May 25, 2022, 38(5): 1889-1902 ©2022 Chin J Biotech, All rights reserved

环境生物技术。

1889

微生物电解池耦合厌氧消化过程中产甲烷代谢通量 与微生物的关系

刘洪周,杨思霞,王楠,刘海波,李建昌

云南师范大学 能源与环境科学学院, 云南 昆明 650500

刘洪周,杨思霞,王楠,刘海波,李建昌. 微生物电解池耦合厌氧消化过程中产甲烷代谢通量与微生物的关系. 生物工程 学报, 2022, 38(5): 1889-1902.

LIU HZ, YANG SX, WANG N, LIU HB, LI JC. The relationship between methane production metabolic flux and microorganisms in a microbial electrolytic cell coupled anaerobic digestion. Chin J Biotech, 2022, 38(5): 1889-1902.

摘 要: 为探究微生物电解池耦合厌氧消化 (MEC-AD) 产甲烷代谢通量与微生物的关系。实验以 电压为扰动因子,采用代谢通量分析 (MFA) 的方法,得到微生物群落与产甲烷通量的响应关系。 结果表明: 电压扰动后产甲烷通量和产氢通量均发生显著变化,而电压扰动对产乙酸通量的影响较 小,其中 0.6 V 扰动时产甲烷通量最大为 0.522±0.051,较对照组 1.0 V 的 0.295±0.013 和 1.4 V 的 0.395±0.029 分别提高了 77%和 32%。另外,平均有 15.7%±2.9%的 H₂ (通量) 用于还原 CO₂产甲烷 和乙酸,平均有 27.7%±6.9%的乙酸 (通量) 转化为 CH₄。毛螺旋菌 (Lachnospiraceae) 的丰度对乙 酸通量有显著影响,产 CH₄ 通量与理研菌属 (Petrimonas)、互营单胞菌属 (Syntrophomonas)、拟 杆菌属 (Blvii28)、假单胞菌属 (Acinetobacter) 的丰度呈正相关,与梭菌属 (Tuzzerella)、球形螺旋 菌属 (Sphaerochaeta) 的丰度呈负相关。而影响产 H₂通量和产 CH₄通量的物种具有相似性,多为 拟杆菌、梭菌、假单胞菌和厚壁菌。此外,物种种间互作关系也是影响 MEC-AD 产甲烷通量的重 要因素。

关键词: 电解电压; 代谢通量分析; 微生物电解池; 甲烷; 代谢网络

Received: August 4, 2021; Accepted: October 17, 2021; Published online: November 3, 2021 Supported by: National Natural Science Foundation of China (21968038) Corresponding author: LI Jianchang. E-mail: li.jianchang@aliyun.com 基金项目: 国家自然科学基金 (21968038)

The relationship between methane production metabolic flux and microorganisms in a microbial electrolytic cell coupled anaerobic digestion

LIU Hongzhou, YANG Sixia, WANG Nan, LIU Haibo, LI Jianchang

School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, Yunnan, China

Abstract: In this study, voltage was used as a disturbance factor to investigate the relationship between microbial community and methane (CH₄) production flux in a microbial electrolytic cell coupled anaerobic digestion (MEC-AD). Metabolic flux analysis (MFA) was used to explore the relationship between the CH₄ metabolic flux produced and the microbes. The results showed that both methane production flux and hydrogen production flux changed significantly upon voltage disturbance, while the voltage disturbance had little effect on acetic acid production flux. The maximum CH₄ production flux under 0.6 V disturbance was 0.522±0.051, which increased by 77% and 32%, respectively, compared with that of the control group under 1.0 V (0.295±0.013) and under 1.4 V (0.395±0.029). In addition, an average of 15.7%±2.9% of H₂ (flux) was used to reduce CO₂ to produce CH₄ and acetic acid, and an average of 27.7%±6.9% of acetic acid (flux) was converted to CH₄. Moreover, the abundance of Lachnospiraceae significantly affected the flux of acetic acid. The flux of CH_4 production is positively correlated with the abundances of Petrimonas, Syntrophomonas, Blvii28, and Acinetobacter, and negatively correlated with the abundances of *Tuzzerella* and *Sphaerochaeta*. The species that affected the flux of H₂ and CH₄ were similar, mostly belonging to *Bacteroides*, *Clostridium*, *Pseudomonas* and Firmicutes. Furthermore, the interspecies interaction is also an important factor affecting the MEC-AD methanogenesis flux.

Keywords: electrolysis voltage; metabolic flux analysis; microbial electrolysis cell; methane; metabolic network

微生物电解池 (microbial electrolytic cell, MEC) 促进厌氧消化 (anaerobic digestion, AD),是目前厌氧消化领域的研究热点问题^[1-3]。该技术不仅能固定 AD 体系内的 CO₂,还能极大地提高 CH₄转化率和沼气品质,这得益于 AD 的代谢网络中各代谢通量是由一系列微生物主导的^[4]。此外,电压作为驱动 MEC 胞外电子传递和析氢反应的主要因子,在合适的电压作用下阳极表面能够富集大量的电活性微生物,同时

电压对体系内菌群的演化具有调控作用^[1]。典型的例子是, Ding 等^[5]研究外加电压对 MEC 中甲 烷生成和微生物活性的影响中证实了微生物的 代谢能力对电压的扰动较为敏感。

代谢通量分析 (metabolic flux analysis, MFA) 是代谢过程及途径分析的一种强有力的 分析技术^[6],在代谢通量研究中, MFA 技术可 对体系在环境扰动后的代谢能力做出预测,通 过通量平衡分析 (flux balance analysis, FBA)

