November 25, 2017, 33(11): 1877–1882 ©2017 Chin J Biotech, All rights reserved

生物育种与工艺优化。

大肠杆菌磷酸烯醇式丙酮酸-糖磷酸转移酶系统改造 对产 L-色氨酸的影响

吴涛,赵津津,毛贤军

梅花生物科技集团股份有限公司 廊坊梅花生物技术开发有限公司,河北 廊坊 065001

吴涛,赵津津,毛贤军. 大肠杆菌磷酸烯醇式丙酮酸-糖磷酸转移酶系统改造对产 L-色氨酸的影响. 生物工程学报, 2017, 33(11): 1877–1882. Wu T, Zhao JJ, Mao XJ. Effect of PTS modifications on L-tryptophan production in *Escherichia coli*. Chin J Biotech, 2017, 33(11): 1877–1882.

摘 要:L-色氨酸是芳香族氨基酸的一种,被广泛应用于医药、食品和饲料等领域。大肠杆菌磷酸烯醇式丙酮酸-糖磷酸转移酶系统 (PTS系统) 在葡萄糖转运和磷酸化过程中起重要作用,是糖代谢基因表达调控的核心。 利用 Red 同源重组系统,构建包含两类典型 PTS系统突变 (ptsHIcrr⁻glf-glk⁺和 ptsG⁻)的L-色氨酸生产菌,并 对相关菌株进行补料分批发酵研究。结果表明,不同类型 PTS系统突变对菌体生长、L-色氨酸产量、糖酸转 化率及副产物生成均有较大影响。与出发菌相比,ptsHIcrr⁻glf-glk⁺突变株最高 OD₆₀₀达到 125,提高 47.0%, 产酸 38.5 g/L,提高 25.9%,糖酸转化率 16.7%,提高 26.5%,乙酸生成略有增加; ptsG 突变株最高 OD₆₀₀达 到 100,提高 17.6%,产酸 33.4 g/L,提高 9.4%,糖酸转化率 15.5%,提高 17.4%,乙酸生成略有减少。对葡 萄糖转运系统的进一步研究将为大肠杆菌合成 L-色氨酸效率的提升提供帮助。

关键词:大肠杆菌,L-色氨酸,PTS系统,补料分批发酵

Effect of PTS modifications on L-tryptophan production in *Escherichia coli*

Tao Wu, Jinjin Zhao, and Xianjun Mao

Meihua Biotech (Langfang) Co., Ltd., Meihua Holdings Group, Langfang 065001, Hebei, China

Abstract: L-tryptophan, one of the aromatic amino acids, is widely used in the fields of medicine, food and feed additives. The phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS) plays an important role in glucose transport and phosphorylation in *Escherichia coli*. PTS-mediated regulation dominates the carbohydrates' uptake and metabolism in *E. coli*. We constructed L-tryptophan-producing bacteria containing two typical PTS mutations (*ptsHlcrr⁻ glf-glk⁺* and *ptsG⁻*) by Red homologous recombination system, and studied in 50 L jar fermenter using fed-batch fermentation. Both PTS system mutants had a great impact on the biomass (increasing 47.0% and 17.6%, respectively), L-tryptophan production (increasing 25.9% and 9.4%, respectively), glucose conversion rate (increasing 26.5% and 17.4%, respectively) and byproduct acetic acid generation (slightly increased and decreased, respectively).

Keywords: Escherichia coli, L-tryptophan, phosphotransferase system, fed-batch fermentation

Corresponding author: Jinjin Zhao. Tel: +86-316-2359999; E-mail: Zhaojinjin@meihuagrp.com 网络出版时间: 2017-11-07 网络出版地址: http://kns.cnki.net/kcms/detail/11.1998.Q.20171107.1128.001.html

Received: November 28, 2016; Accepted: July 21, 2017

L-色氨酸是芳香族必需氨基酸的一种,被广泛应用于饲料、医药和食品等领域。目前L-色氨酸的合成效率偏低,高昂的价格严重限制了其应用规模。提高L-色氨酸的生物合成效率、降低生产成本具有重要的应用价值。L-色氨酸生物合成途径复杂,前体来源于糖酵解途径、磷酸戊糖途径及三羧酸循环等多个基础代谢途径。每合成1 mol L-色氨酸需要1 mol 磷酸烯醇式丙酮酸 (PEP)和1 mol 4-磷酸赤藓糖 (E4P) 作为起始前体,另外还需分别消耗 PEP、谷氨酰胺、5-磷酸核糖焦磷酸 (PRPP) 和丝氨酸各1 mol^[1]。因此,研究色氨酸合成代谢对研究微生物代谢平衡具有重要的科学意义。

