生物工程学报 Chinese Journal of Biotechnology http://journals.im.ac.cn/cjbcn

September 25, 2013, 29(9): 1290-1300 ©2013 Chin J Biotech, All rights reserved

工业生物技术

# 2,3-丁二醇代谢途径关键酶基因敲除对克雷伯氏菌发酵产 1,3-丙二醇的影响

郭欣坤<sup>1,2</sup>,方慧英<sup>1,2</sup>,诸葛斌<sup>1,2</sup>,宗红<sup>1,2</sup>,宋健<sup>3</sup>,诸葛健<sup>1,2</sup>

1 江南大学 工业生物技术教育部重点实验室,江苏 无锡 214122
 2 江南大学 生物工程学院工业微生物研究室,江苏 无锡 214122
 3 江南大学 化学与材料工程学院,江苏 无锡 214122

郭欣坤, 方慧英, 诸葛斌, 等. 2,3-丁二醇代谢途径关键酶基因敲除对克雷伯氏菌发酵产 1,3-丙二醇的影响. 生物工程学 报, 2013, 29(9): 1290-1300. Guo XK, Fang HY, Zhu GB, et al. Influence of key enzyme gene knockout of 2,3-butanediol pathway to 1,3-propandediol

fermentation in *Klebsiella pneumoniae*. Chin J Biotech, 2013, 29(9): 1290–1300.

摘 要: 2,3-丁二醇是克雷伯氏菌发酵产 1,3-丙二醇的主要副产物,为减少 2,3-丁二醇的产生,利用 Red 重组 技术对克雷伯氏菌 2,3-丁二醇合成途径关键酶基因 budC 和 budA 进行了敲除。突变株发酵性能实验结果表明, 所获得的两株突变株生长性能受到不同程度的影响; budC 基因的缺失使菌株 1,3-丙二醇产量提高了 10%,2,3-丁二醇降低为原来的 70%,而 budA 基因缺失则使菌株无 2,3-丁二醇和 1,3-丙二醇的产生,但乳酸、琥珀酸、 乙醇和乙酸的产量较出发菌株都有明显增长。通过进一步对 budC 基因缺失菌株主要产物分析,推测在该菌中 存在 2,3-丁二醇回补途径,这一结果为低副产物克雷伯氏菌的改造提供了新依据。

关键词:1,3-丙二醇,2,3-丁二醇,基因敲除,克雷伯氏菌,Red 重组技术

Received: January 29, 2013; Accepted: March 29, 2013

Supported by: National High Technology Research and Development Program of China (863 Program) (No. 2011AA02A207). Corresponding author: Huiying Fang. Tel: +86-510-85918106; Fax: +86-510-85918150; E-mail: fanghuiying@126.com 国家高技术研究发展计划 (863 计划) (No. 2011AA02A207) 资助。

# Effects of knockout of 2,3-butanediol synthesis key enzyme genes on 1,3-propandediol production in *Klebsiella pneumoniae*

Xinkun Guo<sup>1,2</sup>, Huiying Fang<sup>1,2</sup>, Bin Zhuge<sup>1,2</sup>, Hong Zong<sup>1,2</sup>, Jian Song<sup>3</sup>, and Jian Zhuge<sup>1,2</sup>

1 Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China

2 Laboratory of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China 2 School of Chemical and Material Engineering, Viewenger, University, Waxi 214122, Jiangsu, China

3 School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China

**Abstract:** 2,3-butanediol (2,3-BD) is a major byproduct of 1,3-propandediol (1,3-PDO) fermentation by *Klebsiella pneumoniae*. To decrease the formation of 2,3-BD, the *budC* and *budA* gene, coding two key enzymes of 2,3-BD synthetic pathway in *K. pneumoniae*, were knocked out using Red recombination technology. The growth of the two mutants were suppressed in different level. The *budC* deficient strain fermentation results showed that 1,3-PDO concentration increased to 110% and 2,3-butanediol concentration dropped to 70% of the parent strain. However, the *budA* deficient strain did not produce 1,3-PDO and 2,3-BD, and the final titer of lactic acid, succinic acid, ethanol and acetic acid increased remarkably compared with the parent strain. Further analysis of *budC* deficient strain fermentation inferred that *K. pneumoniae* possessed the 2,3-BD cycle as a replenishment pathway. The consequence provided a new evidence for reforming low-byproduct *K. pneumoniae*.