不仅能预测代谢过程中未知的代谢途径,还能 明确代谢产物的流量和流向^[7]。因 FBA 在拟稳 态假设下分析, 且代谢反应按化学计量和质量 平衡关系进行计算而被普遍应用^[8], MFA 已成 功地应用于赖氨酸、乳酸和乙醇等化合物的优 化生产^[9-10]。Gonzalez-Garcia 等^[11]曾利用混合 培养的接种物降解葡萄糖产生 H2, 建立了比较 完整的代谢通量网络,并计算出代谢网络的通 量。Li 等^[12]曾在微生物发酵过程中丰富了希瓦氏 菌 (Shewanella oneidensis) 的代谢通量水平,从 而提高了电化学反应过程中 NADH/NAD⁺的总 水平,明显加快了胞外电子传递速率。Rafieenia 等[13]利用蔗糖、果糖、半乳糖、甘露糖、海藻 糖和核糖等 6 种不同碳源建立了丁酸梭菌代谢 网络模型,研究了丁酸梭菌发酵制氢的过程, 并计算出了 NADH 通量是影响 Ho产生的重要 辅助因子。此外,根据报道提出"统一微生物" 这一概念,即将体系内所有微生物看作一个统 一的整体^[8],所涉及的生化反应照化学计量方 式进行,同时国内外一些学者已经在部分体系 中做了相应尝试,并取得相关成果^[14]。因此, AD 过程中消化能力和副产物的产率都可以利 用通量分析技术进行直接表征^[11]。

本研究旨在以葡萄糖为底物,以电解电压 为扰动因子,采用基于质量守恒的 MFA 通量平 衡分析的方法,探究 MEC-AD 产 CH4代谢通量 与微生物之间的关系,将有利于提高厌氧消化 的目标产物,为生成特定产物提供调控手段。

1 材料与方法

1.1 实验装置

MEC-AD 反应器为有机玻璃圆柱形的单室 反应器,有效体积为 400 mL。反应器的阳极为 石墨电极 (30 mm×30 mm×2 mm),阴极为纯 pt

电极 (30 mm×30 mm×0.2 mm),两电极对称放 置,间距为 3 cm,电极均浸没在发酵液中,参比电极 (Ag/AgCl) 与阳极和阴极组成三电极体 系。电极通过外电路与无纸记录仪 (SIN-R7000A) 连接。

1.2 接种物

实验中的接种物为以猪粪为底物驯化后的厌氧活性污泥。其 pH 值为 7.71,总固体物 (TS) 含量为 15.12%,挥发性固体物 (VS) 含量为 8.26%。

1.3 实验方案

实验分为2个阶段,第一阶段为培养阶段,即 MEC-AD 启动并达到拟稳态阶段。第二阶段为电压扰动阶段。

培养阶段:根据 Shao 等^[15]的研究,实验初 始培养条件为电解电压 1.0 V,初始 pH 7.0,温 度 30 ℃。启动时,在反应器中接种 120 g 厌氧 活性污泥、180 mL 磷酸缓冲溶液和 10 mL 微 量元素溶液 (缓冲溶液及微量元素溶液配制 参照文献[16]),随后再加入蒸馏水使其总质量 为 400 g,底物葡萄糖加入量为 1.0 g,控制浓 度为 2.5 g/L,此后当 pH 恢复至 7.0 以上时进行 补料,每次补料量为 1.0 g 葡萄糖。实验运行前 在反应器中通入氮气 2 min,确保体系处于厌氧 环境。培养过程中,反应器置于 30 ℃恒温磁力 搅拌器中。

扰动阶段:扰动电压为 0.6 V 和 1.4 V, 1.0 V 为对照组,每组设置 3 组平行实验。实验 中以体系培养达到拟稳态 (实验通过电流值、 pH 值和电极电势来判断是否达到拟稳态^[17-18], 相关研究表明,当体系产生电流,pH 值在 7.0 附近波动且电势差维持在 0.6 V 左右时体系已 达到拟稳态^[14,19-20])的各参数作为初态,并根据 MEC-AD 代谢网络中的中间产物 (如挥发性脂 肪酸、醇)和最终产物选择关键代谢产物并计 算其净生成速率^[11,14],所检测的代谢产物为甲 酸、乙酸、丙酸、丁酸、乳酸、丙酮酸、戊酸、 己酸、乙醇、丙醇、丁醇、CO₂、CH₄和 H₂, 随后加入 1.0 g 葡萄糖运行 14 h 为终态 (经 14 h 后 1.0 g 葡萄糖基本消耗殆尽)。

1.4 分析方法

 1) 电流、电压和 pH 值测定:电流和电压 由宽屏物质记录仪 (SIN-R7000A) 记录, pH 值 由 pH 计 (PHS-3C) 直接读取,每 24 h 读取 一次数据。

 2) 气体成分测定:通过气相色谱仪 (GC9790 II,浙江) 测定气体样品的组成,色谱 柱为不锈钢填充柱,检测器为导热检测器 (TCD)。测试条件为:TCD 温度为 200 ℃,柱 箱温度为 110 ℃,载气为高纯氮,进样口温度 为 200 ℃,进样量为 200 μL。

3) 挥发性有机酸测定:采用 GC9790 II (浙 江,福立) 型气相色谱仪 (色谱柱为 KB-FFAP 毛细管柱 (30 m×0.32 mm×0.25 m), N₂ 流速 20 mL/min, H₂流速 40 mL/min,火焰离子化检 测器 (FID) 温度 200 ℃) 进样 2 µL,测定挥发 性脂肪酸含量 (乙酸、丙酸、丁酸、异丁酸、 戊酸和异戊酸)。具体测量方法参考文献[21]。