1979年, Tribe等^[2]利用 DNA 重组技术首次将 *trpE* 基因引入大肠杆菌, L-色氨酸产量达到 1 g/L。此后, 随着代谢工程改造的深入和发酵工艺的优化,利用重 组大肠杆菌或谷氨酸棒杆菌发酵生产 L-色氨酸的效率 得到了数十倍的提升^[3-7]。1996年, Berry^[3]在大肠杆菌 中高表达去除反馈抑制 (Feed-back resistance, fbr)的 *aroG*^{fbr}、*trpE*^{fbr}DCBA 基因,发酵 52 h产 L-色氨酸近 45 g/L,过程最高糖酸转化率约为 22%。1999年, Ikeda 等^[4]在产 L-色氨酸的谷氨酸棒杆菌 pIK9960 中高表达 *tktA* 基因,增加 L-色氨酸合成前体 E4P 的水平,从而 提高 L-色氨酸的合成效率,发酵 80 h的 L-色氨酸产量 达到 58 g/L。2012年, Cheng 等^[7]通过对产 L-色氨酸 大肠杆菌 TRJH 的发酵补料策略优化,发酵 40 h 左右, 产量达到 38.8 g/L,糖酸转化率高达 19.9%。

大肠杆菌可通过多种途径转运并磷酸化葡萄糖 生成 6-磷酸葡萄糖, 然后将其导入糖酵解途径。野 生型大肠杆菌利用磷酸烯醇式丙酮酸-糖磷酸转移 酶系统 (简称 PTS 系统) 转运并磷酸化葡萄糖。PTS 系统由 EI、HPr 和 EIIs 构成, EI、HPr 分别由 ptsI、ptsH 基因编码,为胞质可溶性蛋白; Ells 包 括EII^{Man}、EII^{Fru}、EII^{Bgl}、EIIA^{Glc}、EIICB^{Glc}等, 多为蛋白复合体,对碳水化合物具有特异性,其中 EIIA^{Glc}、EIICB^{Glc}分别由 crr、ptsG 基因编码^[8-9]。 PTS 系统转运 1 mol 葡萄糖需消耗 1 mol PEP^[9-10]。 当大肠杆菌在以葡萄糖为碳源的限制性培养基中生 长时, PTS 系统消耗了约 50%的 PEP 用于葡萄糖的 转运和磷酸化^[11],直接影响以 PEP 为前体的化合物 (如莽草酸、芳香族氨基酸、天冬氨酸族氨基酸等)的 合成。在 PTS 系统缺陷大肠杆菌中, 葡萄糖可以通 过半乳糖/氢离子协同转运蛋白 (D-Galactose/H+ symporter, GalP) 和葡萄糖激酶 (Glucokinase, Glk) 协同作用进入胞内^[9-11],以 ATP 为磷酸基团供体, 但以 GalP、Glk 协同作用磷酸化转运葡萄糖的效率 较低[11]。另外,大肠杆菌也可通过引入外源高效的 葡萄糖转运磷酸化系统,如运动假单胞菌来源的 glf、 glk 基因,分别编码葡萄糖转运蛋白 (Glucose facilitator, Glf)和葡萄糖激酶 (Glk),以 ATP 为磷酸基团供体,转运并磷酸化葡萄糖^[11-12]。

PTS 系统改造的大肠杆菌被广泛应用于多种化 合物的发酵生产,如莽草酸、苯丙氨酸、乙醇等^[11-12]。 对于 PTS 系统的修饰改造可分为 3 类: ptsG、PTS Glc⁺ (ptsHIcrr突变菌经进化获得可在葡萄糖为碳源 的限制性培养基上生长的 Glc⁺表型) 和 PTS⁻glf-glk⁺ (ptsHIcrr突变菌通过表达外源 glf、glk 基因获得 Glc⁺ 表型)^[11]。本研究采用 Red 同源重组系统,构建了两类 典型的 PTS 系统突变体 ptsHIcrr glf-glk⁺和 ptsG,将其 应用于产 L-色氨酸生产菌的构建, PTS 系统突变后, 葡萄糖转运将不再消耗 PEP, 胞内色氨酸重要前体物 PEP 的水平提高 1 倍,色氨酸生产能力有望显著提高。 本研究还对不同 PTS 系统改造菌株的生产性能进行了 补料分批发酵初步研究,首次综合评价了不同类型 PTS 系统改造对大肠杆菌产 L-色氨酸的影响。

