Apr. 25, 2022, 38(4): 1565-1575 ©2022 Chin J Biotech, All rights reserved

 •合成生物技术
 •

异戊烯基转移酶 N 端截短强化异戊烯基柚皮素合成

郭超杰^{1,2,3}, 高松^{1,2,3}, 李宏彪^{1,2,3}, 吕云斌^{1,2,3}, 余世琴^{1,2,3}, 周景文^{1,2,3}

1 江南大学 未来食品科学中心, 江苏 无锡 214122

2 江南大学 生物工程学院, 江苏 无锡 214122

3 江南大学 粮食发酵工艺与技术国家工程实验室, 江苏 无锡 214122

郭超杰,高松,李宏彪,吕云斌,余世琴,周景文.异戊烯基转移酶 N 端截短强化异戊烯基柚皮素合成. 生物工程学报, 2022, 38(4): 1565-1575. GUO CJ, GAO S, LI HB, LV YB, YU SQ, ZHOU JW. N-terminal truncation of prenyltransferase enhances the biosynthesis of prenylnaringenin. Chin J Biotech, 2022, 38(4): 1565-1575.

摘 要: 8-戊烯基柚皮素 (8-prenylnaringenin, 8-PN) 是一种强有效的雌激素,具有很高的药用价值,同样也是多种异戊烯基黄酮的前体。微生物合成 8-PN 主要面临异戊烯基转移酶 (prenyltransferases, PTs) 催化活性较低以及前体供给不足等问题,严重阻碍了 8-PN 在微生物体内的高效合成。文中以苦参 (Sophora flavescens) 来源的 SfN8DT-1 为对象,研究如何实现更高效的 柚皮素异戊烯基化反应。结构预测显示,SfN8DT-1 主要由 9 个 a-螺旋和 8 个环的主体,以及一个近 120 个氨基酸的长侧链组成。将侧链不同位点序列截断的 SfN8DT-1 在酿酒酵母中表达,发现截 短至 K62 位点时 8-PN 产量最高,将该蛋白命名为 SfND8T-1-t62。SfN8DT-1-t62 与柚皮素和二甲基丙烯基二磷酸 (dimethylallyl diphosphate, DMAPP) 进行分子对接,发现 K185 是一个潜在的关键位点。对底物 0.5 nm 范围内的氨基酸进行丙氨酸扫描突变,突变体 K185A 对底物的亲和力下降,表明 K185 是一个潜在的关键催化位点。模拟饱和突变表明,突变体 K185W 对配体的亲和力增强,而 K185 饱和突变后 8-PN 产量显著下降,说明 K185 对 SfN8DT-1 的功能至关重要。另外,结合甲羟戊酸 (mevalonate, MVA) 途径关键基因的强化, 8-PN 产量达到 31.31 mg/L,说明 DMAPP 的供 给也是 8-PN 合成的关键因素。最后,将产量最高的菌株在 5 L 发酵罐中进行发酵,发酵 120 h 后 8-PN 产量达到 44.92 mg/L,是目前报道的最高水平。

关键词:酿酒酵母; 8-异戊烯基柚皮素; 分子对接; 丙氨酸扫描; 饱和突变

Received: June 17, 2021; Accepted: October 8, 2021; Published online: November 9, 2021 Supported by: National Natural Science Foundation of China (21908078, 32021005) Corresponding author: ZHOU Jingwen. Tel/Fax: +86-510-85918312; E-mail: zhoujw1982@jiangnan.edu.cn 基金项目: 国家自然科学基金 (21908078, 32021005)

N-terminal truncation of prenyltransferase enhances the biosynthesis of prenylnaringenin

GUO Chaojie^{1,2,3}, GAO Song^{1,2,3}, LI Hongbiao^{1,2,3}, LYU Yunbin^{1,2,3}, YU Shiqin^{1,2,3}, ZHOU Jingwen^{1,2,3}

1 Science Center for Future Foods, Jiangnan University, Wuxi 214122, Jiangsu, China

2 School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China

3 National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, Jiangsu, China

Abstract: 8-prenylnaringenin (8-PN) is a potent estrogen with high medicinal values. It also serves as an important precursor for many prenylated flavonoids. Microbial synthesis of 8-PN is mainly hindered by the low catalytic activity of prenyltransferases (PTS) and insufficient supply of precursors. In this work, a SfN8DT-1 from Sophora flavescens was used to improve the efficiency of (2S)-naringenin prenylation. The predicted structure of SfN8DT-1 showed that its main body is comprised of 9 α-helices and 8 loops, along with a long side chain formed by nearly 120 amino acids. SfN8DT-1 mutants with different side-chain truncated were tested in Saccharomyces cerevisiae. A mutant expressing the truncated enzyme at K62 site, designated as SfND8T-1-t62, produced the highest 8-PN titer. Molecular docking of SfN8DT-1-t62 with (2S)-naringenin and dimethylallyl diphosphate (DMAPP) showed that K185 was a potentially crucial residue. Alanine scanning within a range of 0.5 nm around these two substrates showed that the mutant K185A may decrease its affinity to substrates, which also indicated K185 was a potentially critical residue. Besides, the mutant K185W enhanced the affinity to ligands implied by the simulated saturation mutation, while the saturated mutation of K185 showed a great decrease in 8-PN production, indicating K185 is vital for the activity of SfN8DT-1. Subsequently, overexpressing the key genes of Mevalonate (MVA) pathway further improved the titer of 8-PN to 31.31 mg/L, which indicated that DMAPP supply is also a limiting factor for 8-PN synthesis. Finally, 44.92 mg/L of 8-PN was produced in a 5 L bioreactor after 120 h, which is the highest 8-PN titer reported to date.