4) 醇含量检测:通过气相色谱仪 (GC9790 II,浙江)测定样品的醇含量。检测条件为:宽量程火焰离子检测器 (FID),载气为 N₂ (纯度为 99.999%)、H₂ (纯度为 99.999%)和 除水分的空气,柱箱初始温度为 60 ℃,升温 速度为 20 ℃/min,进样温度为 250 ℃,进样量 为 2 μL^[22]。

5) 构建 MEC-AD 代谢网络:采用已明确 的代谢途径作为参照构建 MEC-AD 代谢网络。 据相关研究表明^[23], ED 途径、EMP 途径和 PP 途径的物质均流向丙酮酸,所以此代谢网络不考虑 ED 途径、EMP 途径和 PP 途径。该代谢网络包含的代谢产物和代谢生化反应过程^[11,14,23-24]如表1所示。将表1中37个代谢生化反应输入Cell Net Analyzer 软件中构建 MEC-AD 体系的代谢网络。

6) 16S rRNA: 扰动结束后,从 MEC-AD 体系中分别取出微生物样品,并储存于-80 ℃ 超低温冰箱中。微生物样品委托诺禾致源基因 公司进行高通量测序及数据优化分析。选取丰 度 Top20 的微生物基于 R 语言的 psych、 pheatmap 和 reshape2 包计算微生物丰度与代谢 物之间的相关性及显著性,通过 R 代码输出微 生物丰度与代谢物之间的关系热图。此外,选 取丰度 Top10 的微生物基于 R 语言的 psych 包 计算种间相关性,并选取相关系数大于 0.9 的 边作为有效连接,利用 Gephi0.9.2 构建物种互 作网络^[25-26]。

2 结果与讨论

2.1 产甲烷代谢通量的变化特征

2.1.1 代谢产物净生成速率的变化

如图 1 所示,电流和 pH 值均呈锯齿形变 化,其原因与投料时间及 VFAs 浓度有关^[24,27], 培养至第 20 天以后变化趋势趋于稳定,电流在 1-8 mA 范围内变化,pH 值在 6.8-7.2 范围内变 化,均属于 MEC-AD 正常运行参数范围内^[14,19]。 在图 2 中,阳极电势和阴极电势呈逐渐下降趋 势,电势差维持在 600 mV 左右。据文献报道^[20], 当电势差达到 600 mV 左右时体系已达到拟稳 态。图 1 和图 2 的数据表明,MEC-AD 体系已 达到拟稳态且阳极膜已基本形成^[28],微生物新 陈代谢和繁殖迭代已经达到动态平衡^[29],已满 足 MFA 拟稳态的分析要求^[30]。

Table I	I fine reaction formula of MEC-AD methanogenic pathway						
No.	Equation	No.	Equation				
R1	Glu+PEP⇒G6P+Pyr	R20	$Pyr+2H_2O \Rightarrow Ace+CO_2+3H_2$				
R2	NADH+Pyr⇒Lac+NAD	R21	$But+2H_2O \Rightarrow 2Ace+2H_2+H^+$				
R3	Pyr+NADH⇒NAD+For+AcCoA	R22	Pyr⇒Pyr (ext)				
R4	$2Fd+Pyr+CoA\Rightarrow CO_2+AcCoA+2FdH$	R23	Eth+Pyr \Rightarrow Val (ext)+H ₂ O				
R5	2Fd+NADH⇒2FdH+NAD	R24	For⇒For (ext)				
R6	NADPH+NAD⇔NADH+NADP	R25	$CO_2 \Rightarrow CO_2 (ext)$				
R7	$2NADH \Rightarrow H_2 + 2NAD$	R26	$CO_2+4H_2 \Rightarrow CH_4+2H_2O$				
R8	$2FdH \Rightarrow H_2 + 2Fd$	R27	$H_2 \Rightarrow H_2 (ext)$				
R9	Lac⇒Lac (ext)	R28	2AcCoA+H ₂ ⇒Pro (ext)+2CoA+CO ₂				
R10	Lac+NADH⇒Pyr+NAD	R29	$Ace \Rightarrow CO_2 + CH_4$				
R11	$For \Rightarrow CO_2 + H_2$	R30	Ace⇒Ace (ext)				
R12	AcCoA+ADP+iP→ATP+Ace+CoA	R31	Eth⇒Eth (ext)				
R13	AcCoA+2NADH⇒Eth+CoA+2NAD	R32	But+Eth⇒Hex (ext)+H ₂ O				
R14	$2AcCoA+NADH \Leftrightarrow CoA+H_2O+CroCoA+NAD$	R33	But⇒But (ext)				
R15	$CroCoA+2Fd+NADH \Rightarrow ButCoA+2FdH+NAD$	R34	But+2NADH⇒But (ext)+CoA+2NAD				
R16	CroCoA+NADH⇒ButCoA+NAD	R35	Pyr⇔Pyr (ext)				
R17	$ButCoA+ADP+iP\Rightarrow But+ATP+CoA$	R36	$CH_4 \Rightarrow CH_4 (ext)$				
R18	$2CO_2+4H_2 \Rightarrow Ace+2H_2O$	R37	$2H^++2e^- \Rightarrow H_2$				
R19	$Eth+2H_2O \Rightarrow 4H^++Ace$						

表1 MEC-AD 产 CH4 代谢途径的反应式

 Table 1
 The reaction formula of MEC-AD methanogenic pathway

Glu: glucose; G6P: glucose 6 phosphate; Pyr: pyruvate; NADH: reduced coenzyme I ; Lac: lactic acid; For: formic acid; AcCoA: acetyl coenzyme A; CoA: coenzyme A; Fd: ferredoxin; NADP: oxidized coenzyme II ; Ace: acetic acid; Eth: ethanol; CroCoA: crotonyl-CoA; ButCoA: butyryl-CoA; iP: PO_4^- ; But: butyric acid; Val: valeric acid; Hex: hexanoic acid; Pro: propionic acid; ext: means extracellular.