1 材料与方法

1.1 菌株与质粒

本研究使用的菌株和质粒见表 1。产 L-色氨酸大 肠杆菌 MA01 为出发菌,公开保藏于中国普通微生物 菌种保藏管理中心 (China General Microbiological Culture Collection Center, CGMCC),保藏编号为 CGMCC No. 6863,根据专利 WO8701130A1^[13]及 Mascarenhas 等^[14]描述的方法构建,其宿主菌 SA01

表1 本研究使用的菌株和质粒 Table 1 Strains and plasmids used in this study

Strains & plasmids	Relevant genotype	Source or reference
Strains		
SA01	<i>E. coli</i> K-12 CICC 10303 $\Delta tnaA \Delta serA$	CGMCC
MA01	SA01 pMG43	CGMCC
SA09	SA01 ptsHIcrr	This study
SA29	SA01 ptsG	This study
MA10	SA09 pMG43	This study
MA103	SA09 pMG56	This study
MA209	SA29 pMG43	This study
Plasmids		-
pMG43	pBR322 ori, serA, aro G^{tbr} , trp $E^{fbr}DCBA$, Tc ^R	CGMCC
pMG56	pMG43 Ptac-glf-glk, Tc ^R	This study
pKD4	oriR6Kgamma, rgnB(Ter), kan, Ap ^R	CGSC ^[15]
pKD46	oriR101,repA101(ts), araBp-gam-bet-exo, Ap ^R	CGSC ^[15]
pCP20	ts-rep, [cI857](lambda)(ts), cat, FLP, Ap ^R	CGSC ^[15]
pSC6.090B	pSU18 Ptac-glf-glk, tktA, serA	ATCC ^[16]

为 E. coli K-12 CICC 10303 衍生的 E. coli K-12 CICC 10303 ΔtnaA ΔserA, 所含质粒 pMG43 为 pBR322 来 源,包含有 serA、aroG^{fbr}和 trpE^{fbr}DCBA 基因。

1.2 培养基

种子培养基: 20 g/L 葡萄糖, 15 g/L 酵母浸粉, 10 g/L (NH₄)₂SO₄, 0.5 g/L 柠檬酸钠, 5 g/L MgSO₄·7H₂O, 1.5 g/L KH₂PO₄, 15 mg/L FeSO₄·7H₂O, 1.2 mg/L V_{B1} , pH 7.0_{\circ}

发酵培养基: 10 g/L 葡萄糖, 1 g/L 酵母浸粉, 4 g/L (NH₄)₂SO₄, 2 g/L 柠檬酸钠, 5 g/L MgSO₄·7H₂O, 2 g/L KH₂PO₄, 0.1 g/L FeSO₄·7H₂O, 6.3 mg/L MnSO₄·H₂O, 7.4 mg/L ZnSO₄·H₂O, 5.6 mg/L CoCl₂·6H₂O, 0.8 mg/L $CuSO_4 \cdot 5H_2O$, pH 7.0_o

主要试剂 1.3

Phusion[®] High-Fidelity DNA 聚合酶购于 NEB 公 司,限制性内切酶和 T4 DNA 连接酶购于 Fermentas 公司,质粒提取试剂盒和DNA 回收试剂盒购于 Tiangen 公司,L-色氨酸、有机酸标准品购于 Sigma-Aldrich 公司。其他化学试剂均为国产或进口分析纯。

1.4 质粒载体构建

采用常规分子克隆技术^[17],如 PCR 扩增、酶切、 连接和转化等构建重组质粒 pMG56, 具体方法如下, 所用引物序列见表 2。

1.4.1 质粒载体 pET28-glfglk 的构建

以质粒 pSC6.090B 为模板, 用引物 glfglk1 和

glfglk2 扩增约 2.3 kb 的 FK1 片段, 用引物 glfglk3 和 glfglk4 扩增约 1.0 kb 的 FK2 片段。以 FK1 和 FK2 为模板,用引物 glfglk1 和 glfglk4 扩增约 3.3 kb 的 glf-glk DNA 片段,产物用 Xba I、Sph I 双酶切, 与经同样酶切的质粒 pET28a 连接,产物转化 Top10 感受态细胞,转化子用 glfglk1 和 glfglk4 为引物 PCR 鉴定,阳性约 3.3 kb。提取重组质粒,用 Xba I、 Sph I 双酶切鉴定,所得重组质粒 pET28-glfglk 约 8.3 kb

