February 25, 2015, 31(2): 269–280 ©2015 Chin J Biotech, All rights reserved

生物技术与方法

靶向膜型1基质金属蛋白酶反义肽的虚拟筛选与分 子模拟

曾丽,谭博文,杨亚蓝,邱槿怡,熊莉丽,茆灿泉

西南交通大学生命科学与工程学院 分子进化与应用生物学实验室,四川 成都 610031

曾丽, 谭博文, 杨亚蓝, 等. 靶向膜型 1 基质金属蛋白酶反义肽的虚拟筛选与分子模拟. 生物工程学报, 2015, 31(2): 269–280.

Zeng L, Tan BW, Yang YL, et al. Virtual screening and molecular simulations of antisense peptides targeting MT1-MMP. Chin J Biotech, 2015, 31(2): 269–280.

摘 要: 膜型1基质金属蛋白酶 (Membrane type-1 matrix metalloproteinase, MT1-MMP, MMP14) 在肿瘤的发 生发展及转移中起着重要作用, 是肿瘤潜在理想的药物靶标。为了获得 MT1-MMP 结合肽, 我们首先采用生 物信息学方法分析 MMPs 序列, 获得 MT1-MMP 差异大且特异的序列。以此为正义肽靶标, 设计反义肽库, 然后通过分子对接、分子动力学模拟以及体外细胞实验等多种方法,进行靶向 MT1-MMP 反义肽的筛选与活 性研究。多序列比对确定了位于 MT1-MMP 环区的特异序列 AYIREGHE (简称 MT1-loop), 并构建1536条反 义肽。经两轮虚拟筛选,选取打分位于前五的反义肽用于后续研究。该五条反义肽与 MT1-MMP 存在较强的 相互作用且能很好地对接于正义肽区域。进一步分析其与 MMPs 其他家族成员 (MMP1-3, MMP7-13, MMP14 HPX, MMP16) 的亲和力,发现反义肽 FVTFPYIR 对 MT1-MMP 具有更强的特异性。分子动力学模拟表明,反 义肽 FVTFPYIR 可能是通过影响受体 MT1-MMP 的构象稳定性,进而影响其功能活性。体外细胞实验初步确 定反义肽 FVTFPYIR 可选择性地抑制表达 MT1-MMP 的人成骨肉瘤细胞 MG63 和乳腺癌 MDA-MB-231 细胞的 增殖。本研究为抗肿瘤反义肽先导药物的研发提供了一种新的思路与途径。

关键词: 膜型 1 基质金属蛋白酶 (MT1-MMP, MMP14),反义肽,分子对接,分子动力学模拟

Received: April 2, 2014; Accepted: May 7, 2014

Supported by: the Fundamental Research Funds for the Central Universities of China (No. SWJTU09ZT28), National High Technology Research and Development Program of China (863 Program) (No. 2006AA06Z353).

Corresponding author: Canquan Mao. Tel: +86-28-87634296; E-mail: maocq@swjtu.edu.cn

中央高校基本科研业务费专题研究项目 (No. SWJTU09ZT28),国家高技术研究发展计划 (863 计划) (No. 2006AA06Z353) 资助。 网络出版时间:2014-05-28 网络出版地址:http://www.cnki.net/kcms/doi/10.13345/j.cjb.140199.html

Virtual screening and molecular simulations of antisense peptides targeting MT1-MMP

Li Zeng, Bowen Tan, Yalan Yang, Jinyi Qiu, Lili Xiong, and Canquan Mao

Laboratory of Molecular Evolution and Applied Biology, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China

Abstract: Membrane type-1 matrix metalloproteinase (MT1-MMP or MMP14) plays the pivotal role in tumor development and metastasis, so it is a promising drug target in malignancy. To acquire MT1-MMP specific binding peptides, we first analyzed MMPs sequences to find the divergent and specific sequence of MT1-MMP by bioinformatics approach, then set the specific sequence as the sense peptide target and designed antisense peptide library. Finally, by means of molecular docking, molecular dynamics simulation and in vitro cell assays, we screened the antisense peptide library against MT1-MMP and further studied the obtained specific peptides. Here, we identified the divergent and specific sequence of AYIREGHE (Named MT1-loop) located in MT1-MMP loop by multiple sequence alignment and established the antisense peptides library with capacity of 1 536 sequences. After two rounds of virtual screening, we obtained five antisense peptides with Rerankscores in the top for further screening. They all interacted with MT1-MMP, and docked well at the active site composed of MT1-loop sequence. Analysis of the affinities of these five antisense peptides to other MMPs (MMP1-3, MMP7-13, MMP14 HPX, MMP16) revealed that the peptide FVTFPYIR was more specific to MT1-MMP. Molecular dynamics simulation showed that the peptide FVTFPYIR might affect the stability of MT1-MMP and thus have effects on its activities. Meanwhile, the peptide FVTFPYIR could specifically inhibit the growth of MG63 and MDA-MB-231 tumor cells both of which expressed MT1-MMP. The work provides a new insight and way for the development of antitumor lead peptides targeting MT1-MMP.