图 1 电流和 pH 值随时间变化 Figure 1 Profile of current and pH.

图 2 电极电势随时间变化

Figure 2 Profile of electrode potential.

扰动 14 h 后提取发酵液进行代谢产物检 测,并计算净生成速率,结果如表1所示。由 表 1 可知, 电压扰动后, CH_4 、 H_2 和乙醇的 净生成速率均发生了显著的变化。乙醇净生 成速率在负向 (0.6 V) 和正向 (1.4 V) 扰动 时分别为 0.010±0.002 和 0.016±0.007, 较 1.0 V 分别降低了 42%和 7%。H2净生成速率在负 向和正向扰动时分别为 0.024±0.014 和 0.004±0.002, 较 1.0 V 分别降低了 13%和 86%。 此外,电压无论是正向扰动还是负向扰动,CH4、 甲酸、丙酮酸及 CO₂净生成速率均显著升高,其 中CH₄的净生成速率在负向和正向扰动时分别为 0.522±0.052 和 0.395±0.029, 较 1.0 V 分别提高 了 77%和 34%。特殊地是丙酸的净生成速率随 电压负向扰动而降低,正向扰动时响应并不明 显。其本质是 MEC-AD 体系中各代谢途径的通 量发生了变化,原因与电压扰动后微生物做出 不同的响应有关[23,31-33],表明通过改变电压可

表 2	电压扰动下关键代谢物净生成速率

 $(mmol/(L \cdot h))$

1.127±0.015

 0.003 ± 0.000

 0.751 ± 0.144

Control group (1.0 V)

Metabolites

Glucose

Formic acid

Acetic acid

Table 2	The net produc	tion rate of key	metabolites)	upon voltag	e perturbation
	1			· · ·	1

 $0.092{\pm}0.005$ 0.106 ± 0.002 Propionic acid 0.106 ± 0.010 Butyric acid 0.418 ± 0.034 0.449 ± 0.039 0.405 ± 0.020 Lactic acid 0.011±0.005 0.009 ± 0.004 0.013±0.006 Pyruvic acid 0.016 ± 0.004 0.036 ± 0.007 0.027 ± 0.017 0.029 ± 0.009 Pentanoic acid 0.023 ± 0.011 0.011 ± 0.005 Caproic acid 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 Ethanol 0.017 ± 0.001 0.010 ± 0.002 0.016 ± 0.007 ** Propyl alcohol 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 Butanol 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 CO_2 0.226±0.023 0.240 ± 0.038 0.274±0.007 ** CH_4 0.295±0.013 0.522 ± 0.052 0.395±0.029 0.004 ± 0.002 ** 0.028 ± 0.023 $0.024{\pm}0.014$ H_2

disturbance) (mmol/($L\cdot h$))

1.128±0.006

 0.009 ± 0.002

 0.556 ± 0.077

Experimental group

Experimental group (0.6 V negative Experimental group (1.4 V forward

P-value represents the criterion for whether a factor has a significant effect on the experimental results. When *P*-value ≤ 0.01 , it indicates that the influence of factors on the results is very significant. When 0.01 < P-value ≤ 0.05 , it indicates that the factors have a significant impact on the results.

调控相关产物的净生成速率。

2.1.2 代谢通量的变化特征

根据表 2 测量数据输入 Cell Net Analyzer 软件做出如图 3 所示的电压扰动下 MEC-AD 产 CH4代谢通量分布图。结果以H2、CH4和CO2 进行分析,如图 3 所示,MEC-AD 产 CH4代 谢途径包括氢营养型产 CH4 途径 (R26) 和乙 酸转化途径 (R29)。电压扰动后,通过单因素 方差分析表明, 阴极表面平均产氢通量 (R37) 为 2.431 4, 显著 (P<0.01) 高于 NADH 平均产 氢通量 (R7) 的 0.705, 不同电压扰动时平均有 77.5%的 H2由 MEC 阴极产生。在对照组 1.0 V 时 R37 产氢通量为 2.640, 高于扰动组 0.6 V 和 1.4 V 的 2.118 和 2.536, 表明 1.0 V 电压条 件下有利于增强游离 H⁺在阴极表面的得电子 能力,其原因可能是适当的电压促进电活性微 生物在阳极表面生长代谢有关^[34]。然而,最 终产物中 H2通量 (R27) 却只有 R37 产氢通量

disturbance) (mmol/($L\cdot h$))

