℃过夜培养后按照 1% (*V/V*) 的接种量转接至相同浓度抗生素的 100 mL LB 液体培养基中继续培养 2-3 h,待 *OD*₆₀₀ 达到 0.6-0.8 时加入终浓度为 0.5 mmol/L 的 IPTG, 30 ℃过夜培养。离心收集菌体,用 PBS 磷酸盐缓 冲液 (pH 7.4) 洗涤菌体 2 次后用 10 mL 缓冲液重 悬菌体。使用高压匀浆机破碎细胞, 12 000 r/min 低温离心 20 min,取上清得重组菌粗酶液。

HO 的纯化:将粗酶液用 0.22 μm 滤膜过滤 处理,通过 Ni-NTA 亲和层析,利用不同浓度 的咪唑进行梯度洗脱获得纯化蛋白。为降低因 咪唑与底物血红素反应而对转化效率的影响^[20], 将纯化后的蛋白再经脱盐柱处理,除去咪唑后 采用 Bradford 法测定蛋白浓度^[21]。

GdhA 与 HO 的共表达:方法同 HO 酶的表达。

1.2.4 酶活测定

HO 酶活测定 (表 3):反应体系包含 100 mg/L 血红素,菌体量 *OD*₆₀₀为 6–8 的 *E. coli* BL21(DE3) 细胞裂解液 60 mL,除去咪唑的纯酶 33 mg,反 应温度 35 ℃,搅拌转速 150 r/min, 45 µmol/L NADPH, pH 7.0,定容至 100 mL,转化 1 h, 沸水浴 5 min 终止反应。使用 HPLC 法检测酶 活,对检测条件稍作改进^[22]。高效液相色谱检 测条件为:UV 检测器,C₁₈柱 (Agilent 5 µm, 4.6 mm×250 mm),流动相为 (甲醇:乙腈: 水:乙酸=40:40:19:1),流速为 1 mL/min, 检测波长 370 nm,柱温 35 ℃,进样量 10 µL。 酶活力单位定义:每小时生成 1 nmol 胆绿素所 需要的酶量。

GdhA 酶活测定: 1.5 mL 反应体系包括 50 mmol/L L-谷氨酸, 0.1 mmol/L NADP⁺, 50 mmol/L 磷酸钾缓冲液, 纯酶 9.6 µg, 反应条件: 37 ℃, pH 7.0。通过监测 340 nm 处 NADPH 吸光值的变化测定酶活力, 酶活力单位定义: 每分钟生成 1 µmol NADPH 所需要的酶量。

1.2.5 酶学性质

HO 酶的最适反应温度和最适反应 pH:分别 在 25 ℃、30 ℃、35 ℃、40 ℃、45 ℃、50 ℃、55 ℃ 温度下测定 HO 的酶活,探究酶的最适反应温度。 分别在不同 pH 6.0、6.5、7.0、7.5、8.0 的反应体 系下测定 HO 酶活,探究酶的最适反应 pH。

酶的热稳定性:将酶液分别在0℃、20℃、
25℃、30℃、35℃、40℃、45℃环境下存放
2h后检测其残余酶活,研究酶的热稳定性。

1.2.6 发酵罐培养及全细胞转化生产胆绿素

将重组菌按照 1.2.3 方法活化后转接至 100 mL 液体培养基中,培养 6–8 h 后接种至装 有 2 L GY 培养基的 5 L 发酵罐中培养,待菌体浓 度 *OD*₆₀₀达到 6–8 时,添加终浓度为 0.5 mmol/L 的 IPTG, 28 ℃诱导培养 10–12 h,发酵液用 8 000 r/min 离心 15 min,弃上清,收集菌体,进行全细胞转化。

2 结果与分析

2.1 重组菌的构建

按照 1.2.2 方法构建 5 株不同来源的 HO 重 组菌,提取质粒,测序得到 ho 序列,核酸验证 图谱见图 1。

表 3 HO 酶活力

Table 3	Enzyme	activity of HO	
---------	--------	----------------	--

Enzymes	Specific activity (U/mg)	
HO (C. tetani)	90.2±1.3	
HO (<i>Synechocystis</i> sp. PCC6803)	85.8±0.9	
HO (Rattus norvegicus)	48.9±0.6	
HO (C. glutamicum)	27.3±1.1	
HO (Homo sapiens)	23.2±0.5	
Control	-	

图 1 ho 基因的菌落 PCR 验证

Figure 1 PCR verification of *ho* gene. M: marker; 1: *hoCt*; 2: *hoRn*; 3: *hoCg*; 4 *hoHo*; 5: *hoSP*.