Keywords: membrane type-1 matrix metalloproteinase (MT1-MMP, MMP14), antisense peptide, molecular docking, molecular dynamics simulation

基质金属蛋白酶 (Matrix metalloproteinases, MMPs) 属于锌离子依赖性内肽酶家族成员,参 与体内多种生理和病理过程。研究显示,MMPs 的过量表达在肿瘤的浸润、转移和新生血管形 成中起着重要的作用,与癌细胞的转化、生长 和信号传递等密切相关。作为 MMPs 家族的重 要成员之一,MT1-MMP 能够直接或间接降解细 胞外基质中的多种成分如纤连蛋白、层粘蛋白、 [型和]]型胶原^[1],并调控许多细胞粘附和信号 受体功能。它在多种肿瘤细胞中高度表达,促 进肿瘤细胞在体内外迁移、浸润和转移,同时 MT1-MMP 的表达对肿瘤细胞在 3D 胶原基质中 生长至关重要的。MT1-MMP 具有 MMPs 成员 的典型结构:前肽结构区、催化结构域、铰链 结构域和血红素样结构域 (HPX)^[2-3],同时具有 跨膜区、胞质尾端以及 furin 蛋白识别等位点。 其中催化结构域是 MT1-MMP 致癌特性最重要 的区域^[4],被认为是恶性肿瘤适宜的药物靶点而 成为国内外研究的热点^[5-6]。随着 HPX^[4,7-10]、跨 膜胞质区^[11]等其他区域作用功能的逐渐阐明, MT1-MMP 在整个肿瘤发生、发展中的重要作用 被更加确定。 反义肽即 DNA 反义链编码的多肽,如同 DNA 正义链和反义链那样,其与正义肽也存在 相互作用。目前有 Mekler-Idlis (M-I) 配对理论、 AHBs (反义同源盒)理论和分子识别理论对其 作用原理和机制进行了较为详细的描述^[12],其 相互作用主要是疏水性、静电引力、氢键。反 义肽和正义肽之间特殊的作用模式,已被用于 多个领域,如 Jackson 等用血管紧张素 II 的反义 肽证实了反义肽的药物功能。作为一种新型多 肽先导药物来源,反义肽在生物医药等领域具 有重要的研发前景。

国内外有大量的 MMPs 抑制剂 (Matrix metalloproteinase inhibitors, MMPIs) 研究报道, 但大部分的 MMPIs 被扼杀在 II、III临床阶段^[13], 其主要原因是 MMPs 家族序列同源性高、功能 区域三级结构相似,所研发的 MMPIs 广谱作用 而缺乏选择性,以致特异性低和毒副作用大。 筛选和获得高选择性的 MMPIs 已成为该领域研 发的关键。本研究以 MT1-MMP 膜表面蛋白为对 象,采用生物信息学与基于反义肽理论的虚拟筛 选技术,筛选与发现分子靶向 MT1-MMP 特异区 域的结合肽,期望为靶向 MT1-MMP 抗肿瘤反义 肽先导药物的研发提供一种新的思路与途径。

1 材料与方法

1.1 材料及数据来源

MMPs 蛋白序列下载自 NCBI 蛋白数据库 (http://www.ncbi.nlm.nih.gov/protein/),MMPs 三 维结构下载自 PDB 数据库 (http://www.rcsb.org/ pdb/home/home.do),蛋白序列及三维结构信息 见表 1;人成骨肉瘤 MG63、乳腺癌 MCF7 为本 实验室保存,人乳腺癌 MDA-MB-231 和 MDA-MB-453 细胞为成都医学院公共卫生系余 小平教授惠赠;FITC 标记和不标记的多肽由上 海强耀生物科技有限公司合成 (纯度 99%);细 胞培养基 DMEM 粉末和胎牛血清购自 Gibco 公 司;MTT 购自 Amresco 公司;其他试剂均购自 成都试剂公司,化学试剂为分析纯。

表1 MMPs 三维结构信息

Table 1	Three-dimensional structure information of MMPs
Iable I	Three unhensional servecure information of whith s