 1.128 ± 0.018

 0.010 ± 0.003

0.711±0.120

P-value

为 0.76%±0.43%, 1.4 V 扰动时通量值低至 0.004,研究表明,乳酸的产生不利于 H₂的生 成^[34], 1.4 V 扰动时乳酸通量增大,这可能是导 致 1.4 V 时 H₂通量 (R27)最低的原因。此外, 在培养阶段也未检测到大量的 H₂成分 (图 4), 其原因还与耗氢节点有关。图 3 中产 CH₄代谢 节点 (R26)和产乙酸代谢节点 (R18)都是耗 氢节点^[10],在 0.6 V、1.0 V和 1.4 V条件下, H₂还原 CO₂产 CH₄通量 (R26)分别占 35%、 37%和 40%,产乙酸通量 (R18)分别占 24.69%、 28.99%和 27.59%,表明大量的 H₂被用于还原 CO₂产甲烷或乙酸。此外,图 4 为 1.0 V条件下 培养阶段测得的气体含量,数据显示 CO₂含量 逐渐降低,CH₄含量逐渐升高,而 H₂含量几乎 为零,实测数据与通量分布信息相一致。 图 3 中乙酸可以从 R12、R18、R19、R20 和 R21 途径中得到,1.4 V 扰动下乙醇转化为乙 酸的通量增大,丁酸转化为乙酸的通量较 0.6 V 有所降低,其通量大小受电压及多种微生物共 同影响,表明相关微生物随电压改变而做出响 应,其实质是不同电压扰动下特定微生物控制 特定产物的代谢通量^[35]。如图 3 所示,在 0.6 V、 1.0 V 和 1.4 V 条件下分别有 65%、63%和 60% 的 CH₄ 由乙酸转化途径 (R29)得到。对照组 1.0 V及 0.6 V和 1.4 V 扰动组中乙酸转化为 CH₄ 的量分别占总乙酸通量的 20.85%、37.19%和 24.95%,约有 2/3 的乙酸仍然累积在体系内, 在 1.0 V 条件下培养阶段的数据也证实了乙酸 的累积 (图 5)。表明产甲烷菌在 0.6 V 扰动时最 为活跃,致使乙酸转化为 CH₄ 的量增加。

图 3 电压扰动的 MEC-AD 产 CH₄ 代谢途径及通量分布

Figure 3 Metabolic pathway and flux distribution of MEC-AD methane production upon voltage perturbation.

图 4 1.0 V 培养阶段气体含量和日产气量随时间 变化

Figure 4 Gas content of the 1.0 V culture and the profile of daily gas production.

图 5 1.0 V 培养阶段挥发性脂肪酸随时间变化 Figure 5 Profile of volatile fatty acids of the 1.0 V culture.

2.2 微生物群落结构特征与产甲烷代谢通 量的关系

通过高通量测序技术获得生物膜及发酵 液中的微生物群落,进一步分析产甲烷代谢通 量与微生物群落的关系。如表 3、图 6 所示, F0.6、 F1.0 和 F1.4 组的操作分类单元 (operational taxonomic units, OTU) 数分别为 2 728、2 089 和 2 195, FF0.6、FF1.0 和 FF1.4 组的 OTU 数 分别为 1 273、1 305 和 1 320。显然阳极膜微生 物比发酵液更丰富,且电压扰动下阳极膜微生物群落变化显著(0.01<*P*-value<0.05)。OTU的独特差异归因于 MEC-AD 中电压扰动的影响。如图 7 所示,0.6 V 扰动下 Top10 的微生物较1.0 V 和 1.4 V 存在更紧密的互作关系,随电压升高竞争关系和协同关系均减弱。相关研究表明,紧密的互作关系更具有底物竞争力^[36],因此 0.6 V 扰动时物种间较强的协同关系(如产甲烷菌和产氢产乙酸菌的协同关系等)可能是产甲烷通量增大的原因。

在属水平上进一步分析物种丰度与产甲烷 通量之间的关系,如图 8A 所示,三氯单胞菌 (*Trichloromonas*)在阳极膜表面占主导,在 F0.6、F1.0和F1.4组中的相对丰度分别为40%、 27%和36%。根据Shao等^[15]以葡萄糖为底物进 行MEC制氢时发现H₂产率与阳极表面微生物 丰度呈正相关的研究,推测*Trichloromonas*可 能是与H₂通量有关的特征微生物。

如图 8B 所示, 毛球菌 (*Trichococcus*) 是 发酵液中的优势菌属, 在 FF0.6 扰动组中相对 丰度为 26%低于 FF1.0 组的 27%和 FF1.4 组的 38%, *Trichococcus* 参与了碳水化合物转化为乳 酸和乙酸等过程^[37], 因此从通量平衡来看, 总乙 酸通量 (R29+R30) 存在 1.4 V (0.949)>1.0 V (0.939)>0.6 V (0.896) 的关系, 乳酸通量 (R9)

表 3 微生物检测样本及分组

Ta	b	le :	3 1	Micro	bes	dete	ction	samp	les	and	gro	oups
----	---	------	-----	-------	-----	------	-------	------	-----	-----	-----	------

Anodic film		Fermented liquid		
Samples	Grouping	Samples	Grouping	
Initial state	S	Initial state	FS	
0.6 V	F0.6	0.6 V	FF0.6	
disturbance		disturbance		
1.4 V	F1.4	1.4 V	FF1.4	
disturbance		disturbance		
1.0 V	F1.0	1.0 V	FF1.0	
undisturbed		undisturbed		

图 6 阳极膜微生物的 OTU 和发酵液微生物的 OTU Veen 图

Figure 6 OTU diagram of anodic membrane microbes and OTU Veen diagram of fermentation broth microbes.

图 7 阳极膜微生物互作差异比较

Figure 7 Comparison of microbial interactions on anodic membrane. The size of the nodes in the figure indicates the relative abundance of microbes, the dotted line indicates positive correlation (synergy), and the solid line indicates negative correlation (competition).