Keywords: 1,3-propandediol, 2,3-butanediol, gene knockout, Klebsiella pneumoniae, Red recombination technology

1,3-丙二醇是一种三碳平台化合物,是合成 对苯二甲酸丙二醇酯、聚亚氨酯、聚醚、聚胺酯 和芳香聚酯的重要单体<sup>[1-4]</sup>。自然界中能够以甘 油为底物生产 1,3-丙二醇的菌主要有克雷伯氏菌 *Klebsialla*、弗氏柠檬酸菌 *Citrobacter*、乳杆菌 *Lactobacilli*、梭菌 *Clostridia*<sup>[5]</sup>等,其中克雷伯氏 菌是生产强度和转化率较高的菌种之一,其甘油 代谢途径分为还原途径和氧化途径:还原途径 生产 1,3-丙二醇;氧化途径提供生物生长所需的 能量 (ATP)、生物量、还原当量 (NADH),并形 成 2,3-丁二醇、乳酸、琥珀酸、乙酸、乙醇等副 产物。

2,3-丁二醇与 1,3-丙二醇都含有两个羟基, 具有高沸点和与水互溶的特点,在发酵液精馏分 离过程中,随着 2,3-丁二醇在液相中含量的降低, 其在汽相中的摩尔分率越来越小,需要采用更大的回流比才能分离提纯1,3-丙二醇,从而造成分离成本增高<sup>[6]</sup>。此外,2,3-丁二醇的合成需要消耗大量碳源和还原力 NADH<sup>[7]</sup>,致使依赖 NADH合成的1,3-丙二醇的转化率大大降低,所以降低发酵过程中2,3-丁二醇的产量成为一个需要解决的问题<sup>[8-9]</sup>。

利用基因敲除技术消除发酵过程中副产物 产生是一种提高目的产物产量的有效策略<sup>[10-14]</sup>。 2,3-丁二醇合成途径中有 3 种酶:  $\alpha$ -乙酰乳酸合 成酶 ( $\alpha$ -acetolactate synthetase, ALS)、 $\alpha$ -乙酰乳 酸 脱 羧 酶 ( $\alpha$ -acetolactate decarboxylase,  $\alpha$ -ALDC) 和 2,3-丁二醇 脱 氢 酶 (2,3-BD dehydrogenase, BDH)<sup>[15-16]</sup>。这三个酶的基因位 于 *budABC* 操纵子上,其中 *budB* 编码  $\alpha$ -乙酰乳 酸合成酶, budA 编码 α-乙酰乳酸脱羧酶, budC 编码 2,3-丁二醇脱氢酶。在 2,3-丁二醇代谢途径 中, α-乙酰乳酸合成酶可以催化丙酮酸形成 α-乙酰乳酸, α-乙酰乳酸在 α-乙酰乳酸脱羧酶作 用下形成 3-羟基-2-丁酮, 2,3-丁二醇脱氢酶催化 3-羟基-2-丁酮形成 2,3-丁二醇 (图 1)。本研究利 用 Red 同源重组技术<sup>[17]</sup>分别构建了 *budC* 和 *budA* 基因缺陷株,并通过发酵实验考察这两个 基因的缺失对克雷伯氏菌发酵产 1,3-丙二醇的 影响。



#### 图 1 2,3-丁二醇的代谢途径及相关酶[15]

Fig. 1 Metabolism pathway of 2,3-butanediol and related enzymes<sup>[15]</sup>.  $E_1$ :  $\alpha$ -acetolactate synthase;  $E_2$ :  $\alpha$ -acetolactate decarboxylase;  $E_3$ : 2,3-butanediol dehydrogenase.

# 1 材料与方法

1292

#### 1.1 菌株与质粒

克雷伯氏菌 Klebsiella pneumoniae ZG25 由本研究中心筛选并保藏。用于基因敲除所需要的工具质粒 pKD13、pKD46 和 pCP20 均购自美国耶鲁大学大肠杆菌菌株库。本研究中使用的引物见表 1。

#### 1.2 工具酶及试剂

质粒小量提取试剂盒、细菌基因组 DNA 抽 提试剂盒、DNA 凝胶回收试剂盒均购自北京博 大泰克生物基因技术有限责任公司; Taq DNA 聚 合酶、PrimeSTAR HS DNA 聚合酶购自宝生物工 程 (大连)有限公司; 氨苄青霉素 (Amp)、卡那 霉素 (Kan)、氯霉素 (Cm) 购自上海朝瑞生物技 术有限公司, 2-乙酰氧基-2-甲基-乙酰乙酸乙酯 购于 Sigma 公司;L-阿拉伯糖、monohydrate 2-(N- 吗啉代)乙烷磺酸一水、Brij-35聚环氧乙烯月桂 酰醚购自生工生物工程(上海)有限公司;其他 试剂为国产分析纯。