Keywords: *Saccharomyces cerevisiae*; 8-prenylnaringenin; molecular docking; alanine scanning; saturated mutation

8-异戊烯基柚皮素 (8-prenylnaringenin, 8-PN) 是一种柚皮素异戊烯基化的衍生物,分 布于少数几种植物中,如啤酒花^[1]和苦参^[2]等。 8-PN 是强有效的雌激素类似物,具有多种生物 活性,特别是在缓解女性更年期和预防骨质疏 松等方面^[3-5],具有重要的临床应用价值。此外, 8-PN 也是合成重要黄酮类药物淫羊藿素和淫 羊藿苷的关键前体。 目前,8-PN 主要以提取和合成两种方法生产。提取法主要从废啤酒花中提取。由于啤酒花球果中 8-PN 含量很低,每千克啤酒花球果只有25-60 mg 的 8-PN,比黄腐酚的含量低 10 倍^[6-7]。此外,啤酒花球果还存在其他同分异构体,如6-异戊烯基柚皮素 (6-prenylnaringenin, 6-PN)等,增加了 8-PN 分离和纯化的难度。合成法生产 8-PN 主要包括化学合成法和微生物合成法。

余心哲等以 2,4,6-三羟基苯乙酮和对羟基苯甲 醛为原料, 经过异戊烯基化等 5 步反应成功合成 了 8-PN, 但是收率较低, 仅为 47%^[8]。生物合成 8-PN 由 3 部分构成 (图 1), 即从头合成柚皮素骨 架、酿酒酵母内源甲羟戊酸 (mevalonate, MVA) 途径合成二甲基丙烯基二磷酸 (dimethylallyl diphosphate, DMAPP), 以及异戊烯基转移酶 (prenyltransferases, PTs) 催化柚皮素和 DMAPP 合成 8-PN。酿酒酵母 (*Saccharomyces cerevisiae*) 通常被认为是安全的 (GRAS) 模式菌株, 适合 大规模的工业应用^[9]。近年来, 利用代谢工程 的方法已成功实现酿酒酵母高产柚皮素^[10-11]。 因此, 利用酿酒酵母生物合成 8-PN 越来越受到 人们的关注。

在 8-PN 合成过程中 PTs 起到了关键作用, 并且多数 PTs 有较严格的底物特异性和区域特 异性[12]。目前能够催化柚皮素 8 位异戊烯基化 的酶的相关报道较少,且均为植物来源^[13-14]。 2008年 Sasaki 等首次从苦参中分离鉴定能够合 成 8-PN 的基因, 命名为 SfN8DT-1^[15]。后续实 验表明, SfN8DT-1 对柚皮素具有 100%的底物 特异性和区域特异性[16]。李博等在酿酒酵母中 构建柚皮素合成涂径并选择 SfN8DT-1 催化合 成 8-PN, 首次实现了 8-PN 的微生物法从头合 成^[17],然而由于前体柚皮素合成效率较低,限 制了 8-PN 的合成。Levisson 等选择苦参来源的 SfFPT 用于从头合成 8-PN,并强化了柚皮素合 成途径,最终在酿酒酵母中合成 0.12 mg/L 的 8-PN^[18]。由于 PTs 在微生物中表达后活性降低 以及前体柚皮素和 DMAPP 供给不足的问题, 限制了 8-PN 的高效合成。植物来源的 PTs 大部 分具有不同的定位信号,将它们定位于不同的

Figure 1 Biosynthesis pathway of 8-PN. *Fj*TAL: tyrosine ammonia-lyase from *Flavobacterium johnsoniae*; *Pc*4CL: 4-coumarate: CoA ligase from *Petroselinum crispum*; *Ph*CHS: chalcone synthase from *PetuniaX hybrid*; *Sm*CHI: chalcone synthase from *Silybum marianum*; EGR10: acetyl-CoA C-acetyltransferase; ERG13: hydroxymethylglutaryl-CoA synthase; tHMGR, truncated 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase; ERG12: mevalonate kinase; ERG8: phosphomevalonate kinase; MVD1: mevalonate pyrophosphate decarboxylase; IDI1: isopentenyl pyrophosphate isomerase. PTs: prenyltransferases; Blue arrow: endogenous MVA pathway in *S. cerevisiae*; Orange arrow: naringenin synthesis pathway; Red arrow: PTs catalyze (2*S*)-naringenin to form 8-PN.