1.4.2 重组质粒 pMG56 的构建

质粒 pET28-glfglk 用 Xba I、Sph I 双酶切, 回收约 3.3 kb 的 glf-glk DNA 片段, 与经同样酶切的 质粒 pMG43 连接, 产物转化 Top10 感受态细胞, 转 化子用 glfglk1 和 glfglk4 为引物 PCR 鉴定,阳性约 3.3 kb。提取重组质粒,用 Spe I、Sph I 双酶切鉴 定,所得重组质粒 pMG56 约 15.8 kb。

1.5 突变菌的构建

采用 Datsenko KA 等^[15]所述的 Red 同源重组方 法构建突变菌株,具体方法如下。

1.5.1 ptsHIcrr 基因敲除菌的构建

以质粒 pKD4 为模板, pts1 和 pts2 为引物, PCR 扩增约 1.5 kb 的 *ptsHIcrr* 突变基因,电击转化 100 μL 含有质粒 pKD46 的 SA01 感受态细胞, 30 ℃孵育 1-2 h, 涂布含卡那霉素(25 µg/mL)的 LB 平板, 30 ℃ 静置培养 24 h, 挑单克隆以 pts3 和 pts4 为引物菌落 PCR 鉴定, 阳性约 1.5 kb, 所得菌株即为 ptsHIcrr 基因的突变菌株 SA01 ΔptsHIcrr::kan。

表 2 本研究使用的引物	勿	
--------------	---	--

Table 2Summary of primers used in this study

Primer sequence (5'-3')Name Function glfglk1 GCTCTAGACGACATCATAACGGTTCTG glfglk2 ACGCGCATGGGTTCCACCGATGTCAATCG To amplify Ptac-glf-glk glfglk3 CGGTGGAACCCATGCGCGTTTCTCTATTG glfglk4 ACATGCATGCGACTAGTCAGCCTCTTAAATTCAGTTC CTAGACTTTAGTTCCACAACACTAAAACCTATAAGTTGGGGAAATACAATG pts1 **GTGTAGGCTGGAGCTGCTTC** To delete ptsHIcrr AAATGGCGCCGATGGGCGCCATTTTTCACTGCGGCAAGAATTACTTCTTG pts2 CATATGAATATCCTCCTTAG pts3 GCTAAAGTCGAACCGCCAGG To screen the positive mutation **CCAGCAGCATGAGAGCGATG** pts4 of ptsHIcrr pts6 TTGCCGCGATCTCGACAGTG AAAGCACCCATACTCAGGAGCACTCTCAATTATGTTTAAGAATGCATTTG<u>G</u> ptsG1 TGTAGGCTGGAGCTGCTT To delete ptsG ptsG2 ATATGAATATCCTCCTTAG ptsG3 **CCTTGCCACGCGTGAGAACG** To screen the positive mutation of ptsG ptsG4 **AAAGGCAGCCATCTGGCTGC**

The coding region are underlined, the restriction sites are indicated by bold letters.

将 质 粒 pCP20 电 击 转 化 菌 株 SA01 $\Delta ptsHIcrr::kan$,菌液涂布含氯霉素(25 µg/mL)的 LB 平板,30 ℃静置培养 24 h。得到的单菌落转接无抗 LB 平板,42 ℃静置培养 12 h,以 pts3 和 pts6 为引 物进行菌落 PCR 鉴定,阳性约 0.5 kb,所得菌株即 为 ptsHIcrr 基因敲除的重组菌株 SA01 ptsHIcrr。

1.5.2 ptsG 基因敲除菌的构建

与 ptsHIcrr 基因敲除菌的构建方法相同。

1.6 培养条件

摇瓶培养:从冻存管取菌种在 LB 平板上划线, 37 ℃培养 24 h;将菌体接种至装有 20 mL 发酵培养 基的 500 mL 摇瓶中, 37 ℃、240 r/min 振荡培养 48 h。