#### 1.3 培养基与培养方法

种子培养基 (g/L): 酵母提取物 5, 胰蛋白 胨 10, NaCl 10。葡萄糖蛋白胨水培养基 (g/L): 胰蛋白胨 5, 葡萄糖 5, K<sub>2</sub>HPO<sub>4</sub> 2。发酵培养基 (g/L):甘油 40,葡萄糖 5,酵母膏 5,KH<sub>2</sub>PO<sub>4</sub> 7.5, MgSO<sub>4</sub> 2, (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> 2, FeSO<sub>4</sub>·7H<sub>2</sub>O 0.005, VB<sub>12</sub> 0.015, 微量元素溶液 10 mL/L, KOH 调 pH 值至 8.5。微量元素溶液 (g/L): ZnCl<sub>2</sub> 0.07, MnCl<sub>2</sub>·4H<sub>2</sub>O 0.1, H<sub>3</sub>BO<sub>3</sub> 0.06, CoCl<sub>2</sub>·6H<sub>2</sub>O 0.2, CuCl<sub>2</sub> 0.02, NiCl<sub>2</sub>·6H<sub>2</sub>O 0.025, Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O 0.035。需要时加入 Amp (100 µg/mL)、Kan (50 µg/mL)、Cm (34 µg/mL)。

种子培养:1%接种量 (V/V)、37 ℃、180 r/min 培养 6~7 h。发酵培养: 250 mL 三角瓶、50 mL

#### 表1 本研究使用的引物

#### Table 1Primers used in this study

| Primers | Sequences (5–3')                                                                   |
|---------|------------------------------------------------------------------------------------|
| C1      | <u>ACACTTACAAACCAAAAAAGCCCCTGCGCGAAAGCAGGGGCAAGCCATGTCAGAGCT</u> TGTAGGCT          |
| C2      | CAGCTGCATCTGAGTCAGATTCTGTAAGTCATCACAATAAGGAAAGGAAAATTCCGGGGGATCCGT<br>CGACC        |
| A1      | <u>GTCAACATTTATTTAACCTTTCTTATATTTGTTGAACGAGGAAGTGGTAT</u> ATTCCGGGGATCCGTCG<br>ACC |
| A2      | <u>GCGCCGTGCGCCCACTGGCGTACCGGATACTGTTTGTCCATGTGAACCCC</u> TGTAGGCTGGAGCTGC<br>TTCG |
| K1      | ATTCCGGGGATCCGTCGAC                                                                |
| K2      | TGTAGGCTGGAGCTGCTTCG                                                               |
| CJ1     | TTCGTTTCCCCGGGATGCTT                                                               |
| CJ2     | ATCGCGATAACCCGCTGCTGA                                                              |
| AJ1     | GGCGTACCGGATACTGTT                                                                 |
| AJ2     | CCTGTCCGGTGCCCTGAAT                                                                |
| KZ1     | ATTCAGGGCACCGGACAGG                                                                |
| KZ1'    | CCTGTCCGGTGCCCTGAAT                                                                |
| KZ2     | TTTCTCGGCAGGAGCAAGGTGAG                                                            |
| KZ2'    | CTCACCTTGCTCCTGCCGAGAAA                                                            |

The underlines indicate about 50 bp homology extensions of a target knockout gene.

装液量,4%接种量 (V/V),37 ℃、100 r/min 旋转式摇床振荡培养,实验重复3次,取平均值;5 L发酵罐 (韩国 BIOTRO公司,型号:BIOG-M),装液量 2.5 L,37 ℃,初始甘油浓度 20 g/L,转速 200~250 r/min,通气量 0.5 L/min。从 8 h 起流加甘油使其保持在 20 g/L 左右,直至 22 h,用 10 mol/L 的 KOH 控制 pH 保持在 7.5。

#### 1.4 budC 和 budA 基因的敲除

提取 K. pneumoniae ZG25 全基因组,根据 Klebsiella pneumoniae 342 (GenBank Accession No. NC011283) 分别设计 budC和 budA 基因引物 CJ1、CJ2 和 AJ1、AJ2,扩增 budC 和 budA 基因 并连接 pMD18-T 测序。根据测序结果设计引物 C1、C2 和 A1、A2 (表 1),其中下划线部分为目 标基因上下游约 50 bp 的同源臂序列,以 pKD13 的 DNA 为模板,分别扩增目标基因打靶 DNA 片段 gene<sup>D50</sup>-Kan-gene<sup>D50</sup>。将 pKD46 质粒电转入 *K. pneumoniae* ZG25,接种至含有 Amp (1.4 mg/mL)的 LB 液体培养基中,37 ℃培养至 8~10 h,然后转移至含有 Amp (2.0 mg/mL)的 LB 固体平板上 12~15 h,筛选出含有 pKD46 质粒的 菌体。将目标基因打靶 DNA 片段电转导入 *K. pneumoniae* ZG25 (pKD46),在加入 Kan 的 LB 固体平板上筛选转化子,升温至 42 ℃培养 12 h 以去除 pKD46 质粒,将 pCP20 质粒电转导入菌 体细胞,30 ℃培养 2 h,利用 pCP20 消除转化子 中 Kan 抗性基因,然后升温至 42 ℃培养 12~16 h 去除 pCP20 质粒<sup>[18-19]</sup>。