☎: 010-64807509

细胞器,如内质网、线粒体和叶绿体等^[14]。这 些定位信号随后被信号肽酶切除^[19],但在异源 宿主中进行表达时,这些定位信号可能无法被 识别并切除。因此,该冗余序列可能会影响酶 自身的结构和功能。Sasaki 等截短了 SfN8DT-1 前30个氨基酸,发现对酶的活性未产生影响[15]。 李博等分别截短了前 40 个和 84 个氨基酸, 8-PN 的产量分别提高了 44.2%和 119.1%[17]。上述研 究表明,不同位点进行截短会对酶的活性产生 不同的影响。因此,本文通过在线网站预测了 SfN8DT-1的结构,根据预测结果选取 13 个位 点进行截短并进行发酵验证。随后,以截短后 蛋白质为模板进行分子对接、丙氨酸扫描突变 以及关键位点饱和突变,鉴定出一个关键催化 位点。最后,针对 DMAPP 的供给,强化 MVA 途径中关键基因,进一步提高 8-PN 的产量,结 果表明 DMAPP 是限制 8-PN 生物的关键因素。 本研究结果对后续 PTs 催化机理的探究具有一 定的参考价值。

1 材料与方法

1.1 材料

1.1.1 菌株与质粒

大肠杆菌 (Escherichia coli) JM109 用于质

表1 本实验所使用的菌株和质粒

粒构建与扩增。酿酒酵母 PN01 用于 8-PN 的合成。质粒 pY26-TEF-GPD^[20]用于表达载体的构建。文中所使用的菌株和质粒列于表 1 中。

1.1.2 培养基

LB 培养基 (g/L): 蛋白胨 1, 酵母提取物 5, 氯化钠 10。根据需要加入 0.1 g/L 的氨苄青霉素 钠。固体培养基加入 20 g/L 琼脂粉。

YPD 培养基 (g/L): 葡萄糖 20, 蛋白胨 20, 酵母粉 10, 固体培养基加入 20 g/L 琼脂粉。

YNB 培养基 (g/L): 葡萄糖 20, 酵母无氨 基氮源 6.74, 添加 50 mg/L 对应的缺陷氨基酸 (His、Trp、Leu、Ura), 固体培养基加入 20 g/L 琼脂粉。

5 L 发酵罐中补料培养基 (g/L): 葡萄糖 400、酵母粉 15、Na₂SO₄ 0.56、MgSO₄·7H₂O 10.24、KH₂PO₄ 18、Na₂SO₄ 0.56、K₂SO₄ 7、色 氨酸 1、亮氨酸 1、组氨酸 1、尿嘧啶 1、微量 金属溶液 20 mL/L、维生素溶液 24 mL/L^[21]。

1.1.3 试剂

抗生素、氨基酸、质体提取试剂盒、PCR 产物回收试剂盒均购自生工生物工程(上海) 股份有限公司。蛋白胨和酵母粉购自Oxoid公 司。8-PN标品购自宝鸡市辰光生物科技有限公 司。乙腈(质谱纯)购自德国 Merck 公司。其

Strains and plasmids	Description	Resources	
CENPK2-1D	MATa ura3-52, leu2-3, 112, trp1-289, his3∆1	Lab storage	
PN01	CENPK2-1D, Δpdc5::GAL7p-FjTAL-TDH3t, Δaro10::CYC1t-ARO4 ^{K229L} -GAL1,	[22]	
	10p-ARO7 ^{G141S} -ADH1t-G418, Δgal80::TRP1,		
	∆rDNA::PhCHS-GAL10p-GAL1p-ALD5p-SmCHI-ARO7p-Pc4CL-TDH3p-FjTAL-HIS		
PN01-S	Strain PN01 harboring plasmid pY26-SfN8DT-1	This study	
PN01-Sf-txx	Strain PN01 harboring plasmid pSf-tXX	This study	
PN01-Sf-t62K185X	Strain PN01 harboring plasmid pSf-t62K185X	This study	
pY26-TEF-GPD	PGAL7-TCYC1-PGAL2-TADH1; Amp, Ura3, 2µ ori, pBR322 ori, and F1 ori	This study	
pY26-SfN8DT-1	pY26-P _{GAL7} -SfN8DT-1-T _{CYC1}	This study	
pSf-txx	pY26-P _{GAL7} -SfN8DT-1-txx-T _{CYC1}	This study	
pSf-t62K185X	pY26-P _{GAL7} -SfN8DT-1-t62K185X-T _{CYC1}	This study	

Table 1Strains and plasmids used in this study

http://journals.im.ac.cn/cjbcn

余试剂均购自上海国药集团。无缝克隆酶、感受态制备试剂盒购自大连宝生物有限公司 (TaKaRa)。引物合成和 DNA 测序由苏州金唯智 生物科技有限公司完成。

1.2 方法

1.2.1 质粒和菌株的构建

使用引物 Txx-F (xx 为截短的位点)和 Tts-R 作为上游和下游引物,以 *SfN8DT-1* 为模 板构建质粒,并连接于 pY26-TEF-GPD 质粒上, 分别命名为 pSf-txx;使用引物 K185X-F (X 为 突变后的氨基酸)和 K185-R,以 pSf-t62 为模 板构建质粒,命名为 pSf-t62K185X。构建的质 粒转入*E. coli* JM109 中用于质粒的扩增和提取。 本文所使用引物见表 2。采用醋酸锂转化方法^[23] 将质粒转入酿酒酵母菌株中进行游离表达。

1.2.2 培养条件

种子液:挑取阳性转化子于装有 5 mL YNB

(添加 Leu) 的 50 mL 摇瓶中, 220 r/min、30 ℃ 培养 16–18 h。摇瓶发酵:种子液按照 1%接种 于装有 25 mL YPD 培养基的 250 mL 摇瓶中, 220 r/min、30 ℃培养 120 h。