也具有相同的特征,即 1.4 V (0.013)>1.0 V (0.011)>0.6 V (0.009)。因产氢通量和产乙酸通量与产甲烷通量直接相关,表明产甲烷通量的 变化与 *Trichloromonas*和 *Trichococcus*的丰度 有关。此外,无论是阳极生物膜还是发酵液都 存在梭菌属、甲烷鬃菌属、噬氢菌属和噬蛋白 菌属等。

特殊的是,图 3 中数据显示,阴极产氢通量 (R37)的变化特征 1.0 V (2.640)>1.4 V (2.536)> 0.6 V (2.118) 与 H₂还原 CO₂的总通量 (R18+R26) 的变化特征 1.0 V (0.478)>1.4 V (0.354)>0.6 V (0.320) 一致, 但与 H₂还原 CO₂产甲烷通量 (R26) 的变化特征 1.0 V (0.110)<1.4 V (0.158)< 0.6 V (0.183) 和产甲烷通量 (R36) 的变化特征 1.0 V (0.297)<1.4 V (0.395)<0.6 V (0.522) 却不 尽相同。其原因是 H₂还原 CO₂的产物为甲烷或 乙酸,其中 H₂还原 CO₂产甲烷通量与氢营养型 产甲烷菌 (如甲烷杆菌 (*Methanobacterium*) 和 甲烷短杆菌 (*Methanobrevibacterium*) 等) 的丰 度有关, H₂还原 CO₂产乙酸通量与同型产乙酸

菌 (如梭菌属 (Clostridium) 等) 的丰度有关^[38]。 如图 8 所示, Methanobacterium 是 MEC-AD 体 系中的氢营养型产甲烷菌,其总丰度(阳极膜 表面 Methanobacterium 的丰度与发酵液中 Methanobacterium 的丰度之和) 在 1.0 V、1.4 V 和 0.6 V 时存在 1.0 V (6%)<1.4 V (9%)<0.6 V (10%)的关系,与H2还原CO2产甲烷的通量关 系一致。同样地,同型产乙酸菌的丰度与 H₂ 还原 CO₂ 产乙酸通量 (R18) 也存在类似的关 系,即同型产乙酸菌的丰度关系为 1.0 V (12%)>1.4 V (10%)>0.6 V (9%), R18 途径的通 量关系为 1.0 V (0.368)>1.4 V (0.196)>0.6 V (0.137), 表明 MEC 的引入强化了 H₂还原 CO₂ 的量,但还原产物的通量将会根据特定功能微 生物的丰度进行分配。此外,在产甲烷菌能够 直接利用的底物充足时,产甲烷通量 (R36) 由 产甲烷菌的丰度决定^[38], 在 MEC-AD 体系中 R36 途径的通量是产甲烷的总通量,其通量值 受乙酸浓度、H2分压和产甲烷菌丰度等因素共 同影响^[38],因此仅考虑其中某个因素与产甲烷 通量 (R36) 存在何种特定关系尚不清楚, 有待

进一步研究。

如图 9 所示,采用 P-value<0.01 且相关系数 大于 0.6 或小于--0.6 的数据进行讨论。理研菌 (Petrimonas)、互营单胞菌 (Syntrophomonas)、 拟杆菌 (Blvii28)、假单胞菌 (Acinetobacter)、 梭菌 (Tuzzerella)、球形螺旋菌 (Sphaerochaeta) 的丰度对 CH4 通量有显著影响,其中 CH4 通量 与 Petrimonas 、 Syntrophomonas 、 Blvii28 、 Acinetobacter 的丰度呈正相关,与 Tuzzerella、 Sphaerochaeta 的丰度呈负相关。而产 CH4 通量 受代谢网络中乙酸通量及 H2 通量等多个代谢 环节的影响^[17],毛螺旋菌 (Lachnospiraceae) 的丰度对乙酸通量有显著影响,且呈正相关, 乙酸通量多受产氢产乙酸菌或同型产乙酸菌 的影响。 Petrimonas 、 Syntrophomonas 、 Blvii28、Acinetobacter、Clostridium、紫单胞菌 (Proteiniphilum) 、 Tuzzerella 、 芽 孢 杆 菌 (Terrisporobacter) 的丰度对 H₂ 通量有显著影 响,其中H2通量与Petrimonas、Syntrophomonas、 Blvii28、Acinetobacter 的丰度呈正相关,与 Tuzzerella、Terrisporobacter的丰度呈负相关,

图 8 微生物属相对丰度堆积图

Figure 8 Stacking diagram of relative abundance of microorganisms. (A) The relative abundance of microbes on the surface of anode membrane. (B) The relative abundance of microbes in fermentation broth.

1899

图 9 物种与代谢产物的相关性及显著性分析热图

Figure 9 Heat map of correlation and significance analysis between species and metabolites.

与 H₂ 通量相关的微生物多为 Acinetobacter 和 Clostridium 等电活性微生物^[39]。数据表明不同 微生物影响不同代谢物的通量,其中影响产 H₂ 通量和产 CH₄ 通量的物种具有相似性,多为拟 杆菌属、梭菌属、假单胞菌属和厚壁菌属。奇 怪的是,实验中并未检测到大量的产甲烷菌存 在,因此在 MEC-AD 体系中 H₂还原 CO₂途径 显得尤为重要^[40]。产甲烷菌丰度较小也导致了体系中转化为 CH₄的乙酸通量较小,仅占总乙酸通量的 27.68%±6.9%。