2.2 不同来源 HO 的表达和酶活力测定

按照 1.2.3 的方法获得 5 株不同来源 HO 重 组 菌株 的粗 酶 液 及 纯 酶 。 取 少 量 酶 液 进行 SDS-PAGE 分析,如图 2A、2B 所示,在分子 量 25-32 kDa 处有明显蛋白条带,表明 HO 在 *E. coli* BL21(DE3) 中能够正常表达。不同来源 HO 酶活测定结果如表 3 所示。

2.3 不同来源 HO 酶学性质比较

2.3.1 最适温度比较

不同来源 HO 在不同温度下测得的酶活结 果见图 3A, 5 种不同来源 HO 的最适反应温度 并未有明显差异,都在 35 ℃左右。*C. tetani*来 源的 HO 在 30-40 ℃时都能表现出较高的酶活, 当温度大于 40 ℃时,酶活开始逐渐下降。

2.3.2 最适 pH 探究

不同来源 HO 在不同 pH 下测得的酶活结果见 图 3B, 5 种不同来源 HO 的最适反应 pH 并未 有明显差异,均在 pH 7.0–7.5。其中 C. tetani、 Synechocystis sp. PCC6803 和 C. glutamicum 来 源的 HO 最适 pH 为 7.0, Rattus norvegicus 和 Homo sapiens 来源的 HO 最适 pH 为 7.5。当 pH 大于 7.5 或小于 7.0 时,酶活开始下降。

2.3.3 热稳定性比较

将 5 株重组菌酶液分别于 0 ℃、20 ℃、 25 ℃、30 ℃、35 ℃、40 ℃、45 ℃存放 2 h 后 检测其剩余酶活力。结果如图 3C,在 0 ℃条 件下,5 株重组菌酶活几乎没有损失。其中, *C. tetani* 来源的 HO 表现出高的热稳定性,在 0 ℃、20 ℃、25 ℃、30 ℃、35 ℃条件下酶活 力均保持在 80%以上;在 40 ℃条件下酶活力均 降低至 40%–50%。当温度达到 45 ℃时,5 株重 组菌均未检测到酶活。

图 2 重组菌 SDS-PAGE 电泳图

Figure 2 SDS-PAGE analysis of proteins in recombinant strains. (A) Crude enzyme. M: marker; 1: control; 2: HO*Ct*; 3: HO*Rn*; 4: HO*Cg*; 5: HO*Ho*; 6: HO*SP*. (B) Purified enzyme. M: marker; 1: control; 2: HO*Ct*; 3: HO*Rn*; 4: HO*Cg*; 5: HO*Ho*; 6: HO*SP*.

图 3 不同来源 HO 最适温度 (A)、最适 pH (B)、温度稳定性 (C) 和合成胆绿素能力的比较 (D) Figure 3 Optimal temperature (A), optimal pH (B), thermal stability (C) and comparison of the ability of different HO enzyme for synthesizing biliverdin (D).

2.3.4 不同来源 HO 合成胆绿素能力比较

按照 1.2.4 的方法获取 5 株重组菌的酶液, 在各自最适反应条件下进行转化实验。转化体 系同 1.2.4, pH (除 *Rattus norvegicus* 和 *Homo sapiens* 来源 HO 转化 pH 7.5 外,其余均为 7.0), 定时取样进行 HPLC 检测。结果如图 3D, *C. tetani* 来源的 HO 转化率最高,为 29.3%。

2.4 C. tetani 来源的 HO 全细胞转化合成 胆绿素的条件优化

2.4.1 底物浓度对转化合成胆绿素的影响

控制反应温度 35 ℃, pH 7.0, 45 µmol/L NADPH, 菌体量 *OD*₆₀₀ 为 15, 在底物血红素浓 度分别为 25、50、100、150、200、250 mg/L 的条件下进行转化。转化率结果如图 4A 所示, 在高浓度底物条件下表现出明显的底物抑制现 象。当底物浓度为 100 mg/L 时,转化率最高, 约为 28.7%。