5 L 发酵罐:种子液按照上述培养方法以 3%接种于含有 2.5 L YPD 培养基的 5 L 发酵罐 中。初始搅拌速度为 250 r/min,空气流速为 2.5 L/min,温度为 30 ℃。发酵 16 h 后,将补料 培养基以 5 mL/h 的流速加入发酵罐中,共加入 300 mL。用 4 mol/L NaOH 将 pH 控制在 5.5, 用溶解氧 (dissolved oxygen, DO) 与搅拌耦合 程序将 DO 控制在 15%,设置为 250–600 r/min, 空气流速为 2.5 L/min。

1.2.3 样品检测

发酵 120 h 后,取 500 µL 发酵液,12 000 r/min 离心 1 min。取上清,分别在上清和沉淀物中加 入 500 µL 乙酸乙酯。混匀并吸取上清液中上层

Timoro aboa in tino staay	
Sequences $(5' \rightarrow 3')$	
CATTTTTGAGGGAATATTCAACTGTT	
TGAATATTCCCTCAAAAATGAACTTAAAACAACATTACAAGGTGA	
TGAATATTCCCTCAAAAATGTTAAAACAACATTACAAGGTGAATGAA	
TGAATATTCCCTCAAAAATGAAACAACATTACAAGGTGAATGAA	
TGAATATTCCCTCAAAAATGCAACATTACAAGGTGAATGAA	
TGAATATTCCCTCAAAAATGAAGAAGTATGTTGTTAACGCTATTTC	
TGAATATTCCCTCAAAAATGGAACAATCCTTCGAATACGAACC	
TGAATATTCCCTCAAAAATGACTAGAGACCCTGAATCAATTTGGG	
TGAATATTCCCTCAAAAATGAGAGACCCTGAATCAATTTGGGATT	
TGAATATTCCCTCAAAAATGGACCCTGAATCAATTTGGGATTCT	
TGAATATTCCCTCAAAAATGCCTGAATCAATTTGGGATTCTGTTA	
TGAATATTCCCTCAAAAATGAACGACGCTTTGGATATTTTCTACA	
TGAATATTCCCTCAAAAATGATTTTCTACAAATTCTGTAGACCATATG	
TGAATATTCCCTCAAAAATGAAATTCTGTAGACCATATGCTATGTTCA	
TGAATATTCCCTCAAAAATGTTCTGTAGACCATATGCTATGTTCACT	
TGAATATTCCCTCAAAAATGTGTAGACCATATGCTATGTTCACTATC	
TGAATATTCCCTCAAAAATGAGACCATATGCTATGTTCACTATCGT	
TGAATATTCCCTCAAAAATGCCATATGCTATGTTCACTATCGTTTTG	
TGTGTGATATTGAAATCGAT <u>NNK</u> ATCAA	
ATCGATTTCAATATCACACAATTGGTTC	
	Sequences (5'→3') CATTTTTGAGGGAATATTCAACTGTT TGAATATTCCCTCAAAAATGAACTTAAAACAACATTACAAGGTGA TGAATATTCCCTCAAAAATGTTAAAACAACATTACAAGGTGAATGAA

表 2 本实验所使用引物

Table 2Primers used in this study

有机相,将二者乙酸乙酯合并至装有 0.5 mm 玻 璃微珠的破碎管中,使用 FastPrep-24TM 5G 仪 器破碎细胞。然后经 0.22 µm 过滤膜过滤所有 乙酸乙酯。样品检测采用配备有 PDA 检测器和 Hypers11 ODS 250 4.6 mm² 5 µm C18 色谱柱的 高效液相色谱系统。流动相为纯水 (A 相)和乙腈 (B 相),均加入 1‰三氟乙酸,采用梯度洗脱程 序。流速为 1 mL/min,程序为:T=0 min,B=10%; T=10 min,B=40%;T=30 min,B=80%;T= 35 min,B=80%;T=37 min,B=10%;T=40 min, B=10%。柱温设置为 40 ℃,柚皮素和 8-PN 的 检测波长分别为 290 nm 和 350 nm。

1.2.4 蛋白质结构预测、分子对接和虚拟筛选

利用在线网站 (https://drug.ai.tencent.com/) 对蛋白质二级结构进行预测。使用 AutoDock 4.2 软件对底物和蛋白质进行分子对接^[24]。配体 柚皮素和 DMAPP 通过全局对接的方式连接于 蛋白质上。选择具有最高结合能的对接模型以 及距离配体 0.5 nm 范围内的残基进行后续虚拟 筛选。虚拟筛选利用 Discovery Studio 2016 软 件对被选中的残基进行模拟突变,该算法通过 计算蛋白质与配体的结合能来识别有潜力的残 基。当结合能为正值时,表明蛋白与配体的亲 和力会降低;结合能为负值时,表明蛋白与配 体的亲和力会增加。

