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Progress of stress-induced flowering in plants
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Abstract: Plants tend to flower earlier if placed under stress conditions. Those stress factors include drought, high
salinity, low temperature, high- or low-intensity light, and ultraviolet light. This phenomenon has been called
stress-induced flowering. Stress-induced plant flowering might be helpful for species preservation. Thus, stress-induced
flowering might have biological significance and should be considered as important as other plant flowering control
strategy. Here, history of stress-induced flowering, metabolic regulation and molecular regulation mechanisms in plants

were reviewed. Potential perspective was discussed.
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Fig. 1 Regulation model of stress-induced flowering )

in plants. AOPP: L-2-aminooxygen-3-phenyl acrylic
acid; AOA: aminooxyacetic acid; PAL: phenylalanine
ammonia-lyase; SA: salicylic acid; FT: flowering locus
T; LFY: LEAFY; FLC: flowering locus C; IAA: indole
acetic acid; PA: polyamine.
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