#### 1.5 转化子的验证

将打靶 DNA 片段电转后在 Kan 抗性平板上 长出的转化子用鉴定引物 K1、K2; AJ1、AJ2; CJ1、CJ2; KZ1、KZ1'和 KZ2、KZ2'进行 PCR 验证。K1 和 K2 分别是 Kan 抗性基因的上游引 物和下游引物, CJ1、CJ2 和 AJ1、AJ2 分别是基 因 *bud C* 和 *bud A* 基因上游和下游片段。KZ1、 KZ1'和 KZ2、KZ2'分别是 Kan 抗性基因中间某 段基因序列及其反向互补序列。

#### 1.6 测定方法

#### 1.6.1 生物量及代谢产物测定

发酵液中的菌体密度以分光光度计吸光值 OD<sub>650</sub> 表示。细胞干重根据经验公式 1 OD= 0.25 g/L。发酵液中甘油、1,3-丙二醇、2,3-丁 二醇、乙酸、乙醇、乳酸、琥珀酸的测定参考 文献[10]。

#### 1.6.2 酶活测定

α-乙酰乳酸脱羧酶的测定参考文献[15],酶 活单位定义为 37 ℃下每分钟由 α-乙酰乳酸脱羧 酶脱羧 α-乙酰乳酸产生 1 μmol 3-羟基-2-丁酮的 酶量。

2,3-丁二醇脱氢酶的测定参考文献[20],酶活 力定义为 37 ℃下每分钟转化 1 μmol NADH 成为 NAD<sup>+</sup>的酶量。

#### 1.6.3 蛋白质含量测定

粗酶液蛋白质含量采用 Bradford 法<sup>[21]</sup>测定, 以 BSA 为标准蛋白。

# 2 结果

#### 2.1 *budC*和 *budA* 单基因缺失菌株的获得

以质粒 pKD13 NDA 为模板, 扩增出目标基因 打 靶 DNA 片段 *budC*<sup>D50</sup>-Kan-*budC*<sup>D50</sup>和

*budA*<sup>D50</sup>-Kan-*budA*<sup>D50</sup>,转化至含 pKD46 质粒的 *K. pneumoniae* ZG25 感受态中,同源重组后在Kan 平板上初步筛选 *budC* 和 *budA* 基因缺失突变株。

将含有 Kan 抗性基因的 budC 缺失菌株进行 菌落 PCR 验证,结果如图 2 所示。分别利用 4 对引物 K1、K2; CJ1、CJ2; CJ1、KZ2'和 KZ2、 CJ2 对 budC 缺失菌进行菌落 PCR 鉴定, budC 基因缺失菌株可以得到 1 303 bp、1 394 bp、 627 bp 和 790 bp 大小片段, 出发菌株仅 CJ1、CJ2 引物可扩增得到 862 bp 片段。含 Kan 抗性基因 的 budA 缺失菌株的菌落 PCR 验证如图 3 所示。 分别利用 4 对引物 K1、K2; AJ1、AJ2; AJ1、 KZ1'和 AJ2、KZ1 进行菌落 PCR 鉴定, budA 基 因缺失菌株可以得到1303 bp、1600 bp、752 bp 和 742 bp 大小片段,出发菌株仅 AJ1、AJ2 可得 到1 077 bp 片段。DNA 凝胶电泳的结果均与理 论值相符,表明 budC 和 budA 基因敲除成功,将 质粒 pCP20 转化至 budC 和 budA 基因缺失菌中, 将 Kan 抗性基因消除,获得的 budC 基因缺失菌 命名为 K. pneumoniae ZG38 (budCΔ), 获得的 budA 基因缺失菌命名为 K. pneumoniae ZG38  $(budA\Delta)_{\circ}$ 



#### 图 2 budC 基因缺失菌的菌落 PCR 鉴定

Fig. 2 Identification of the *budC* knockout by colony PCR. M: DL2 000 DNA marker; 1, 3, 5, 7: mutant (*budC* $\Delta$ ) containing Kan resistance gene; 2, 4, 6, 8: parent strain.