2 结果与分析

2.1 蛋白质结构预测与截短

在线网站预测的结果 (图 2A) 显示,SfN8DT-1 由一个包含 9 个 α-螺旋和 8 个环的主体骨架以 及一个长侧链组成。长侧链由近 120 个氨基酸 组成,侧链的存在有可能会干扰酶本身的结构 和功能。为了消除侧链对酶活性的影响,根据 预测的结构,在侧链上选取了 13 个不同的位 点,分别对其进行截短。以一株可以实现从头合

http://journals.im.ac.cn/cjbcn

成柚皮素的酿酒酵母菌株 E32 (后面称为 PN01) 作为出发菌株^[22],转入质粒 pY26-SfN8DT-1 和 pSf-txx,获得菌株 PN01-S 和 PN01-Sf-txx,在 YPD 培养中发酵 120 h 后,结果如图 2B 和 2C 所示。在截短至 E81 位置后,8-PN 的产量较对 照增加,当截短至 H59-K62 时 8-PN 产量有大

图 2 SfN8DT-1 不同位点截短对 8-PN 合成的影响 Figure 2 Effects of truncation at different sites of SFN8DT-1 on 8-PN synthesis. (A) Predicted secondary structure of SfN8DT-1 by an online website. H: α-helix; L: loop. (B) 13 sites were selected and marked in red; pink predicted signal peptide (SP). (C) 8-PN titer of 13 truncated sites.

幅度的提高。可能 H59-K62 截短后对酶的结构 影响较小。当截短到 E91、Q99 和 T100 这 3 个 位点时,L5 受到干扰 (图 2A),8-PN 产量开始 下降。而 R101 截短后,8-PN 产量增加,说明 L5 的干扰会影响其酶活性,截短至 D102 和 V110 位置出现同样的情况。截短到 D115-R122 位置后,H7 被破坏。推测 H7 可能参与了跨膜 结构的形成。综上,截短至 K62 的 8-PN 产量 最高,达到 9.33 mg/L,相比于对照菌株提高了 290%,命名为 PN01-pSf-t62。

植物来源的 PTs 大多数具有信号肽,可将其 引导至不同的细胞器,如线粒体、叶绿体、内质 网等^[14]。SfN8DT-1 的 N 端具有一段定位至质体 膜的定位序列^[15],而在酿酒酵母中没有此细胞 器。因此,信号肽的存在可能会干扰蛋白质的催 化活性。针对侧链的截短可能消除了信号肽对蛋 白质的影响,从而显著地提高了 8-PN 产量。

2.2 SfN8DT-1-t62 底物对接分析

进一步对 SfN8DT-1-t62 进行分析。首先, 采用与 SfN8DT-1 相同的方法进行结构预测。如 图 3A 所示,截短后的蛋白质侧链发生了明显 的变化,但主要结构保持不变。然后,选择 SfN8DT-1-t62 作为模板,在 AutoDock 4.2 软件 中进行蛋白质与底物柚皮素和 DMAPP 对接。 如图 3B 所示,柚皮素结合在一个大的空腔中, 而 DMAPP 结合在柚皮素附近的一个较小的空 腔中。如图 3B 所示,柚皮素与 Asn173、Asp177、 Asn184、Lys185 和 Asp307 这 5 个氨基酸形成 氢键, DMAPP 与 Lys185、Glu312、Gly313 和 Lys316 (均为截短后所对应的氨基酸顺序) 4 个 氨基酸形成氢键。而 Lys185 (K185) 同时与这 两种配体形成氢键,猜测 K185 是一个关键的催 化位点,可能参与了 DMAPP 与柚皮素的连接。

2.3 丙氨酸扫描和饱和突变

进一步评估 K185 等潜在残基对整个催化

图 3 SfN8DT-1-t62 分子对接情况分析 Figure 3 Molecular docking analysis. (A) Predicted secondary structure of SfN8DT-1-t62. (B) Molecular docking of SfN8DT-1-t62 with (2S)-naringenin and DMAPP.

反应的影响。首先,对两个配体 0.5 nm 范围内 的氨基酸进行丙氨酸扫描突变。如表 3 所示, 只有 K185 突变为 A 时,其与配体的亲和力开 始下降,结合能为 0.68 kcal/mol,这可能表明 K185 是一种潜在的关键氨基酸。随后,通过对 K185 进行模拟饱和突变,旨在寻找一个能有效 提高 8-PN产量的突变体。当K185 突变为W时, 其与底物的亲和力增加,而当K185 突变为G、 E、S、T 时,其与底物的亲和力下降。为进一 步验证其准确性,构建 K185 点突变质粒并转 化至菌株 PN01 中,获得菌株 PN01-sf-t62K185X (X 表示不同氨基酸)。结果如图 4 所示,当K185 突变为任一氨基酸时, 8-PN 产量均出现显著下 降,甚至无法检测到。

这一结果表明 K185 是异戊烯基化反应中 不可或缺的关键位点。根据图 3 中分子对接结 果, K185 同时与柚皮素和 DMAPP 形成氢键, 但将其突变为任意氨基酸时,均造成 8-PN 产量 下降。根据上述结果,可以猜测 K185 可能参 与柚皮素和 DMAPP 的结合过程,并对 8-PN 合 成至关重要。由于植物来源的 PTs 多为膜蛋白, 且结晶相对困难, K185 在 PTs 催化机制中的作 用仍需要进一步实验解释。