发酵培养:将过夜培养的菌液接种至 50 mL 种子 培养基中,37 ℃、240 r/min 振荡培养 5–10 h, *OD*₆₀₀ 控制在 6–8;将菌液转接至装有 10 L 种子培养基的 20 L 发酵罐,36 ℃培养 9–18 h, *OD*₆₀₀ 控制在 13–18, 溶氧控制在 30%以上,pH 控制在 6.8–7.0;取 2.2 L 菌液转接至装有 20 L 发酵培养基的 50 L 发酵罐, 35 ℃培养 40–45 h,溶氧控制在 10%–20%,转速 200– 800 r/min,罐压 0.05–0.10 MPa,pH 6.5–6.6,待初 糖耗尽后,流加 60% (*m/V*)葡萄糖,流加糖速率为 3–17 g/(L·h)。

1.7 葡萄糖、L-色氨酸及其他有机酸含量的测定

取1mL发酵液,12000 r/min 离心3min,测定上 清液中葡萄糖、L-色氨酸及有机酸的含量。葡萄糖采用 SBA-40C生物传感分析仪(山东省科学院)进行测定。 L-色氨酸及有机酸分别采用 HPLC 法进行测定^[18-19]。

2 结果与分析

2.1 L-色氨酸生产菌的构建

按 1.4 所述方法,构建重组质粒 pMG56。按 1.5 所述方法,分别构建了 *ptsHlcrr* 缺失突变株 SA09 和 *ptsG* 缺失突变株 SA29。以 SA09 为宿主转化质粒 pMG43 或 pMG56,分别构建了 L-色氨酸生产菌 MA10 和 MA103;以 SA29 为宿主转化质粒 pMG43, 构建了 L-色氨酸生产菌 MA209。

2.2 PTS 系统改造对 L-色氨酸生产菌生长的影响

MA01 、 MA10 (*ptsHlcrr*) 、 MA103(*ptsHlcrr glf-glk*⁺)、MA209 (*ptsG*) 按 1.6 所述的方法进行摇瓶培 养,每 2 h 取样,测定生长曲线 (图 1),重复实验 3 次。 与出发菌 MA01 相比, *ptsHlcrr* 缺失突变株 MA10 葡萄 糖摄入能力差,生长缓慢;在 MA10 内引入 *glf、glk* 基 因,获得的菌株 MA103 生长旺盛,最高 *OD*₆₀₀ 值达到 16.9,较 MA01 提高了 35.6%; *ptsG* 缺失突变株 MA209, 延滞期较出发菌 MA01 延长近 4 h, 但最终 *OD*₆₀₀ 值仍 达到 14.8, 较 MA01 提高 19.4%。

2.3 PTS 系统改造对 L-色氨酸生产菌发酵性 能的影响

MA01、MA103 和 MA209 按 1.6 所述的方法进 行发酵培养,测定各菌株的生长曲线,发酵液中葡 萄糖、L-色氨酸及其他有机酸含量的变化,最终产 酸及糖酸转化率(图 2)。发酵过程采用葡萄糖限制 补料分批发酵工艺,控制发酵液中葡萄糖浓度接近 0 g/L,见图 2A。*ptsHIcrr* 缺陷株 MA103 最高 *OD*₆₀₀ 值达到 125,较出发菌 MA01 提高 47.0%;*ptsG* 缺 陷株 MA209 虽然前期生长稍慢,最高 *OD*₆₀₀ 值也能 达到 100,较出发菌 MA01 提高 17.6%,但 32 h后 *OD*₆₀₀ 值有明显下降的趋势。

L-色氨酸合成过程及最终产酸、糖酸转化率如 图 2B 和 2D 所示,与出发菌 MA01 相比,*ptsHIcrr* 缺 陷株 MA103 能够达到的最高产酸为 38.5 g/L,提高 25.9%,糖酸转化率为 16.7%,提高 26.5%; *ptsG* 缺 陷株 MA209 最高产酸为 33.4 g/L,提高 9.4%,糖酸 转化率为 15.5%,提高 17.4%。

发酵液中的有机酸副产物,如乙酸、甲酸、乳酸、丙酮酸、柠檬酸、莽草酸的含量也进行了测定。结果表明,乙酸含量差别最大,变化趋势也最明显,如图 2C 所示。*ptsHIcrr* 缺陷株 MA103 最高乙酸含量是 MA01 的 2.1 倍,达到 4.1 g/L,而 *ptsG* 缺陷株 MA209 的乙酸含量较 MA01 低,最高值仅为 1.5 g/L。 其他有机酸含量偏低,且无显著变化。

图 1 PTS 系统改造 L-色氨酸生产菌生长曲线 Fig. 1 Comparison of growth curves of different PTS modified L-tryptophan producing strains.