MMPs	Accession No.	PDB ID	MMPs	Accession No.	PDB ID
MMP1	EAW67031.1	3SHI	MMP15	NP_002419.1	
MMP2	EAW82827.1	1QIB	MMP16	AAH75005.1	1RM8
MMP3	EAW67032.1	4G9L	MMP17	AAH40507.2	
MMP7	EAW67023.1	2Y6D	MMP19	AAH50368.1	
MMP8	EAW67027.1	3TT4	MMP20	NP_004762.2	
MMP9	EAW75776.1	1L6J	MMP21	NP_671724.1	
MMP10	NP_002416.1	1Q3A	MMP23	NP_008914.1	
MMP11	NP_005931.2	1HV5	MMP24	NP_006681.1	
MMP12	EAW67033.1	4H76	MMP25	NP_071913.1	
MMP13	NP_002418.1	20W9	MMP26	NP_068573.2	
MT1 MMD/MMD14	P14 NP_004986.1	1BQM(CAT)	MMP27	AAQ89112.1	
WITT-WIWIF/WIWIF14		3C7X(HPX)	MMP28	NP_077278.1	

1.2 序列分析与反义肽设计

在 NCBI 数据库中下载所有人类 MMPs (MMP1-3、MMP7-17、MMP19-21、MMP23-28) 等 23 种已知的蛋白质序列,利用 Clustal X 1.81 软件进行序列比对及多重序列比对,获得与 MMPs 其他家族成员差异性大、MT1-MMP 特异 的多肽序列。以该特异序列为正义肽,根据 Meker-Idlis (M-I) 理论,设计相应的反义肽,运 用 Discovery Studio (DS) 2.0 软件中的 Protein Modeling 模块构建反义肽的三维结构,采用 CHARM 力场进行结构优化。

1.3 虚拟筛选

为获得 MT1-MMP 特异性结合的反义肽, 利用 DS2.0 中的 Libdock 模块和 Molegro Virtual Docker (MVD) 分子对接软件进行两轮筛选。 Libdock 初筛以 MT1-MMP 催化域为受体,以构 建的反义肽库为配体,正义肽为对接中心,半径 16.5 Å,每次保留 10 个构象,配体构象产生方 法为 best,Hotspots 为 150,其他参数默认,对 接结果以 Libdockscore 排序。第二轮采用 MVD 重筛,使用半柔性对接,对接算法采用 MolDock Optimizer,每个配体运行 10 次,每次最大迭代 5 000 步,对接结果以 Rerankscore 排序。

1.4 反义肽与其他 MMPs 成员分子对接

为了确定虚拟筛选获得的反义肽对 MT1-MMP的特异性,以经上述两轮筛选获得的 反义肽为配体,利用 MVD 软件对 PDB 数据库 中包括 MT1-MMP 的 HPX 结构域在内的已解析 三维结构的 MMPs 成员进行分子对接研究,对 接方法参照 1.3。

1.5 空载体与复合物的分子动力学模拟 分子动力学模拟和结果处理分别采用 NAMD 和 VMD1.9.1 软件。蛋白质-反义肽溶质 化采用边长为 70 nm 的立方体,加入 0.15 mmol/L 的 NaCl。先限制蛋白及反义肽,进行能量最小 化 (10 000 步,步长 2 fs) 和能量平衡 (200 000 步, 步长 2 fs),然后允许蛋白、反义肽和水分子同时 运动,再进行能量最小化 (10 000 步,步长 2 fs) 和 能量平衡 (2 500 000 步,步长 2 fs)。分子动力 学模拟采用 CHARM 力场,使用恒温 310 K 和常 压 1×10⁵ Pa。

1.6 体外肿瘤细胞活力测定

MG63、MDA-MB-231、MCF7、MDA-MB-453 细胞复苏,常规培养,以 5×10³ 个细胞/孔的浓度 铺于 96 孔板中培养过夜,加入不同浓度的合成 肽 (0.1、1、10、100 μg/mL, *n*=6) 继续培养, 24 h 后多肽换液一次,48 h 后进行细胞形态学观 察与 MTT 测定,方法参照文献[14]进行。

1.7 合成肽体外细胞亲和力测定

选用 MDA-MB-231 和 MCF7 细胞,以 5×10³ 个细胞/孔的浓度铺于 96 孔板中培养过夜,加入 不同浓度的 FITC 标记的多肽 (0.1、1、10、50、 100 μg/mL, *n*=5) 继续培养,24 h 后荧光观察后 换多肽液一次,48 h 再进行观察。

2 结果与分析

2.1 MT1-MMP 特异的多重序列分析及反义肽 设计

对 23 种已知的人 MMPs 家族成员进行多重序 列比对。根据比对结果,以 MT1-MMP 为研究对象, 选取与其他 MMPs 家族成员序列差异性相对较大的 AYIREGHE (简称 MT1-loop) 作为 MT1-MMP 的特 异序列 (图 1),该序列位于 MT1-MMP 的催化结构 域。以此为正义肽,运用 Meker-Idlis (M-I) 理论, 设计反义肽,共获得 1 536 条反义肽 (表 2)。