表 3 针对底物柚皮素和 DMAPP 0.5 nm 范围内 氨基酸进行丙氨酸扫描

Table 3Alanine scanning of residues within 0.5nm around naringenin and DMAPP

Mutation	Binding energy (kcal/mol)	Effect
N385	-0.02	Neutral
D177	-0.01	Neutral
D314	-0.01	Neutral
S321	-0.01	Neutral
N173	0	Neutral
Q174	0	Neutral
C176	0	Neutral
D181	0	Neutral
Y237	0	Neutral
N238	0	Neutral
W246	0	Neutral
K248	0	Neutral
P250	0	Neutral
T253	0	Neutral
A330	0	Neutral
D187	0.01	Neutral
K247	0.01	Neutral
K306	0.01	Neutral
D307	0.01	Neutral
I319	0.01	Neutral
I180	0.02	Neutral
P309	0.02	Neutral
M311	0.02	Neutral
L188	0.04	Neutral
D310	0.04	Neutral
I183	0.05	Neutral
F317	0.07	Neutral
E312	0.21	Neutral
K316	0.24	Neutral
P186	0.29	Neutral
G313	0.37	Neutral
N184	0.43	Neutral
K185	0.68	Destabling

2.4 DMAPP 供给强化

前体供应是目标产物合成的限制因素之一^[9,25-26],在 8-PN 生物合成途径中,柚皮素和 DMAPP 这两种前体供应不足可能限制其产量 的提高。以往的研究表明,柚皮素是 8-PN 生物

图 4 K185 位点饱和突变发酵结果 Figure 4 Fermentation result of saturated mutation of K185.

合成的关键因素^[18],但本研究中,只有部分柚 皮素被异戊烯基化 (小于 8%)。DMAPP 更有可 能成为异戊烯基化反应的限制因素。在酿酒酵 母中,DMAPP 主要由 MVA 途径合成^[27],过量 表达关键基因 *tHMGR* 和 *IDI1* 是增加 DMAPP 补充的常用策略^[28-29]。

本研究通过过表达 *tHMGR* 和 *IDI1*,形成 菌株 PN04 (1拷贝 *tHMGR*)、PN06 (1拷贝 *IDI1*)、 PN13 (1拷贝 *tHMGR* 和 *IDI1*),进一步转化质 粒 pSf-t62,分别形成 PN04-sf-t62、PN06-sf-t62 和 PN13-sf-t62。结果如图 5 所示,当过表达 *IDI1* (PN06-sf-t62) 基因时,8-PN 的含量相对于对照 菌株提高了 60.99%,达到 15.02 mg/L。当只过 表达 *tHMGR* 基因 (PN04-sf-t62)时,8-PN 的产 量下降比较明显,可能由于 *tHMGR* 基因的强化 更利于下游萜类化合物,如角鲨烯等的合成^[30], 使得 8-PN 合成过程中 DMAPP 供给不足。当同 时过表达 *IDI1* 和 *tHMGR* (PN13-sf-t62)时,发 酵 120 h 8-PN 产量达到了 31.31 mg/L,相比对 照菌株提高了 233.58%。

图 5 过表达 MVA 途径关键基因 Figure 5 Overexpressing key genes in MVA pathway.

结果表明强化 DMAPP 的供给可以显著提高 8-PN 的产量。HMGR 催化的反应是 MVA 途径的限速步骤,该途径合成的 IPP 和 DMAPP 是萜类和固醇类化合物合成的重要前体。研究表明,过量表达 *HMGR* 有利于角鲨烯和麦角甾醇的积累^[30-31]。可能单独强化 *HMGR* 的表达不利于 DMAPP 的积累,而同时过量表达 *HMGR*和 *IDI1* 有利于 DMAPP 积累^[32]。该结果暗示 DMAPP 是 8-PN 合成的限制因素之一。

2.5 5L发酵罐水平验证

将菌株 PN13-sf-t62 在 5 L 发酵罐中进行培养,并进行流加补料。接种 16 h 后开始流加补料,补料速度为 5 mL/h,共补料 300 mL。结果如图 6 所示,发酵 120 h 后,8-PN 的产量达到44.92 mg/L,OD₆₀₀达到 76.3。菌株 PN13-sf-t62 在 5 L 罐中扩大培养后,8-PN 的产量进一步提高 43.47%,与摇瓶中相比,8-PN 产量在 5 L 罐中提升并不明显,可能由于异戊烯基转移酶基 因是构建于质粒上进行表达,游离质粒在酿酒 酵母中大约每代会丢失 5%^[33],这是造成发酵后 期产物增长缓慢的重要原因。

图 6 PN13-sf-t62 菌株在 5 L 发酵罐中的发酵结果 Figure 6 Fermentation result of PN13-sf-t62 strain in a 5 L bioreactor.