图 2 PTS 系统改造 L-色氨酸生产菌的发酵性能 Fig. 2 Results of L-tryptophan fermentation using different PTS modified L-tryptophan producing *E. coli* strains. (A) Glucose concentration (open symbols) and growth curves (filled symbols). (B) Concentration of L-tryptophan. (C) Concentration of acetic acid. (D) L-tryptophan accumulation and product yields in g L-tryptophan per g glucose.

3 讨论

当大肠杆菌在以葡萄糖为碳源的限制性培养基中生长时,PTS系统消耗了约50%的PEP用于葡萄糖的转运和磷酸化,而用于合成3-脱氧-D-阿拉伯庚酮糖酸-7-磷酸 (DAHP)的PEP 仅占3%^[12,20],因此将PTS系统替换成利用ATP进行磷酸化的葡萄糖转运系统,对以PEP 为前体的芳香族化合物的生物合成具有重要的应用价值。

然而大肠杆菌 PTS 系统与碳代谢总体调控蛋白 CRP-cAMP 紧密关联。腺苷酸环化酶环化 ATP 生成 cAMP,其活性受磷酸化的 EII A^{Glc} (由 *crr* 基因编码) 激活,因此不同类型的 PTS 系统改造会直接影响胞 内 cAMP 的含量。一般认为 *ptsHIcrr*突变体因缺失 *crr* 基因, cAMP 含量较低, 而 *ptsG*突变体因含有磷酸化的 EII A^{Gle}, cAMP 含量较高^[9,12]。在 RegulonDB和 EcoCyc数据库(http://regulondb.ccg.unam.mx/index.jsp和 http://biocyc.org/ecocyc/index.shtml)中,除糖(阿拉伯糖、木糖、乳糖等)代谢相关基因外,还有131个"简单"或"复杂"的转录单元被CRP-cAMP激活、抑制或双重调控。这些调控单元与TCA循环、呼吸、渗透压调节、压力响应、生物膜形成、毒力、氮代谢、铁的吸收、感受态能力、多种药物抗性、非编码 RNA等相关^[12]。因此,不同类型 PTS 系统突变对于不同化合物生物合成的影响可能存在显著的差异。

本研究首次综合评价了不同类型 PTS 系统改造 对于大肠杆菌产 L-色氨酸的影响。结果表明,不同 类型 PTS 系统突变对菌体生长、L-色氨酸产量、糖 酸转化率及副产物生成均有较大影响,且表型存在 较大差异。MA103 (*ptsHIcrr glf-glk*⁺) 在发酵罐中的 最高 *OD*₆₀₀ 值能达到 120 以上,对高密度发酵产 L-色氨酸非常有利,最高产酸达 38.5 g/L。但发酵液中 乙酸含量也相对偏高,达到 4.1 g/L,这可能与引入 的外源基因 glf、glk 的表达强度有关,调整合适的 glf、glk 基因表达水平,将有望降低乙酸的水平,得 到 L-色氨酸产量更高的重组菌株。或者通过优化发 酵补料策略,降低乙酸水平^[7,21-22]。

MA209 (ptsG) 因 PTS 系统被阻断, PEP 不再 作为葡萄糖磷酸化的磷酸供体^[8-9],葡萄糖通过半乳 糖/氢离子协同转运蛋白 (GalP) 和葡萄糖激酶(Glk) 协同作用进入胞内^[9-11],以 ATP 为磷酸基团供体, 但以 GalP、Glk 协同作用磷酸化转运葡萄糖的效率 较低^[11],故 MA209 菌的葡萄糖摄入系统较弱,延滞 期较出发菌 MA01 偏长,进入对数中后期,蛋白表 达系统已经建立,比生长速率和糖耗速率与 MA01 菌接近。但 MA209 菌的葡萄糖摄入水平较弱, 不易 积累乙酸,有利于发酵控制。通过增大接种量或优 化培养基配方等手段可进一步缩短延滞期时长,获 得更高的 L-色氨酸产酸和糖酸转化率。另外,与 MA103 菌相比, MA209 菌需激活自身另一套转运葡 萄糖系统,涉及复杂的代谢调控,代谢调控过程中 浪费较多的碳骨架和能量,故而生长速率、转化效 率都会受到影响。