		165		172
		105		172
		\checkmark		₩
MMP14	FREVEN	AYII	REGH	EKOAD I
MMP15	FOEVPY	EDTI	RLRR	OKÈADI
MMP16	FÈEVPY	SELI	ENGK	- RDVD I
MMP24	FEEVPY	THEIL	SDR	- KEAD I
MMP17	FHEVA.			GSTADI
MMP25	FHEVDS	5	PQ	GQEPDI
MMP11	FTEVH			EGRADI
MMP1	FTKVSI	3		- GQAD I
MMP8	FTRISC	2		- GEADI
MMP3	FSRLY			- GEAD I
MMP10	FSRLY	<u>i</u> ·		- GEADI
MMP27	FIKISE	<u>_</u> ·		- GIADI
MMP12	FSKIN	[- GMAD I
MMP13	FIKLHI)		- GIADI
MMP7	FREVVV	N ·		- GIADI
MMP20	FVRINS	5		- GEADI
MMP2	FSKIHI)		- GEADI
MMP9	FIKVYS	5		- KDAD I
MMP26	FQQVQI	V ·		- GDAD I
MMP19	FQEVQA	1 U		AADI
MMP28	FWEAPA	IG-		PADI
MMP21	FREDLA	AAPG		- AAVDI
I MMP23	FREVAL	Ľ ·		- OPSDL

图 1 Clustal X 多序列比对人 MMPs 序列

Fig. 1 Clustal X multiple alignment of human MMPs sequences.

2.2 虚拟筛选及反义肽与 MMPs 的分子对接

Libdock 对接打分具有速度快和能够并行运

算等特点,广泛用于大规模的分子对接模拟与快速筛选;MVD则可根据配体准确预测大分子蛋白的活性位点,是一款精确的半柔性分子对接软件,适合于二次筛选或精筛。经过Libdock第一轮筛选,共获得96条LibDockScore高于200的反义肽, 再将其进行MVD第二轮筛选,Rerankscore分值前5位的反义肽分别为FVTFPYIR、LVSFPYVR、FVTFSYVG、FMAFSYVS和FVTLPYVR,后者对接结果和参数见图2和表3。

表 2 基于 Meker-Idlis (M-I) 理论设计反义肽 Table 2 Design of antisense peptides based on Meker-Idlis (M-I) theory

cker fulls (in f) theory								
MT1-loop (N→C)	А	Y	Ι	R	Е	G	Н	Е
	С	V	Y	Р	F	S	V	F
Antisense	R	Ι	D	S	L	А	М	L
(C→N)	G		Ν			Т		
	S					Р		

图 2 反义肽与 MT1-MMP 分子对接图

Fig. 2 Molecular docking of the antisense peptides to the catalytic domain of MT1-MMP. Antisense peptides: stick model; MT1-MMP: wireframe model; green line: hydrogen bond.

Tuble c Tutumeters of more cause of an about the population of the cause of the cau								
Ligand	Rerankscore (kJ/mol)	MolDockScore (kJ/mol)	Affinity (kJ/mol)	Interaction (kJ/mol)	Electro (kJ/mol)	H Bond (kJ/mol)	Targeting residues	
FVTFPYIR	-102.39	-136.39	-7.53	-189.29	-3.83	-4.56	129-130,165-176,178,180- 182,186-187,207-209,212, 214	
LVSFPYVR	-99.64	-150.20	-9.45	-168.25	0	-12.02	167-178,187,207-209,212, 214	
FVTFSYVG	-97.68	-128.94	-13.88	-182.10	1.20	-12.88	129,166-169,173-176,178, 180,186-188,208-209,212, 214	
FMAFSYVS	-97.35	-145.55	-14.78	-206.31	0	-9.18	119,121,129,167-169,173- 178,180,187,206-212,	
FVTLPYVR	-95.90	-139.47	-12.39	-160.67	0	4	119,129,167-178,180,186- 187,206-210,212, 214	

表 3 反义肽与 MT1-MMP 催化域的对接参数

Table 3 Parameters of molecular docking of antisense peptides to the catalytic domain of MT1-MMP

以反义肽 FVTFPYIR 与 MT1-MMP 催化域 对接结果为例,图 3 展示两者间的相互作用方 式。首先,反义肽的 Phe⁴ 与 MT1-MMP 的 Gln¹²⁹、 Arg⁸ 与 MT1-MMP 的 Arg¹⁶⁸ 及 Glu¹⁶⁹ 形成 3 个稳 定的氢键 (图 3A);另一方面,反义肽位于 Ala¹⁶⁵、Ile¹⁶⁷、Gly¹⁷⁰ 和 Phe¹⁸⁰ 等氨基酸形成的 疏水腔中,两者之间存在较强的疏水作用 (图 3B); 同时,该反义肽与受体间存在着较强的静电作用 力 (表 3,图 3C)。综合分析,FVTFPYIR 与 MT1-MMP 结合的主要驱动力是疏水作用力、氢 键以及静电作用力。