3 结论

通过上述讨论得到以下结论: CH₄ 的净生 成速率在 0.6 V 扰动和 1.4 V 扰动时较 1.0 V 分 別提高了 77%和 34%, 0.6 V、1.0 V 和 1.4 V 条 件下产 CH₄通量分别由 35%、37%和 40%的 H₂ 还原 CO₂ 途径和 65%、63%和 60%乙酸转化 (R29) 途径得到,平均有 77.53%的 H₂由阴极 产生。此外,电压扰动能够改变电极生物膜物 种多样性及互作关系,其中 0.6 V 扰动时,物 种多样性最高 (OTU 为 2 728),互作关系最紧 密且产 CH₄ 通量最大 (0.522)。*Petrimonas*、 *Syntrophomonas*、 *Blvii*28、 *Acinetobacter*、 *Tuzzerella*、*Sphaerochaeta*的丰度对 CH₄通量有 显著影响 (*P*-value<0.01),而影响产 H₂通量和 产 CH₄通量的物种具有相似性。表明通过改变 系统电压可调控相关产物的净生成速率。

REFERENCES

- Hassanein A, Witarsa F, Guo XH, et al. Next generation digestion: complementing anaerobic digestion (AD) with a novel microbial electrolysis cell (MEC) design. Int J Hydrog Energy, 2017, 42(48): 28681-28689.
- [2] Huang JJ, Feng HJ, Huang LJ, et al. Continuous hydrogen production from food waste by anaerobic digestion (AD) coupled single-chamber microbial electrolysis cell (MEC) under negative pressure. Waste Manag, 2020, 103(2): 61-66.
- [3] Rousseau R, Etcheverry L, Roubaud E, et al. Microbial electrolysis cell (MEC): strengths, weaknesses and research needs from electrochemical engineering standpoint. Appl Energy, 2020, 257(1): 113938.
- [4] Lauwers J, Appels L, Thompson IP, et al. Mathematical modelling of anaerobic digestion of biomass and waste: power and limitations. Prog Energy Combust Sci, 2013, 39(4): 383-402.
- [5] Ding A, Yang Y, Sun GD, et al. Impact of applied voltage on methane generation and microbial activities in an anaerobic microbial electrolysis cell (MEC). Chem Eng J, 2016, 283(2): 260-265.
- [6] Antoniewicz MR. A guide to metabolic flux analysis in metabolic engineering: methods, tools and applications. Metab Eng, 2021, 63: 2-12.
- [7] Shachar-Hill Y. Metabolic network flux analysis for

engineering plant systems. Curr Opin Biotechnol, 2013, 24(2): 247-255.

- [8] Rodríguez J, Kleerebezem R, Lema JM, et al. Modeling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng, 2006, 93(3): 592-606.
- [9] Fazenda ML, Dias JML, Harvey LM, et al. Towards better understanding of an industrial cell factory: investigating the feasibility of real-time metabolic flux analysis in *Pichia pastoris*. Microb Cell Factories, 2013, 12(1): 51.
- [10] Çakır T, Arga KY, Altıntaş MM, et al. Flux analysis of recombinant *Saccharomyces cerevisiae* YPB-G utilizing starch for optimal ethanol production. Process Biochem, 2004, 39(12): 2097-2108.
- [11] Gonzalez-Garcia RA, Aispuro-Castro R, Salgado-Manjarrez E, et al. Metabolic pathway and flux analysis of H₂ production by an anaerobic mixed culture. Int J Hydrog Energy, 2017, 42(7): 4069-4082.
- [12] Li F, Li YX, Cao YX, et al. Modular engineering to increase intracellular NAD(H/⁺) promotes rate of extracellular electron transfer of *Shewanella oneidensis*. Nat Commun, 2018, 9(1): 3637.
- [13] Rafieenia R, Chaganti SR. Flux balance analysis of different carbon source fermentation with hydrogen producing *Clostridium butyricum* using cell net analyzer. Bioresour Technol, 2015, 175(3): 613-618.
- [14] Chaganti SR, Kim DH, Lalman JA. Flux balance analysis of mixed anaerobic microbial communities: effects of linoleic acid (LA) and pH on biohydrogen production. Int J Hydrog Energy, 2011, 36(21): 14141-14152.
- [15] Shao QL, Li JC, Yang SX, et al. Effects of different substrates on microbial electrolysis cell (MEC) anodic membrane: biodiversity and hydrogen production performance. Water Sci Technol, 2019, 79(6): 1123-1133.
- [16] 许坤德,李建昌,邵琼丽,等. 初始 pH 值对 MEC 阳极膜的产氢性能和微生物群落的影响. 化学研究与应用, 2020, 32(12): 2224-2230.
 Xu KD, Li JC, Shao QL, et al. Effect of initial pH on the performance and microbial community of MEC anode biofilms. Chem Res Appl, 2020, 32(12): 2224-2230 (in Chinese).
- [17] 王思祺. 微生物电化学技术处理磺胺甲恶唑和萘普

生共存污染[D]. 兰州: 西北师范大学, 2020.

Wang SQ. Treatment of coexistence pollution sulfamethoxazole and naproxen by microbial electrochemical technology[D]. Lanzhou: Northwest Normal University, 2020 (in Chinese).