1295



#### 图 3 budA 基因缺失菌的菌落 PCR 鉴定

Fig. 3 Identification of the *budA* knockout by colony PCR. M: DL2 000 DNA marker; 1, 3, 5, 7: mutant (*budA* $\Delta$ ) containing Kan resistance gene; 2, 4, 6, 8: parent strain.

两株基因突变株的 2,3-丁二醇脱氢酶酶活如 图 4A 所示,出发菌株在整个发酵阶段都有酶活 性。K. pneumoniae ZG38 (budCΔ)没有检测出 2,3-丁二醇脱氢酶酶活,说明 K. pneumoniae ZG38 (budCΔ)的 budC 基因已经被成功敲除,同时发现 发酵过程中 3-羟基-2-丁酮大量积累 (数据未列 出),在发酵 5~15 h 时发酵液中 3-羟基-2-丁酮浓 度约为出发菌株的 120%,进一步说明因为 budC 基因的缺失,造成了 3-羟基-2-丁酮在发酵液中大 量积累。K. pneumoniae ZG3 (budAΔ) 没有检测 出 2,3-丁二醇脱氢酶活性,为 budA 基因的缺失 提供了佐证。

两株基因突变株的 α-乙酰乳酸脱羧酶酶活 如图 4B 所示,出发菌株在整个过程中都保持 α-乙酰乳酸脱羧酶的活性。*K. pneumoniae* ZG38 (*budC*Δ)的 *budC* 基因缺失造成 3-羟基-2-丁酮积 累的同时,α-乙酰乳酸脱羧酶的活性相比出发菌 株提高了约 20% (6~24 h),*K. pneumoniae* ZG38 (*budA*Δ) 没有检测出 α-乙酰乳酸脱羧酶活性,说 明 *K. pneumoniae* ZG38 (*budA*Δ)的 *budA* 基因已 经被敲除。



图 4 K. pneumoniae ZG25、K. pneumoniae ZG38 (budCΔ)、K. pneumoniae ZG38 (budAΔ) 2,3-丁二醇脱 氢酶 (A) 与 α-乙酰乳酸脱羧酶 (B) 比酶活曲线的 测定

Fig. 4 Time course of specific activity of BDH (A) and  $\alpha$ -ALDC (B) in *K. pneumoniae* ZG25, *K. pneumoniae* ZG38 (*budC*  $\Delta$ ) and *K. pneumoniae* ZG38 (*budA* $\Delta$ ).

#### 2.2 突变株的分批发酵性能

为了初步考察基因敲除对菌体生长和代谢 产物的影响,本研究对出发菌株 K. pneumoniae ZG25 及构建的基因缺失菌 K. pneumoniae ZG38 (budC $\Delta$ ) 和 K. pneumoniae ZG38 (budA $\Delta$ )进行了 摇瓶发酵实验,结果表明, K. pneumoniae ZG38 (budC $\Delta$ ) 和 K. pneumoniae ZG38 (budA $\Delta$ )的平均 比生长速率 (2.07/h,0.583/h)和生长量 (图 5) 均 低于出发菌株 (2.22/h),说明 budC 和 budA 基因 的缺失抑制了菌体的生长,相比之下,budA 基因的缺失对菌体的影响更加严重,在整个发酵过程中,K.pneumoniae ZG38 (budAΔ)的菌体量只有出发菌株的25%~35%。K.pneumoniae ZG38 (budAΔ)的发酵结果显示,菌体不产生1,3-丙二醇和2,3-丁二醇,而其他副产物的产量明显增加,乳酸、琥珀酸、乙醇和乙酸的产量分别为出发菌株的6.6、2.7、2.1和1.8倍。

甘油测定结果表明 (图 6), *K. pneumoniae* ZG38 (*budC*Δ) 利用甘油的能力稍弱于出发菌 株,出发菌株 12 h 时已经消耗大部分甘油,而 *K. pneumoniae* ZG38 (*budC*Δ) 到 24 h 才消耗大部 分甘油,至发酵结束时残留甘油含量与出发菌株 残留甘油含量都保持在相同的水平 (0.5~1 g/L), 而 *K. pneumoniae* ZG38 (*budA*Δ) 菌株利用甘油 的能力降低,直至发酵结束时,发酵液中仍然残 留约 30 g/L 的甘油。



图 5 K. pneumoniae ZG25、K. pneumoniae ZG38 (budCΔ) 和 K. pneumoniae ZG38 (budAΔ) 的生长曲 线

Fig. 5 Time course of cell growth of *K. pneumoniae* ZG25, *K. pneumoniae* ZG38 ( $budC\Delta$ ) and *K. pneumoniae* ZG38 ( $budA\Delta$ ).