3 讨论

8-PN 是强有效的雌激素,具有多种生物活 性,同时也是重要药物淫羊藿素合成的前体, 具有非常重要的药用价值。目前,生物合成柚 皮素取得十分重要的进展,如 Gao 等^[10]通过不 同表达强度的启动子组合优化柚皮素合成途 径,最终柚皮素的产量在 5 L 罐中能够达到 1.21 g/L。然而,生物合成异戊烯基化柚皮素的 产量却十分低^[18],并且相关的报道较少,可能 由于目前少有能够催化柚皮素异戊烯基化的酶 的报道以及 PTs 本身较低的催化效率。

研究表明,在不同宿主中表达外源蛋白可 能会导致蛋白活性的明显降低甚至是丧失活 性,这可能成为天然产物生物合成的瓶颈^[34]。 PTs 在生物合成 8-PN 过程中起到了关键作用, 与 UbiA 超家族中的大多数 PTs 一样,SfN8DT-1 是定位于叶绿体膜上的膜结合蛋白^[15],然而, 酿酒酵母中没有这样的细胞器,这意味着其原 始转运肽可能无法将 SfN8DT-1 转移到目标细 胞器。这种本该被叶绿体信号肽酶切割的冗余序 列很可能会干扰蛋白质的结构和功能^[19]。对无 序或冗余的蛋白质序列进行截短是改善其各种 性质的常用方法^[35-36]。

本研究通过在线网站预测了 SfN8DT-1 的 二级结构,并根据预测结果选取了13位点分别 进行截短。发现在不同位置的截短会对蛋白质 功能产生不同的影响,相对于根据信号肽预测 结果来随机截短,根据蛋白质结构进行截短, 更能够清晰地了解截短对蛋白质结构及功能的 影响。但是,具体机制仍需进一步的实验来解 释。然后,通过分子对接、丙氨酸扫描等,分 析并鉴定出了一个关键催化位点 K185, 该结果 为后续 SfN8DT-1 催化机理的解析做出了铺垫。 通过强化 DMAPP 的供给,显著提高了 8-PN 的 产量,并发现 DMAPP 是影响 8-PN 生物合成的 关键因素。最后,在5L罐中进行发酵,8-PN 的产量提高至 44.92 mg/L。在本研究中,仍有 大部分柚皮素未被消耗,说明从头合成 8-PN 具 有很大的提升空间。后续实验可以通过改造 PTs 催化活性以及筛选具有高催化活性酶等策略, 进一步提高 8-PN 的合成。此外,前体 DMAPP 的供给相对柚皮素可能更加重要,后续实验有 必要进一步强化 DMAPP 的供给。本研究为高 效生物合成 8-PN 提供了一定的参考价值。

REFERENCES

- Tronina T, Popłoński J, Bartmańska A. Flavonoids as phytoestrogenic components of hops and beer. Molecules, 2020, 25(18): 4201.
- [2] Boozari M, Soltani S, Iranshahi M. Biologically active prenylated flavonoids from the genus *Sophora* and their structure-activity relationship—a review. Phytother Res, 2019, 33(3): 546-560.
- [3] Van Breemen RB, Chen LY, Tonsing-Carter A, et al. Pharmacokinetic interactions of a hop dietary supplement with drug metabolism in perimenopausal and postmenopausal women. J Agric Food Chem, 2020, 68(18): 5212-5220.
- [4] Komrakova M, Rechholtz C, Pohlmann N, et al. Effect of alendronate or 8-prenylnaringenin applied as a single therapy or in combination with vibration on

- [5] Koosha S, Mohamed Z, Sinniah A, et al. Antiproliferative and apoptotic activities of 8-prenylnaringenin against human colon cancer cells. Life Sci, 2019, 232: 116633.
- [6] Moens E, Bolca S, van de Wiele T, et al. Exploration of isoxanthohumol bioconversion from spent hops into 8-prenylnaringenin using resting cells of *Eubacterium limosum*. AMB Express, 2020, 10(1): 79.
- [7] Bolton JL, Dunlap TL, Hajirahimkhan A, et al. The multiple biological targets of hops and bioactive compounds. Chem Res Toxicol, 2019, 32(2): 222-233.
- [8] 余心哲,汪亚林,张杰,等. 8-异戊烯基柚皮素的全 合成方法研究. 化学世界, 2016, 57(1): 30-34.
 Yu XZ, Wang YL, Zhang J, et al. Studies on total synthesis of 8-prenylnaringenin. Chem World, 2016, 57(1): 30-34 (in Chinese).
- [9] Lian J, Mishra S, Zhao H. Recent advances in metabolic engineering of *Saccharomyces cerevisiae*: new tools and their applications. Metab Eng, 2018, 50: 85-108.
- [10] Gao S, Zhou HR, Zhou JW, et al. Promoter-librarybased pathway optimization for efficient (2S)-naringenin production from p-coumaric acid in *Saccharomyces cerevisiae*. J Agric Food Chem, 2020, 68(25): 6884-6891.
- [11] Gao S, Lyu YB, Zeng WZ, et al. Efficient biosynthesis of (2S)-naringenin from p-coumaric acid in *Saccharomyces cerevisiae*. J Agric Food Chem, 2020, 68(4): 1015-1021.
- [12] Li W. Bringing bioactive compounds into membranes: the UbiA superfamily of intramembrane aromatic prenyltransferases. Trends Biochem Sci, 2016, 41(4): 356-370.
- [13] Chen RD, Liu X, Zou JH, et al. Regio-and stereospecific prenylation of flavonoids by *Sophora flavescens* prenyltransferase. Adv Synth Catal, 2013, 355(9): 1817-1828.
- [14] de Bruijn WJC, Levisson M, Beekwilder J, et al. Plant aromatic prenyltransferases: tools for microbial cell factories. Trends Biotechnol, 2020, 38(8): 917-934.
- [15] Sasaki K, Mito K, Ohara K, et al. Cloning and characterization of naringenin 8-prenyltransferase, a flavonoid-specific prenyltransferase of *Sophora flavescens*. Plant Physiol, 2008, 146(3): 1075-1084.
- [16] Yazaki K, Sasaki K, Tsurumaru Y. Prenylation of

aromatic compounds, a key diversification of plant secondary metabolites. Phytochemistry, 2009, 70(15/16): 1739-1745.