与其他 MMPs 家族成员的分子对接结果表 明,相对于其他 4 条反义肽,多肽 FVTFPYIR 特异性更好。除 MMP13 外,FVTFPYIR 与其余 的 MMPs 家族成员的对接能量均高于 MT1-MMP(表4)。

图 3 MT1-MMP 与 FVTFPYIR 间的相互作用

Fig. 3 The interactions between MT1-MMP and FVTFPYIR. (A) Hydrogen bond interactions. Green line is hydrogen bond. (B) Hydrophobic interactions. The green area indicates the hydrophobic, whereas the orange area indicates the hydrophilic. (C) Electrostatic interactions. The blue area indicates positive electrostatic, whereas the red area indicates the negative electrostatic. The purple arrow indicates electrostatic interactions. FVTFPYIR: stick model; MT1-MMP: wireframe model.

http://journals.im.ac.cn/cjbcn

Table 4 Rerankscores of molecular docking of antisense peptides to family members of MMPs (kJ/mol)									
Protein	FVTFPYIR	LVSFPYVR	FVTFSYVG	FMAFSYV	FVTLPYVR				
MMP1	-38.34	-2.98	-60.87	-35.43	-71.34				
MMP2	-77.21	-96.46	-92.51	-74.62	-100.60*				
MMP3	161.88	3.59	-93.36	59.36	8.95				
MMP7	-64.89	-64.01	-67.40	-11.92	-95.84				
MMP8	1.42	-105.30*	-104.79	2.37	-51.23				
MMP9	-81.01	-115.86*	-121.16*	-110.27*	-104.06*				
MMP10	-92.63	-86.12	-107.08*	-111.25*	-84.77				
MMP11	-89.26	-82.35	-115.83	-45.72	-74.89				
MMP12	15.12	-89.33	-88.82	-33.66	-68.62				
MMP14 (HPX)	-82.05	-28.83	-79.10	-74.88	-84.13				
MMP13	-113.08*	-85.53	-93.92	-108.14*	-97.65*				
MMP16	-82.26	-68.57	-115.95*	-1.07	-66.63				

表 4 反义肽与 MMPs 家族成员分子对接的 Rerankscores 值 (kJ/mol)

* indicates the rerankscore was better than those docking to the catalytic of MT1-MMP.

2.3 反义肽与 MT1-MMP 的分子动力学模拟

为深入了解所确定的反义肽与 MT1-MMP 的作用模式,对每个复合物体系进行了 5 ns 的 常规分子动力学模拟,用均方根偏差 (Root mean square deviation, RMSD) 评价体系的稳定 性。图 4显示动力学模拟过程中 MT1-MMP 和 反义肽主链骨架的 RMSD 的变化情况,起初 0.5 ns,蛋白内部结构优化主链的 RMSD 上升较 快。首先模拟 MT1-MMP 在水溶质中的稳定性, 结果显示在 1.7 ns 后就达到平衡状态,RMSD 约 0.35 nm (图 4A)。而在 MT1-MMP-FVTFPYIR 复 合物中,MT1-MMP 的 RMSD 呈上升趋势,配 体约在 3.5 ns 达到平衡状态 (图 4B),这说明配 体 能 够 引起 MT1-MMP 的不稳定,推测 MT1-MMP 的功能活性受到影响。在其他模拟过 程中发现,反义肽 LVSFPYVR、FVTFSYVG 能 稳定 MT1-MMP 其 RMSD 均在 0.25 nm 左右, 而反义肽自身的 RMSD 波动较大 (图 4C-E); FVTLPYVR、FMAFSYVS 体系在 2 ns 后均达到 稳定 (图 4F)。

2.4 反义肽对肿瘤细胞活力的抑制及亲和力

为了确认虚拟筛选获得的反义肽是否对肿 瘤细胞真实有效,综合分子对接和分子动力模拟 结果,选取反义肽 FVTFPYIR 作为体外细胞实 验的候选肽。实验结果表明,用该反义肽作用肿 瘤细胞 48 h 后,加药组 MG63 细胞密度明显低 于对照组 (图 5),MDA-MB-231 也有着相似的 变化,而 MDA-MB-453 和 MCF7 差异不明显, 276

图4 MD模拟过程中MT1-MMP及反义肽主链骨架的RMSD值

Fig. 4 RMSD of MT1-MMP and antisense peptides backbone during MD simulations. (A) MT1-MMP without ligand. (B) The RMSD of MT1-MMP and FVTFPYIR in complex. (C) The RMSD of MT1-MMP and LVSFPYVR in complex. (D) The RMSD of MT1-MMP and FVTFSYVG in complex. (E) The RMSD of MT1-MMP and FVAFSYVS in complex. (F) The RMSD of MT1-MMP and FVTLPYVR in complex.