发酵液代谢产物的分析结果如图 6 所示, *K. pneumoniae* ZG38 (*budC*Δ) 的 1,3-丙二醇和



图 6 K. pneumoniae ZG25 (A)、K. pneumoniae ZG38 (budC $\Delta$ ) (B)和 K. pneumoniae ZG38 (budA $\Delta$ ) (C) 的 摇瓶发酵

Fig. 6 Shake-flask fermentations of *K. pneumoniae* ZG25 (A), *K. pneumoniae* ZG38 ( $budC\Delta$ ) (B) and *K. pneumoniae* ZG38 ( $budA\Delta$ ) (C). 1,3-PDO: 1,3-propanediol; 2,3-BD: 2,3-butanediol.

2,3-丁二醇产量分别达到 21.7 g/L 和 3.4 g/L,为 出发菌株的 111%和 65.3%。与出发菌株相比, 2,3-丁二醇产量明显下降,此外,*K. pneumoniae* ZG38 (*budC*Δ) 单位菌体的 1,3-丙二醇产率、摩 尔转化率达到 0.603 g/(L·h)和 0.682 mol/mol,分 别为出发菌株的 109%和 112%。由此可知,*budC* 基因敲除造成的 2,3-丁二醇脱氢酶缺失降低了 2,3-丁二醇产量,并提高了1,3-丙二醇产量。

#### 2.3 突变株的分批补料发酵

在 摇 瓶 发 酵 实 验 的 基 础 上 进 一 步 考 察 K. pneumoniae ZG38 (budCΔ) 发酵生产 1,3-丙二 醇 的 能 力, 在 5 L 发酵罐中对出发菌株及 K. pneumoniae ZG38 (budCΔ) 进行了分批补料发酵 实验,发酵结果如表 2 所示。

表 2 K. pneumoniae ZG25 和 K. pneumoniae ZG38 (budCΔ) 的分批补料发酵结果 Table 2 Fermentation results of fed-batch fermentation of K. pneumoniae ZG25 and K. pneumoniae ZG38 (budCΔ)

| Strains                              | K. pneumoniae<br>ZG25 | K. pneumoniae<br>ZG38 (budCΔ) | Ratio of K. pneumoniae ZG38 (budC $\Delta$ )<br>to K. pneumoniae ZG25 |
|--------------------------------------|-----------------------|-------------------------------|-----------------------------------------------------------------------|
| Fermentation time (h)                | 40.0                  | 40.0                          | -                                                                     |
| 1,3-PDO (g/L)                        | 61.00                 | 66.90                         | 110.00                                                                |
| 2,3-BD (g/L)                         | 8.81                  | 6.18                          | 70.00                                                                 |
| Acetic acid (g/L)                    | 5.95                  | 7.86                          | 132.00                                                                |
| Ethanol (g/L)                        | 3.32                  | 0.80                          | 24.10                                                                 |
| Lactic acid (g/L)                    | 1.61                  | 1.39                          | 86.00                                                                 |
| Succinic acid (g/L)                  | 2.16                  | 2.70                          | 125.00                                                                |
| Productivity of 1,3-PDO (g/(L·h))    | 1.53                  | 1.67                          | 110.00                                                                |
| Conversion rate of 1,3-PDO (mol/mol) | 0.630                 | 0.701                         | 111.000                                                               |

由表 2 可以看出, *K. pneumoniae* ZG38 (*budC*Δ) 的 1,3-丙二醇浓度为 66.9 g/L, 相比于 出发菌株提高了 10%, 1,3-丙二醇产率、对甘油 的摩尔转化率也明显增加。正如所预测的, 2,3-丁二醇脱氢酶失活导致了 2,3-丁二醇和乙醇产量 的降低,分别降低了 30.0%和 75.9%。然而 *budC* 基因缺失菌却产生了更多的乙酸、琥珀酸, 表明 *budC* 基因的缺失可以导致流向 2,3-丁二醇途径 的碳流转向乙酸和琥珀酸途径。