[17] 李博,梁楠,刘夺,等. 合成 8 二甲基异戊烯基柚皮素的人工酿酒酵母菌株构建. 中国生物工程杂志,2017,37(9):71-81.
Li B, Liang N, Liu D, et al. Metabolic engineering of *Saccharomyces cerevisiae* for production of 8-dimenthylally naringenin. China Biotechnol, 2017,

37(9): 71-81 (in Chinese).

- [18] Levisson M, Araya-Cloutier C, de Bruijn WJC, et al. Toward developing a yeast cell factory for the production of prenylated flavonoids. J Agric Food Chem, 2019, 67(49): 13478-13486.
- [19] Muthamilselvan T, Kim JS, Cheong G, et al. Production of recombinant proteins through sequestration in chloroplasts: a strategy based on nuclear transformation and post-translational protein import. Plant Cell Rep, 2019, 38(7): 825-833.
- [20] Li A, Liu Z, Li Q, et al. Construction and characterization of bidirectional expression vectors in *Saccharomyces cerevisiae*. FEMS Yeast Res, 2008, 8(1): 6-9.
- [21] Li GJ, Li HB, Lyu YB, et al. Enhanced biosynthesis of dihydromyricetin in *Saccharomyces cerevisiae* by coexpression of multiple hydroxylases. J Agric Food Chem, 2020, 68(48): 14221-14229.
- [22] Li HB, Gao S, Zhang SQ, et al. Effects of metabolic pathway gene copy numbers on the biosynthesis of (2S)-naringenin in *Saccharomyces cerevisiae*. J Biotechnol, 2021, 325: 119-127.
- [23] Lyu Y, Zeng W, Du G, et al. Efficient bioconversion of epimedin C to icariin by a glycosidase from *Aspergillus nidulans*. Bioresour Technol, 2019, 289: 121612.
- [24] Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem, 2009, 30(16): 2785-2791.
- [25] Lyu X, Ng KR, Lee JL, et al. Enhancement of naringenin biosynthesis from tyrosine by metabolic engineering of *Saccharomyces cerevisiae*. J Agric Food Chem, 2017, 65(31): 6638-6646.
- [26] Luo Z, Liu N, Lazar Z, et al. Enhancing isoprenoid synthesis in *Yarrowia lipolytica* by expressing the

isopentenol utilization pathway and modulating intracellular hydrophobicity. Metab Eng, 2020, 61: 344-351.

- [27] 张松涛,陈红丽,崔红,等. 植物 MEP 途径的代谢 调控机制.西北植物学报,2012,32(7):1500-1504.
 Zhang ST, Chen HL, Cui H, et al. Multiple regulation mechanisms of MEP pathway in plant. Acta Bot Boreali-Occidentalia Sin, 2012, 32(7): 1500-1504 (in Chinese).
- [28] Li M, Hou F, Wu T, et al. Recent advances of metabolic engineering strategies in natural isoprenoid production using cell factories. Nat Prod Rep, 2020, 37(1): 80-99.
- [29] Wang JH, Jiang W, Liang CJ, et al. Overproduction of α -farnesene in *Saccharomyces cerevisiae* by farnesene synthase screening and metabolic engineering. J Agric Food Chem, 2021, 69(10): 3103-3113.
- [30] Polakowski T, Stahl U, Lang C. Overexpression of a cytosolic hydroxymethylglutaryl-CoA reductase leads to squalene accumulation in yeast. Appl Microbiol Biotechnol, 1998, 49(1): 66-71.
- [31] Liu Y, Zhu X, Li W, et al. Enhancing production of ergosterol in *Pichia pastoris* GS115 by over-expression of 3-hydroxy-3-methylglutaryl CoA reductase from *Glycyrrhiza uralensis*. Acta Pharm Sin B, 2014, 4(2): 161-166.
- [32] Zhao J, Bao X, Li C, et al. Improving monoterpene geraniol production through geranyl diphosphate synthesis regulation in *Saccharomyces cerevisiae*. Appl Microbiol Biotechnol, 2016, 100(10): 4561-4571.
- [33] Gnügge R, Rudolf F. Saccharomyces cerevisiae shuttle vectors. Yeast, 2017, 34(5): 205-221.
- [34] Li C, Zhang R, Wang J, et al. Protein engineering for improving and diversifying natural product biosynthesis. Trends Biotechnol, 2020, 38(7): 729-744.
- [35] Li LM, Dong FY, Lin L, et al. N-terminal domain truncation and domain insertion-based engineering of a novel thermostable type I pullulanase from *Geobacillus thermocatenulatus*. J Agric Food Chem, 2018, 66(41): 10788-10798.
- [36] Stojanovski BM, Breydo L, Uversky VN, et al. Murine erythroid 5-aminolevulinate synthase: truncation of a disordered N-terminal extension is not detrimental for catalysis. Biochim Biophys Acta, 2016, 1864(5): 441-452.

(本文责编 郝丽芳)