2.4.2 菌体量对全细胞转化合成胆绿素的影响

实际应用中为了满足生产效率和降低生产 成本,将菌体浓度控制在适宜的水平也是至关 重要的。控制其他条件相同,在反应温度 35 ℃, pH 7.0,45 μmol/L NADPH,底物浓度为 100 mg/L, 菌体量 *OD*₆₀₀ 分别为 5、10、15、20、25、30、 35 的条件下进行全细胞转化合成胆绿素。结果 如图 4B 所示,转化体系细胞 *OD*₆₀₀ 为 25 时, 转化率最高,约为 32.9%。

2.4.3 不同 NADPH 浓度下合成胆绿素能力 比较

设置 7 组不同浓度 NADPH 的转化体系, 分别为 0、15、30、45、60、75、90 μmol/L, 按照 1.2.4 的方法进行转化实验。结果如图 5 所 示,随着辅酶浓度的升高,胆绿素的转化率提

图 4 底物浓度 (A) 和菌体生长密度 (B) 对重组菌 BL21/pETDuet-hoCt 全细胞转化合成胆绿素的影响 Figure 4 Influence of substrate concentration (A) and cell growth density (B) on the transformation of biliverdin in whole-cell biotransformation using recombinant strain BL21/pETDuet-hoCt.

高到约 37%。结果表明, 辅酶 NADPH 在合成 胆绿素的过程中起重要作用。

2.4.4 辅酶再生系统的构建及转化实验 基于实验结果,本研究按照 1.2.3 的方法构

图 5 不同浓度 NADPH 合成胆绿素的影响 Figure 5 Influence of NADPH concentration on the synthesis of biliverdin.

建 GdhA 和 HO 共表达菌株 BL21/pETDuetgdhAEc-hoCt, 质粒图谱如图 6 所示。菌落 PCR 验证结果如图 7A 所示,测序结果正确。取少 量粗酶液进行 SDS-PAGE 分析,如图 7B 所示, 在 25 kDa 和 45 kDa 处有明显蛋白条带,分别 与 HO 和 GdhA 蛋白分子量一致,表明 HO 和 GdhA 在 E. coli 中能够正常表达。按照 1.2.4 的 方法检测 GdhA 活力为 51 U/mg。

控制其他条件相同, 在反应温度 35 ℃, pH 7.0, 20 g/L 谷氨酸, 底物浓度 100 mg/L, 菌体 量 OD₆₀₀=25 的条件下, 由菌株 BL21/pETDuetgdhAEc-hoCt 全细胞转化合成胆绿素。结果如图 8 所示,转化 30 h, 胆绿素产量达到 33.7 mg/L, 表明菌株 BL21/pETDuet-gdhAEc-hoCt 不需要 添加昂贵的辅酶 NADPH, 只需借助廉价的辅底 物谷氨酸也能进行胆绿素的生物合成。

图 6 重组质粒 pETDuet-gdhAEc-hoCt 图谱

Figure 6 Map of recombinant plasmid pETDuet-gdhAEc-hoCt.

☎: 010-64807509

重组菌株 BL21/pETDuet-gdhAEc-hoCt 菌 图 7 落 PCR 验证 (A) 和蛋白表达分析 (B)

Figure 7 Verification of gdhAEc-hoCt gene (A) and SDS-PAGE analysis of proteins in recombinant strains (B). M: marker; 1: control; 2: crude enzyme.

图 8 菌株 BL21/pETDuet-gdhAEc-hoCt 全细胞 转化合成胆绿素

Figure 8 Biotransformation of biliverdin using whole cells of recombinant strain BL21/pETDuetgdhAEc-hoCt.