图 5 倒置显微镜下 MG63 细胞形态的变化 (100×) Fig. 5 Changes of MG63 cell morphology by inverted microscope (100×).

且 MDA-MB-453 实验组较对照组有相逆的趋势 (后三者图未显示); MTT 测定显示, MG63 细胞 增殖受到明显抑制,随着多肽浓度的增大,抑 制作用也增强,呈剂量依赖关系(图 6A),同样反 义肽也能抑制 MDA-MB-231 细胞的增殖(图 6B); 与之不同的是,反义肽对 MCF7 细胞活力几乎 无剂量依赖抑制作用,对 MDA-MB-453 细胞在 低剂量下促进其生长,高剂量下抑制其生长(结 果未显示)。

MDA-MB-231 和 MCF7 细胞亲和力测定结 果显示, 培养 24 h 后, 100 μg/mL 的反义肽共 培养的 MDA-MB-231 细胞检测到荧光信号; 而 培养 48 h 后, 100 μg/mL 和 50 μg/mL 的反义肽 共培养的 MDA-MB-231 细胞均检测到荧光信 号,浓度越大,荧光信号越强(图 7)。但无论培 养 24 h 还是 48 h, MCF7 细胞均检测不到荧光。

图 6 FVTFPYIR 对肿瘤细胞活力的影响 Fig. 6 Effects of FVTFPYIR on tumor cells viability. (A) MG63. (B) MDA-MB-231.

图 7 FVTFPYIR 与 MDA-MB-231 细胞亲和力检测 结果 (200×)

Fig. 7 The affinity of FVTFPYIR to MDA-MB-231 cell ($200\times$).

3 讨论

MMPs 家族成员具有高度的同源性,加之 MMPs 各成员对机体作用不一,导致靶向 MMPs 抗肿瘤抑制剂研发十分困难。因此,寻找合适 的 MMPs 家族成员以及序列及功能差异性大的 区域作为其药物筛选的靶标是解决此问题的关 键。MT1-MMP 作为 MMPs 家族的重要成员, 参与 proMMP2 的激活,直接或间接降解细胞外 基质中的多种组分。一方面它是细胞表面膜蛋 白,可以克服靶向胞内蛋白药物需要进入细胞 的难点,同时其被认为是 MMPs 家族中与肿瘤 关系最密切的酶^[15],因此,MT1-MMP 是 MMPs 家族中最理想的抗肿瘤药物筛选靶蛋白之一^[4]。 不仅如此,在 MT1-MMP 的催化域上存在一段 独特的序列 MT-loop (aa.163-170),有研究表明, MT-loop 对 proMMP2 有效激活是不可缺少的。 综合考虑以上因素,我们选取 MT1-MMP 的特 有序列 MT1-loop 为靶标进行反义肽库的虚拟筛 选与研究。与国内房学讯实验室^[6]开展的靶向 MT1-MMP loop 区 (aa.160-174)的噬菌体随机肽 库筛选不同的是,本研究在多重序列比对分析 的基础上,确定和选取的MT1-loop区序列更短 既利于正义肽的选择和反义肽库的设计,差异 性又更强。以 MT1-loop 作为研究靶标,有望获 得 MT1-MMP 特异性的抑制剂和先导药物,同 时因为 MT1-loop 位于 MT1-MMP 三维结构的表 面,更利于药物作用的直接发挥。

多肽药物具有与靶蛋白结构相容性高、能 有效破坏蛋白-蛋白作用界面以及分子量小等优 点,加上近年在药物修饰、给药途径以及膜渗 透等领域的突破,使得多肽药物又引起了极大 的关注^[16],2012 年 FDA 批准了 6 个多肽药物上