- [18] 邵琼丽.不同环境因素对 MEC 阳极生物膜细菌多样性的影响[D]. 昆明:云南师范大学, 2020.
 Shao QL. Effects of different environmental factors on bacterial diversity of MEC anode biofilm[D]. Kunming: Yunnan Normal University, 2020 (in Chinese).
- [19] Zhang WL, Li LT, Xing WL, et al. Dynamic behaviors of batch anaerobic systems of food waste for methane production under different organic loads, substrate to inoculum ratios and initial pH. J Biosci Bioeng, 2019, 128(6): 733-743.
- [20] 李建昌,孙可伟,杨斌,等. 电解电压对乙酸单池电 解协助发酵产氢的影响.太阳能学报, 2011, 32(6): 797-801.
 Li JC, Sun KW, Yang B, et al. Effect of applied voltage

on bio-hydrogen production from acetic acid using a single-chamber electrolytically assisted bio-hydrogen production device. Acta Energiae Solaris Sin, 2011, 32(6): 797-801 (in Chinese).

- [21] 杨仁灿,李建昌,孙和临,等. 气相色谱法测定 MEC 反应液中挥发性有机酸. 化学研究与应用, 2017, 29(7): 962-967.
 Yang RC, Li JC, Sun HL, et al. Analysis of VFA contained in the reaction solution of MEC by gas chromatography. Chem Res Appl, 2017, 29(7):
- [22] 刘江勋,黎锡流.顶空气相色谱法测深色酒中微量 甲醇.酿酒,2002,29(1):91-92.
 Liu JX, Li XL. Determination of trace methanol in alcoholic drink with color by HSGC. Liquor-making, 2002, 29(1): 91-92 (in Chinese).

962-967 (in Chinese).

- [23] Rafieenia R, Pivato A, Schievano A, et al. Dark fermentation metabolic models to study strategies for hydrogen consumers inhibition. Bioresour Technol, 2018, 267(8): 445-457.
- [24] Zhou MM, Yan BH, Wong JWC, et al. Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour Technol, 2018, 248(pt A): 68-78.
- [25] Liu ZH, Zhou AJ, Liu HY, et al. Extracellular

polymeric substance decomposition linked to hydrogen recovery from waste activated sludge: role of peracetic acid and free nitrous acid co-pretreatment in a prefermentation-bioelectrolysis cascading system. Water Res, 2020, 176(6): 115724.

- [26] Jiao S, Liu ZS, Lin YB, et al. Bacterial communities in oil contaminated soils: biogeography and co-occurrence patterns. Soil Biol Biochem, 2016, 98(4): 64-73.
- [27] 赵维鑫,黄志勇,黄津辉,等. 厌氧消化酸抑制研究进展. 微生物学通报, 2020, 47(10): 3442-3450.
 Zhao WX, Huang ZY, Huang JH, et al. Research progress in acid inhibition in anaerobic digestion.
 Microbiol China, 2020, 47(10): 3442-3450 (in Chinese).
- [28] 孙和临,李建昌,邵琼丽,等.底物浓度对微生物电解池阳极膜形成影响.环境科学与技术,2018,41(11):27-32.
 Sun HL, Li JC, Shao QL, et al. Effects of substrate

concentration on forming anode biofilm of MEC. Environ Sci Technol, 2018, 41(11): 27-32 (in Chinese).

- [29] Quirós M, Martínez-Moreno R, Albiol J, et al. Metabolic flux analysis during the exponential growth phase of *Saccharomyces cerevisiae* in wine fermentations. PLoS One, 2013, 8(8): e71909.
- [30] 申铁. ¹³C 代谢通量分析平台的建立与改良[D]. 合肥: 中国科学技术大学, 2010.
 Shen T. The implementation and improvement of ¹³C metabolic flux analysis platform[D]. Hefei: University of Science and Technology of China, 2010 (in Chinese).
- [31] Wang XT, Zhao L, Chen C, et al. Microbial electrolysis cells (MEC) accelerated methane production from the enhanced hydrolysis and acidogenesis of raw waste activated sludge. Chem Eng J, 2021, 413(8): 127472.
- [32] Rabaey K, Rozendal RA. Microbial electrosynthesisrevisiting the electrical route for microbial production. Nat Rev Microbiol, 2010, 8(10): 706-716.
- [33] Lee B, Park JG, Shin WB, et al. Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells. Bioresour Technol, 2017, 234(2): 273-280.
- [34] Cheng HH, Whang LM, Lin CA, et al. Metabolic flux network analysis of fermentative hydrogen production:

using *Clostridium tyrobutyricum* as an example. Bioresour Technol, 2013, 141(1): 233-239.

- [35] Wang K, Sheng YX, Cao HB, et al. Impact of applied current on sulfate-rich wastewater treatment and microbial biodiversity in the cathode chamber of microbial electrolysis cell (MEC) reactor. Chem Eng J, 2017, 307(3): 150-158.
- [36] Tilman D, Reich PB, Knops JM. Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature, 2006, 441(7093): 629-632.
- [37] Parshina SN, Strepis N, Aalvink S, et al. *Trichococcus shcherbakoviae* sp. nov., isolated from a laboratory-scale anaerobic EGSB bioreactor operated at low temperature. Int J Syst Evol Microbiol, 2019, 69(2): 529-534.
- [38] 李建昌,张无敌. 氢分压对种间氢转移的影响. 云南师范大学学报(自然科学版), 2005, 25(5): 21-25.
 Li JC, Zhang WD. The effect of partial hydrogen pressure on interspecies hydrogen transfer. J Yunnan Norm Univ (Nat Sci Ed), 2005, 25(5): 21-25 (in Chinese).
- [39] Rabaey K. Bioelectrochemical systems: from extracellular electron transfer to biotechnological application. Wio, 2009, 8: 264-268.
- [40] Zhang Z, Song Y, Zheng S, et al. Electro-conversion of carbon dioxide (CO₂) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: the current status and future perspective. Bioresour Technol, 2019, 2799(1): 339-349.

(本文责编 陈宏宇)