2.5 HO 的膜表面展示

导致全细胞转化时间长的原因可能是由于 底物分子量过大,进出细胞受阻。为了进一步 缩短转化时间,通过对 HO 进行膜表面展示, 从而提高转化效率。按照 1.2.3 方法构建菌株 BL21/pETDuet-gdhAEc-blc/hoCt 和 菌 株 BL21/pETDuet-gdhAEc-blc/hoCt/gfp, 质粒图谱 如图 9 所示。菌落 PCR 验证结果如图 10A,质 粒测序结果正确。使用试剂盒提取重组菌 BL21/ pETDuet-gdhAEc-blc/hoCt 膜蛋白,结果如图 10B 所示,在44 kDa 处有明显的蛋白条带,证 明外膜脂蛋白 (outer membrane lipoprotein Blc, Blc) 和 HO 成功融合表达。通过激光共聚焦显 微镜验证目的蛋白展示效果,结果如图 10C-10D 所示, 证明 HO 成功在细胞膜表面展示。

2.6 5L发酵罐全细胞转化

按照 1.2.6 的方法对重组菌 BL21/pETDuetgdhAEc-blc/hoCt 和 BL21/pETDuet-gdhAEchoCt进行5L罐培养,离心收集菌体。用PBS 磷酸盐缓冲溶液悬浮适量菌体, 血红素溶于 0.25% Na₂CO₃溶液后加入转化体系,控制血红 素终浓度为 100 mg/L, 20 g/L L-谷氨酸, 定容 至1L,使菌体 OD₆₀₀为 25,在 35 ℃、150 r/min、 pH 7.0条件下于罐上转化,液相检测转化液中 胆绿素的浓度。结果如图 11 所示,重组菌 BL21/pETDuet-gdhAEc-blc/hoCt转化 25 h, 胆 绿素浓度达到最高,约 76.3 mg/L,而重组菌

重组质粒 pETDuet-gdhAEc-hoCt 和 pETDuet-gdhAEc-blc/hoCt/gfp 图谱 图 9

Map of recombinant plasmid pETDuet-gdhAEc-blc/hoCt and pETDuet-gdhAEc-blc/hoCt/gfp. Figure 9

图 10 蛋白表面展示菌株验证 A: 菌株 BL21/pETDuet-gdhAEc-blc/hoCt 和菌株 BL21/pETDuet-gdhAEc-blc/hoCt/gfp 菌落 PCR 验证。B: 膜蛋白 SDS-PAGE 电泳图, 泳道 1: E. coli BL21(DE3), 泳道 2: 重组菌 BL21/pETDuet-gdhAEc-blc/hoCt。(C) 和(D) 分别为激光共聚焦显微镜下的菌株 BL21/pETDuet-gfp 和菌株 BL21/pETDuet-gdhAEc-blc/hoCt/gfp

Figure 10 Verification of protein surface display strains. (A) Verification of recombinant BL21/pETDuetgdhAEc-blc/hoCt and recombinant BL21/pETDuet-gdhAEc-blc/hoCt/gfp. (B) SDS-PAGE analysis of membrane proteins. M: marker; 1: contrast of *E. coli* BL21(DE3); 2: recombinant BL21/pETDuet-gdhAEc-blc/hoCt. (C) Recombinant BL21/pETDuet-gfp in CLSM. (D) Recombinant BL21/pETDuet-gdhAEc-blc/hoCt/gfp in CLSM.

图 11 重组菌 BL21/pETDuet-gdhAEc-blchoCt 和 BL21/pETDuet-gdhAEc-hoCt 5 L 罐转化合成胆绿素 Figure 11 Biotransformation of biliverdin using whole cells of recombinant strain BL21/pETDuetgdhAEc-blc/hoCt and recombinant strain BL21/pETDuetgdhAEc-hoCt in 5 L fermenter.

BL21/pETDuet-gdhAEc-hoCt转化32h,胆绿素浓度达到最高,约71.5 mg/L。结果表明,HO的表面展示可以进一步提高转化效率。随着转化时间的推移,胆绿素浓度开始下降,推测可能是由于溶液状态下BV稳定性不佳的原因。