### 3 讨论

菌体代谢旁路途径基因敲除往往会在一定

程度上影响菌体的生长,这在许多关于克雷伯氏 菌基因敲除研究中已经得到证实<sup>[10-11]</sup>。本研究中 对*budC*基因和*budA*基因的敲除也得到了相同的 结果。就发酵目的产物来说,*budC*基因缺失菌株 2,3-丁二醇的产量只是比出发菌株降低了 30%, 并没有完全按照预测消除 2,3-丁二醇的产生,表 明克雷伯氏菌可能存在另一条 2,3-丁二醇途径, 即 2,3-丁二醇循环,这条途径已经在枯草芽胞杆 菌、蜡状芽胞杆菌和尿素微球菌<sup>[22-23]</sup>中被发现, 并且 2,3-丁二醇循环的生理机制还没有阐明,至 今尚无关于 *K. pneumoniae* 2,3-丁二醇回补途径 的研究。 本研究利用基因敲除技术对 K. pneumoniae 2,3-丁二醇回补途径进行了探索,如图 7 所示, 当 2,3-丁二醇途径因 budC 基因缺失而被阻断时, 通向 2,3-丁二醇途径的碳流通过节点 3-羟基-2-丁酮转向 2,3-丁二醇的回补途径生成 2,3-丁二 醇,在这个过程中,乙酸作为回补途径的中间代 谢产物被大量形成,理论上 1 mol 2,3-丁二醇形 成的同时也会形成 2 mol 乙酸,在分批补料发酵 过程中,乙酸的产量约是 2,3-丁二醇产量的 1.88 倍 (表 2),与理论预测值基本吻合,从而有力的 证实了克雷伯氏菌中可能存在 2,3-丁二醇回补途 径,并且当主要合成途径被阻断后会通过此回补 途径合成 2,3-丁二醇。

budA 基因的缺失对菌体的生长和生理产生

了明显影响,2,3-丁二醇代谢途径在微生物胞内 有着重要的生理功能,它维持着细胞内 NAD<sup>+</sup>/NADH平衡,3-羟基-2-丁酮和2,3-丁二醇 的转化是一个可逆的生化反应,故2,3-丁二醇代 谢途径是细胞的一个还原力库,它的存在可以自 动调节胞内的氧化还原平衡,而 *budA* 基因的缺 失则使其丧失了这一功能,使变异菌株在生长上 受到抑制,代谢紊乱,甘油的还原途径被抑制, 氧化途径中产生的 NADH 消耗在糖酵解到三羧 酸循环途径的产物形成过程中,从而导致发酵过 程中乳酸、琥珀酸、乙醇和乙酸的产量成倍增加。 这与 Zhang 等<sup>[24]</sup>报道的产酸克雷伯氏菌 *budA* 基 因缺失菌株发酵结果相似,Zhang 等将 *budA* 基 因敲除后虽然菌体生长受到抑制,但却提高了





Fig. 7 Metabolic pathway of 2,3-BD and the 2,3-BD cycle<sup>[22]</sup>.

http://journals.im.ac.cn/cjbcn

1,3-丙二醇的产量,说明 2,3-丁二醇合成途径对 1,3-丙二醇产量的影响在不同克雷伯氏菌中的表 现是不同的。

根据枯草芽胞杆菌 Bacillus subtilis、蜡状芽 胞杆菌 Bacillus cereus 和尿素微球菌 Micrococcus urea 公布的 2,3-丁二醇循环途径<sup>[22]</sup>推测,若 budA 基因被敲除则使得 α-乙酰乳酸脱羧酶缺失,从而 使 3-羟基-2-丁酮完全无法合成,导致 2,3-丁二醇 两条代谢途径都被阻断,最终无 2,3-丁二醇产生, 这与本研究结果完全一致。基于本研究 budC 和 budA 基因敲除和代谢产物分析的结果,可以推 断克雷伯氏菌中可能存在 2,3-丁二醇回补途径, 且 2,3-丁二醇循环是以 3-羟基-2-丁酮为起点。有 关 2,3-丁二醇循环的研究结果为以后更加深入的 研究提供了基础。在以后的研究中,应该重点研 究克雷伯氏菌的 2,3-丁二醇循环途径,找出该途 径的关键酶基因并尝试敲除关键酶基因,以进一 步降低 2,3-丁二醇和增加 1,3-丙二醇的产量。

#### REFERENCES

- Liu HJ, Xu YZ, Zheng ZM, et al. 1,3-propanediol and its copolyments: research, development and industrialization. Biotechnol J, 2010, 5(11): 1137–1148.
- [2] Kurian JV. A new polymer platform for the future-Sorona from corn derived 1,3-propanediol. J Polym Environ, 2005, 13(2): 159–167.
- [3] Kaur G, Srivastava AK, Chand S. Advances in biotechnological production of 1,3-propanediol. Biochem Eng J, 2012, 64: 106–118.
- [4] Saxena RK, Anand P, Saran S, et al. Microbial production of 1,3-propanediol: recent developments and emerging opportunities. Biotechnol Adv, 2009, 27(6): 895–913.
- [5] Biebl H, Menzel K, Zeng AP, et al. Microbial

production of 1,3-propanediol. Appl Microbiol Biotechnol, 1999, 52(3): 289–297.