市便是很好的说明。自 2005 年始,本实验室致 力于靶向 MT1-MMP 的多肽抑制剂筛选与研究 并取得了一定的成效^[10,13-14,17]。本研究运用反义 肽原理设计靶向 MT1-loop 的反义肽库,依次采 用 Libdock 和 MVD 分子对接软件进行虚拟筛 选。综合两种软件的对接结果,获得高效可靠 的目标反义多肽,最终选取了综合排名前五位 的反义肽进一步的研究分析。首先从理论上考 察其专一性,即采用分子模拟与对接分析反义 肽与已解析三维结构的 MMPs 的作用特性,由 于在 PDB 数据库中已解析的大多数 MMPs 三维 结构并非全长,又基于正义肽位于 MT1-MMP 的催化域中,因此在选择 MMPs 三维结构时也 主要将相应的催化域作为研究对象,其中 MMP20 三维结构太大,没有对其进行研究。结 果显示 FVTFPYIR 特异性最好。其次通过动力 学模拟研究复合物体系的稳定性,为此进行5ns 的常规动力学模拟。在分子动力学模拟过程中, 小分子配体在模拟起初阶段 RMSD 上升较快, 表明小分子比较灵活,在结合位点附近略显波动, 并能周期性形成氢键进而使结合更加稳定^[18];而 后很快在 0.15 nm 左右波动 (除 LVSFPYVR 外), 受体蛋白同样在起始阶段 RMSD 上升较快, 这主 要是蛋白内部结构优化造成^[19],在 0.25 nm 和 0.35 nm 后我们也发现有两条多肽的 RMSD 值发 生突变 (图 4C, D), 极有可能碳骨架发生断裂, 不宜作为候选药物。令人欣喜的是,反义肽 FVTFPYIR 与受体结合后,能在影响受体构象稳 定的同时而保持自身的稳定。

早有研究表明 VEGF-C 反义肽可抑制骨肉 瘤细胞的增殖、侵袭转移能力以及抑制肿瘤组 织 VECFR-3 阳性血管的形成,发挥抗骨肉瘤作 用^[20]。因此在以上工作的基础上,我们也初步 探究了本研究筛选获得的反义肽对肿瘤细胞增 殖的影响。依据反义肽的特异性和动力学模拟 结果,我们合成了评价最优的反义肽 FVTFPYIR 同时选取 MT1-MMP 表达的 MG63、 MDA-MB-231 细胞和不表达的乳腺癌细胞 MDA-MB-453、MCF7 作为实验对象,结果表明 该反义肽对 MG6 和 MDA-MB-231 细胞有很好 的抑制作用,而对 MDA-MB-453 细胞几乎是促 进生长,对 MCF7 细胞活力几乎无剂量依赖抑 制作用。有研究报道,人工合成的十九肽^[21]或 者通过噬菌体文库筛选得到的短肽^[22]能够促进 轴突的生长,从另一角度佐证了我们合成的多 肽在较低浓度下促进乳腺癌 MDA-MB-453 细胞 生长的可能性。结合 4 种细胞的实验结果, 我 们推测这很可能与细胞是否表达 MT1-MMP 有 关,该结论也与动力学模拟结果相得益彰。进 一步的细胞亲和力测定结果也证明了反义肽对 MT1-MMP 表达的 MDA-MB-231 细胞的靶向结 合能力。当然,更可靠的结论将有待于在 MT1-MMP 蛋白表达、酶蛋白活性以及信号转导 等水平的检测与分析来进一步确认。

综上所述,本研究通过生物信息与计算机 辅助药物设计的方法筛选与获得了 5 条能与 MT1-MMP 有效对接的反义肽,体外实验初步确 认反义肽 FVTFPYIR 对 MG63 和 MDA-MB-231 细胞增殖有一定的抑制作用以及对后者的亲和 力。进一步的多肽体外作用研究尚在进行中。 本研究也为靶向 MT1-MMP 抗肿瘤反义肽先导 药物的研发提供了一种新的思路与途径。

REFERENCES

 Seiki M. Role of MT1-MMP in tumor-stromal interaction//New Trends in the Molecular and Biological Basis for Clinical Oncology. New York: Springer, 2009: 86-91.

- [2] Albert GR, Dmitri VR, Peter CB, et al. The transmembrane domain is essential for the microtubular trafficking of membrane type-1matrix metalloproteinase. J Cell Sci, 2005, 118(21): 4975–4984.
- [3] Barbolina MV, Stack MS. Membrane type-l matrix metalloproteinase: substrate diversity in pericellular proteolysis. Semin Cell Dev Biol, 2008, 19(1): 24–33.
- [4] Albert GR, Vladislav SG, Sergey AS, et al. Novel MT1-MMP small-molecule inhibitors based on insights into hemopexin domain function in tumor growth. Cancer Res, 2012, 72(9): 2339–2349.
- [5] Cao J, Pallavi K, Maria P, et al. Distinct roles for the catalytic and hemopexin domains of membrane type-1 matrix metalloproteinase in substrate degradation and cell migration. J Biol Chem, 2009, 279(14): 14129–14139.
- [6] Zhu L, Wang HL, Wang Y, et al. High-affinity peptide against MT1-MMP for *in vivo* tumor imaging. J Controlled Release, 2011, 150(3): 248–255.
- [7] Basu B, de Sampaio PC, Mohammed P, et al. Inhibition of MT1-MMP activity using functional antibody fragments selected against its hemopexin domain. Int J Biochem Cell Biol, 2012, 44(2): 393–403.
- [8] Kevin Z, Antoine D, Jian L, et al. Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. J Biol Chem, 2011, 286(38): 33167–33177.
- [9] Wang P, Nie J, Pei DQ. The hemopexin domain of membrane-type matrix metalloproteinase-1 (MT1-MMP) is not required for its activation of proMMP2 on cell surface but is essential for MT1-MMP-mediated invasion in three-dimensional type I collagen. J Biol Chem, 2004, 279(49): 51148–51155.
- [10] Huang TT, Cui J, Liang ZJ, et al. Virtual screening of lead chemicals based on HPX domain of MT1-MMP. The 5th International Conference on

Bioinformatics and Biomedical Engineering. USA: IEEE Computer Society, 2011: 1–4.