3 讨论

近年来,随着科学研究的逐步深入,胆绿 素及其异构体广泛应用于医学、材料科学、光 遗传学和合成生物学等领域,展示出其独特的 商业前景与价值。

随着环境友好型发展理念的提出,胆绿素

的制备方法从早期的通过化学氧化来源于哺乳 动物胆汁的胆红素产生[23]到对微生物细胞工厂 的探索,但都存在不少弊端。传统的化学氧化 法会消耗大量的化学试剂,不仅造成环境的破 坏,而且会产生异构体,对下游分离纯化提出 更高的要求。利用重组大肠杆菌 5 L 生物反应 器方法生产胆绿素,其基本达到化学方法的产 量和纯度,约23mg/L,但该方法受到内源性血 红素合成速率的限制^[15]。Seok 等^[17]通过在 C. glutamicum 中过表达血红素合成途径中的限 速酶并进行模块优化,以提高前体血红素的产 量,然后过表达 HO 推动碳代谢流生产胆绿素, 但该方法存在发酵液成分复杂,产物分离提取 困难,发酵周期长,对生产设备要求较高等诸多弊 端。Robinson 等^[24]通过利用 EcN(T7) E. coli 生产 BVIXα、BVIXβ和 BVIXδ,产量分别为 9.18 μg/L、 51.79 µg/L 和 111.45 µg/L。

本研究首先通过对 5 种不同来源的 HO 在 E. coli BL21 (DE3) 中进行异源表达,构建了5株 重组菌, 分别为: E. coli BL21/pETDuet-hoCt、 E. coli BL21/pETDuet-hoSP E. coli BL21/pETDuet*hoRn*, *E. coli* BL21/pETDuet-*hoCg*, *E. coli* BL21/ pETDuet-hoHo。对不同来源的 HO 进行酶学性 质的研究和比较,筛选出酶活力较高的 C. tetani 来源的 HO, 比酶活达到 (90.2±1.3) U/mg。采 用外源添加辅酶 NADPH 的方式,对重组菌 BL21/pETDuet-hoCt 进行全细胞转化实验,转 化条件为 pH 7.0, 35 ℃, 菌体量 OD₆₀₀ 为 25, 底 物浓度为 100 mg/L, 胆绿素产量达到 32.9 mg/L。 研究发现,随着辅酶 NADPH 浓度的提高,胆 绿素产量也随之提升,而外源添加辅酶 NADPH 必将增大生产成本。鉴于此,本研究通过构建 辅酶 NADPH 再生系统,强化 E. coli 自身来源 的 GdhA 的表达,利用 GdhA 参与谷氨酸代谢 进行 NADPH 的再生,结果表明重组菌 BL21/

pETDuet-gdhAEc-hoCt 能够实现以谷氨酸为辅 底物,无需外源添加 NADPH 即可进行胆绿素 的生物合成,5L发酵罐转化合成胆绿素产量达 到71.5 mg/L。研究发现,全细胞转化合成胆绿 素周期较长,造成这一现象的原因可能是底物 进入细胞受阻,酶与底物的接触效率太低,因 此本研究通过构建膜表面展示系统,将 E. coli 来源的 blc 基因与 hoCt 基因融合表达,利用膜锚 蛋白 Blc 将 HOCt 进行膜表面展示,以期提高转 化效率。实验结果表明:重组菌 BL21/pETDuetgdhAEc-blc/hoCt 成功构建,HOCt 成功进行膜 表面展示,5L发酵罐全细胞转化时间进一步缩 短至 25h,同时产量达到新高,为76.3 mg/L,是 目前报道的最高产量,本研究为微生物法工业化 放大生产胆绿素奠定了一定的理论和实验基础。

REFERENCES

- O'Carra P, Colleran E. Separation and identification of biliverdin isomers and isomer analysis of phycobilins and bilirubin. J Chromatogr, 1970, 50(3): 458-468.
- [2] Ziberna L, Martelanc M, Franko M, et al. Bilirubin is an endogenous antioxidant in human vascular endothelial cells. Sci Rep, 2016, 6: 29240.
- [3] Sedlak TW, Saleh M, Higginson DS, et al. Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. PNAS, 2009, 106(13): 5171-5176.
- [4] Zhang AK, Duan H, Li N, et al. Heme oxygenase-1 metabolite biliverdin, not iron, inhibits porcine reproductive and respiratory syndrome virus replication. Free Radic Biol Med, 2017, 102: 149-161.
- [5] Wegiel B, Gallo D, Csizmadia E, et al. Biliverdin inhibits toll-like receptor-4 (TLR4) expression through nitric oxide-dependent nuclear translocation of biliverdin reductase. PNAS, 2011, 108(46): 18849-18854.
- [6] Zhou HC, Qian H, Liu JF, et al. Protection against lung graft injury from brain-dead donors with carbon monoxide, biliverdin, or both. J Heart Lung Transplant, 2011, 30(4): 460-466.
- [7] Andria B, Bracco A, Attanasio C, et al. Biliverdin protects against liver ischemia reperfusion injury in swine. PLoS One, 2013, 8(7): e69972.