- [6] Gao SL, Fang YJ, Qi YW. Prediction of vapor-liquid equilibrium by ASPEN PLUS software for water-2,3-butanediol. Zhejiang Chem Ind, 2007, 138: 25-28 (in Chinese).
  高山林,方云进,咸一文.用 aspen plus 软件预测水-2,3-丁二醇汽液相平衡数据.浙江化工, 2007, 138: 25-28.
- [7] Converti A, Perego P, Del Borghi M. Effect of specific oxygen uptake rate on Enterobacter aerogenes energetics: carbon and reduction degree balances in batch cultivations. Biotechnol Bioeng, 2003, 82(3): 370–377.
- [8] Xiu ZL, Zeng AP. Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl Microbiol Biotechnol, 2008, 78(6): 917–926.
- [9] Hao J, Xu F, Liu H, et al. Downstream processing of 1,3-propanediol fermentation broth. J Chem Technol Biotechnol, 2006, 81(1): 102–108.
- [10] Zhang YP, Li Y, Du CY, et al. Inactivation of aldehyde dehydrogenase: A key factor for engineering 1,3-propanediol production by *Klebsiella pneumoniae*. Metab Eng, 2006, 8(6): 578–586.
- [11] Yang G, Tian JS, Li JL. Fermentation of 1,3-propanediol by a lactate deficient mutant of *Klebsiella oxytoca* under microaerobic conditions. Appl Microbiol Biotechnol, 2007, 73(5): 1017–1024.
- Xu YZ, Guo NN, Zheng ZM, et al. Metabolism in 1,3-propanediol fed-batch fermentation by a D-lactate deficient mutant of *Klebsiella pneumoniae*. Biotechnol Bioeng, 2009, 104(5): 965–972.
- [13] Seo MY, Seo JW, Heo SY, et al. Elimination of by-product formation during production of 1,3-propanediol in *Klebsiella pneumoniae* by inactivation of glycerol oxidative pathway. Appl Microbiol Biotechnol, 2009, 84(3): 527–534.
- [14] Guo NN, Zheng Z M, Mai YL, et al. Consequences

of cps mutation of *Klebsiella pneumoniae* on 1,3-propanediol fermentation. Appl Microbiol Biotechnol, 2010, 86(2): 701–707.

- [15] Blomqvist K, Nikkola M, Lehtovaara P, et al. Characterization of the genes of the 2,3-butanediol operons from *Klebsiella terrigena* and *Enterobacter aerogenes*. J Bacteriol, 1993, 175(5): 1392–1404.
- [16] Mayer D, Schlensog V, Bock A. Identification of the transcriptional activator controlling the butanediol fermentation pathway in *Klebsiella terrigena*. J Bacteriol, 1995, 177(18): 5261–5269.
- [17] Wei D, Wang M, Shi JP, et al. Red recombinase assisted gene replacement in *Klebsiella pneumoniae*. J Ind Microbiol Biotechnol, 2012, 39(8): 1219–1226.
- [18] Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. PNAS, 2000, 97(12): 6640–6645.
- [19] Baba T, Ara T, Hasegawa M, et al. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol, 2006, 2(1): 1–11.

- [20] Wardwell SA, Yang YT, Chang HY, et al. Expression of the *Klebsiella pneumoniae* CG21 acetoin reductase gene in *Clostridium* acetobutylicum ATCC 824. J Ind Microbiol Biot, 2001, 27(4): 220–227.
- [21] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ana Biochem, 1976, 72(1): 248–254.
- [22] Juni E, Heym GA. A cyclic pathway for the bacterial dissimilation of 2,3-butanediol, acetylmethylcarbinol, and diacetyl I. General aspects of the 2,3-butanediol cycle. J Bacteriol, 1956, 71(4): 425–432.
- [23] Ui S, Hosaka T, Mizutani K, et al. Acetylacetoin Synthase as a Marker Enzyme for Detecting the 2,3-Butanediol Cycle. J Biosci Bioeng, 2002, 93(2): 248–251.
- [24] Zhang G, Yang G, Wang X, et al. Influence of blocking of 2,3-butanediol pathway on glycerol metabolism for 1,3-propanediol production by *Klebsiella oxytoca*. Appl Biochem Biotechnol, 2012, 168(1): 116–128.

(本文责编 郝丽芳)