- [11] Hidetoshi M, Alvin TL, Jamie LI, et al. Transmembrane/cytoplasmic, rather than catalytic, domains of MMP14 signal to MAPK activation and mammary branching morphogenesis via binding to integrin β 1. Development, 2013, 140(2): 343–352.
- [12] Wang LH, Bao CY, Shi W, et al. Protein codes: the interaction between sense peptides and antisense peptides. Chem Life, 2003, 23(1): 31-34 (in Chinese).
 王梁华,包晨颖,史薇,等.蛋白质密码—有义 多肽与反义多肽间的相互作用.生命的化学, 2003, 23(1): 31-34.
- [13] Liang ZJ, Huang JS, Cui J, et al. Selection and molecular simulation of binding peptides dual-targeting MMP14 and metal ions. Chin J Biochem Mol Biol, 2011, 27(4): 341–349 (in Chinese).
 梁志娟,黄敬双,崔健,等.双靶向 MMP-14 和 金属离子的结合肽筛选与分子模拟.中国生物 化学与分子生物学报, 2011, 27(4): 341–349.
- [14] Liang ZJ, Huang JS, Huang TT, et al. Selection and finding of lead peptides dual-targeting MMP14 and metal ions by subtractive cell surface panning and molecular docking, Int J Pept Res Ther, 2012, 18(1): 31–40.
- [15] Sounni NE, Noel A. Membrane type-matrix metalloproteinases and tumor progression. Biochimie, 2005, 87(34): 329–342.
- [16] Peter V, Almer MS, Erik V, et al. Computational design of peptide ligands. Trends Biotechnol, 2011, 29(5): 231–239.
- [17] Zeng L, Tan BW, Mao CQ. Design and molecular docking of antisense peptides targeting MT1-MMP. The 9th National Conference of the Chinese Society of Genetics and the Abstracts of Academic Symposium (http://cpfd.cnki.com.cn/ Article/CPFDTOTAL-ZGYL201309001150.htm), 2013: 180 (in Chinese).

曾丽, 谭博文, 茆灿泉. 肿瘤靶向 MT1-MMP 反 义肽的筛选与分析. 中国遗传学会第九次全国 会员代表大会暨学术研讨会论文摘要汇编 (http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZG YL201309001150.htm), 2013: 180.

- [18] Li B, Zhou R, He G, et al. Molecular docking, QSAR and molecular dynamics simulation on spiro-oxindoles as MDM2 inhibitors. Acta Chim Sin, 2013, 71(10): 1396–1403 (in Chinese).
 李博,周锐,何谷,等. 螺环吲哚类 MDM2 抑制 剂的分子对接、定量构效关系和分子动力模拟. 化学学报, 2013, 71(10): 1396–1403.
- [19] Lü J, Jiang YJ, Yu QS, et al. Molecular docking and molecular dynamics simulations of inhibitors binding to jack bean urease. Acta Chim Sin, 2013, 69(20): 2427–2433 (in Chinese).
 吕婧,蒋勇军,俞庆森,等.洋刀豆脲酶与抑制 剂相互作用的分子对接和分子动力学研究.化 学学报, 2013, 69(20): 2427–2433.
- [20] Luo SM, Xia YX. Studying on the cellular biologic behavior effects of human antisense-VEGF gene C antisense polypeptide to human osteosarcoma. J Clin Exp Med, 2008, 7(2): 17–19 (in Chinese).
 罗胜明,夏永新. 血管内皮生长因子-C 反义肽 对人成骨肉瘤细胞生物学行为影响的研究. 临 床和实验医学杂志, 2008, 7(2): 17–19.
- [21] Ken-ichiro T, Gregory CS, Benjamin W, et al. A synthetic peptide containing the IKVAV sequence from a chain of laminin mediates cell attachment, migration, and neurite outgrowth. J Biol Chem, 1989, 264(27): 6174–16182.
- [22] Deng QY, Cai WQ, Li SR, et al. Small nogo-66-binding peptide promotes neurite outgrowth through RhoA inhibition after spinal cord injury. Brain Res Bull, 2013, 99: 140–144.

(本文责编 陈宏宇)