- [8] Watermann T, Elgabarty H, Sebastiani D. Phycocyanobilin in solution—a solvent triggered molecular switch. Phys Chem Chem Phys, 2014, 16(13): 6146-6152.
- [9] Uda Y, Goto Y, Oda S, et al. Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling. PNAS, 2017, 114(45): 11962-11967.
- [10] Fernandez-Rodriguez J, Moser F, Song M, et al. Engineering RGB color vision into *Escherichia coli*. Nat Chem Biol, 2017, 13(7): 706-708.
- [11] Lin GL, Himes JA, Cornelius CE. Bilirubin and biliverdin excretion by the chicken. Am J Physiol, 1974, 226(4): 881-885.
- [12] Ding ZK, Xu YQ. Purification and characterization of biliverdin IXalpha from Atlantic salmon (*Salmo salar*) bile. Biochemistry (Mosc), 2002, 67(8): 927-932.
- [13] McDonagh AF. Biliverdin, immune-mediated liver injury, and the Gigo effect. Hepatology, 2005, 41(3): 680-681.
- [14] Jullesson D, David F, Pfleger B, et al. Impact of synthetic biology and metabolic engineering on industrial production of fine chemicals. Biotechnol Adv, 2015, 33(7): 1395-1402.
- [15] Chen D, Brown JD, Kawasaki Y, et al. Scalable production of biliverdin IXα by *Escherichia coli*. BMC Biotechnol, 2012, 12: 89.
- [16] 梅建凤,赵文渊,应国清,等. 重组大肠杆菌 zjut-ho1及 其在制备胆绿素中的应用: CN, 109182232 A.2019-01-11.
 Mei JF, Zhao WY, Ying GQ, et al. Recombinant *Escherichia coli* zjut-ho1 and its application in preparing biliverdin: CN, 109182232 A. 2019-01-11(in Chinese).
- [17] Seok J, Ko YJ, Lee ME, et al. Systems metabolic engineering of *Corynebacterium glutamicum* for the

bioproduction of biliverdin *via* protoporphyrin independent pathway. J Biol Eng, 2019, 13: 28.

- [18] Stiefelmaier J, Ledermann B, Sorg M, et al. Pink bacteria-production of the pink chromophore phycoerythrobilin with *Escherichia coli*. J Biotechnol, 2018, 274: 47-53.
- [19] Sharkey MA, Engel PC. Modular coenzyme specificity: a domain-swopped chimera of glutamate dehydrogenase. Proteins, 2009, 77(2): 268-278.
- [20] 陈晓元,张啸,孟庆金. N 甲基咪唑与氯高铁血红素 取代反应动力学.无机化学学报,1995,11(2):192-197.
 Chen XY, Zhang X, Meng QJ. Kinetic study of nucleophilic substitution reactions of n-methylimidazole with hemin chloride. J Inorg Chem, 1995, 11(2): 192-197 (in Chinese).
- [21] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248-254.
- [22] 霍仕霞, 闫明, 黄毅, 等. HPLC 法测定氯化血红素片 剂的含量. 分析试验室, 2008, 27(S1): 227-229.
 Huo SX, Yan M, Huang Y, et al. Determination of hemin tablets by HPLC. Chin J Anal Lab, 2008, 27(S1): 227-229 (in Chinese).
- [23] McDonagh AF, Palma LA. Preparation and properties of crystalline biliverdin IX alpha. Simple methods for preparing isomerically homogeneous biliverdin and [14C]biliverdin by using 2,3-dichloro-5,6dicyanobenzoquinone. Biochem J, 1980, 189(2): 193-208.
- [24] Robinson EA, Frankenberg-Dinkel N, Xue FT, et al. Recombinant production of biliverdin IXβ and δ isomers in the T7 promoter compatible *Escherichia coli* nissle. Front Microbiol, 2021, 12: 787609.

(本文责编 陈宏宇)