REFERENCES

- Ikeda M. Towards bacterial strains overproducing *L*-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol, 2006, 69(6): 615–626.
- [2] Tribe DE, Pittard J. Hyperproduction of tryptophan by *Escherichia coli*: genetic manipulation of the pathways leading to tryptophan formation. Appl Environ Microbiol, 1979, 38(2): 181–190.
- [3] Berry A. Improving production of aromatic compounds in *Escherichia coli* by metabolic engineering. Trends Biotechnol, 1996, 14(7): 250–256.
- [4] Ikeda M, Katsumata R. Hyperproduction of tryptophan by *Corynebacterium glutamicum* with the modified pentose phosphate pathway. Appl Environ Microbiol, 1999, 65(6): 2497–2502.
- [5] Bongaerts J, Krämer M, Müller U, et al. Metabolic engineering

for microbial production of aromatic amino acids and derived compounds. Metab Eng, 2001, 3(4): 289–300.

- [6] Gosset G. Production of aromatic compounds in bacteria. Curr Opin Biotechnol, 2009, 20(6): 651–658.
- [7] Cheng LK, Wang J, Xu QY, et al. Effect of feeding strategy on *L*-tryptophan production by recombinant *Escherichia coli*. Ann Microbiol, 2012, 62(4): 1625–1634.
- [8] Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev, 2006, 70(4): 939–1031.
- [9] Neidhardt FC, Curtiss III R, Ingraham JL, et al. *Escherichia coli* and Salmonella. 2nd ed. Washington DC: ASM Press, 1996: 1824–1866.
- [10] Hernández-Montalvo V, Martínez A, Hernández-Chavez G, et al. Expression of *galP* and *glK* in a *Escherichia coli* PTS mutant restores glucose transport and increases glycolytic flux to fermentation products. Biotechnol Bioeng, 2003, 83(6): 687–694.
- [11] Gosset G. Improvement of *Escherichia coli* production strains by modification of the phosphoenolpyruvate: sugar phosphotransferase system. Microb Cell Fact, 2005, 4(1): 14.
- [12] Escalante A, Cervantes AS, Gosset G, et al. Current knowledge of the *Escherichia coli* phosphoenolpyruvatecarbohydrate phosphotransferase system: peculiarities of regulation and impact on growth and product formation. Appl Microbiol Biotechnol, 2012, 94(6): 1483–1494.
- [13] Mascarenhas D. Tryptophan producing microorganism: WO, 8701130A1. 1985-08-15.
- [14] Mascarenhas D, Ashworth DJ, Chen CS. Deletion of *pgi* alters tryptophan biosynthesis in a genetically engineered strain of *Escherichia coli*. Appl Environ Microbiol, 1991, 57(10): 2995–2999.
- [15] Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. Proc Natl Acad Sci USA, 2000, 97(12): 6640–6645.
- [16] Frost JW, Frost KM, Knop DR. Biocatalytic synthesis of shikimic acid: US, 6472169B1. 2002-10-29.
- [17] Sambrook J, Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2001: 2–110.
- [18] Cheng LK, Xu QY, Xie XX, et al. Quick determination of *L*-tryptophan in fermented broth by HPLC. J Tianjin Univ Sci Technol, 2010, 25(1): 9–12 (in Chinese). 程立坤, 徐庆阳, 谢希贤, 等. HPLC 快速测定发酵液中 *L*-色氨酸. 天津科技大学学报, 2010, 25(1): 9–12.
- [19] Suárez DC, Kilikian BV. Acetic acid accumulation in aerobic growth of recombinant *Escherichia coli*. Process Biochem, 2000, 35(9): 1051–1055.
- [20] Flores S, Gosset G, Flores N, et al. Analysis of carbon metabolism in *Escherichia coli* strains with an inactive phosphotransferase system by ¹³C labeling and NMR spectroscopy. Metab Eng, 2002, 4(2): 124–137.
- [21] Eiteman MA, Altman E. Overcoming acetate in *Escherichia coli* recombinant protein fermentations. Trends Biotechnol, 2006, 24(11): 530–536.
- [22] de Mey M, de Maeseneire S, Soetaert W, et al. Minimizing acetate formation in *E. coli* fermentations. J Ind Microbiol Biotechnol, 2007, 34(11): 689–700.

(本文责编 郝丽芳)