生 物 程 T 学 报 Chinese Journal of Biotechnology http://journals.im.ac.cn/cjbcn

June 25, 2013, 29(6): 735-750 ©2013 Chin J Biotech, All rights reserved

工业生物技术

枯草芽胞杆菌 168 不对称转化产生磷霉素的蛋白质 组学分析

解复红^{1,2}、钞亚鹏¹、石家骥¹、张国青¹、杨敬¹、钱世钧¹

1 中国科学院微生物研究所 传感技术联合国家重点实验室,北京 100101 2 河南省科学院生物研究所 河南省工业酶工程技术研究中心,河南 郑州 450008

解复红, 钞亚鹏, 石家骥, 等. 枯草芽胞杆菌 168 不对称转化产生磷霉素的蛋白质组学分析. 生物工程学报, 2013, 29(6): 735-750. Xie FH, Chao YP, Shi JJ, et al. Proteomic analysis of Bacillus subtilis 168 transforming cis-propenylphosphonic acid to

fosfomycin. Chin J Biotech, 2013, 29(6): 735-750.

摘 要:旨在用蛋白质组学方法揭示枯草芽胞杆菌 Bacillus subtilis 168 将顺丙烯磷酸转化成磷霉素的机理。 B. subtilis 168 能够将顺丙烯磷酸不对称转化成磷霉素。气相色谱分析发现在转化培养基发酵液中的磷霉素的 含量达 816.6 μg/mL,转化率为 36.05%。将分别培养在含有底物和不含底物的培养基中的 B. subtilis 168 的胞 质蛋白进行双向凝胶电泳。对两种条件下的电泳图谱进行比较,发现有98个差异表达蛋白。其中在有底物存 在时,表达量下调的点有20个,表达量上调的点52个,底物特异性表达的点有26个。对差异表达蛋白进行 质谱鉴定, 共鉴定到 80 个蛋白点, 其中下调的点 17 个, 上调的点 45 个, 底物特异性表达的点 18 个。这些蛋 白分别参与胁迫反应、氧化还原反应、物质转运、核苷酸代谢、糖代谢、氨基酸和蛋白质代谢等。根据上述对 B. subtilis 168 蛋白质组学分析结果,推测菌株是通过两步将顺丙烯磷酸转化成磷霉素的。第一步是水化反应, 第二步是脱氢反应。

关键词:枯草芽胞杆菌,顺丙烯磷酸,磷霉素,转化,蛋白质组学分析

Received: December 26, 2012; Accepted: January 28, 2013

Supported by: CAS Knowledge Innovation Program (No. KSCX2-YW-G-051).

Corresponding author: Shijun Qian. Tel/Fax: +86-10-64807428; E-mail: qiansj@im.ac.cn

中国科学院知识创新工程重要方向项目 (No. KSCX2-YW-G-051) 资助。

Proteomic analysis of *Bacillus subtilis* 168 transforming *cis*-propenylphosphonic acid to fosfomycin

Fuhong Xie^{1,2}, Yapeng Chao¹, Jiaji Shi¹, Guoqing Zhang¹, Jing Yang¹, and Shijun Qian¹

 State Key Laboratories of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
 Henan Engineering Research Center of Industrial Enzymes, Biology Institute of Henan Academy of Sciences, Zhengzhou 450008, Henan, China

Abstract: In this study, we investigated the mechanism of transformation by *Bacillus subtilis* strain 168 by proteomic analysis. *B. subtilis* strain 168 was able to stereoselectively transform *cis*-propenylphosphonic acid (cPPA) to fosfomycin. The maximal fosfomycin production was 816.6 µg/mL after two days cultivation, with a conversion rate of 36.05%. We separated the whole cellular proteins by two-dimensional gel electrophoresis (2-DE) method, and 562 protein spots were detected in the presence of cPPA in the medium, while 527 protein spots were detected in the absence of cPPA. Of them, 98 differentially expressed protein spots were found. Among them, 52 proteins were up-regulated whereas 20 were down-regulated in the presence of cPPA in the medium, and 26 induced at the presence of cPPA. The differentially expressed proteins were analyzed by combined MS and MS/MS methods. Eighty protein spots, including 45 up-regulated proteins, 17 down-regulated proteins, and 18 induced by cPPA were identified. Based on the results of proteomic analysis, we postulated two steps of transformation: in the first step, cPPA was hydrated to 2-hydroxypropylphosphonic acid; in the second step, 2-hydroxypropylphosphonic acid was transformed to fosfomycin via a dehydrogenation reaction.

Keywords: Bacillus subtilis strain 168, cis-propenylphosphonic acid, fosfomycin, transformation, proteomic analysis

磷霉素 (图 1) 是一种由 Streptomyces^[1]和 Pseudomonas^[2]产生的抗生素,它的分子结构简 单,有一个环氧环和一个天然产物中不常见的 C-P键。磷霉素具有抑制革兰氏阳性菌和革兰氏 阴性菌的活性,现在被广泛用于治疗细菌感染 疾病。

磷霉素与细菌细胞壁合成的必需物磷酸烯 醇式丙酮酸的空间结构相似,可与丙酮酰转移酶 共价结合,使其不可逆失活,从而抑制细菌细胞 壁的合成,因此,它对革兰氏阳性菌和阴性菌均 具有杀灭作用。由于临床上对抗生素的大量使 用,导致了一些病源细菌对传统的抗生素产生了 抗药性。如发现病原菌肺炎链球菌 *Streptococcus pneumoniae* 对头孢菌素 (Cephalosporin) 具有抗 药性,金黄色葡萄球菌 Staphylococcus aureus 对 二甲氧基青霉素 (Methicillin) 具有抗药性,屎肠 球菌 Enterococcus faecium 对万古霉素 (Vancomycin) 具有抗药性等。这一方面提高了治 疗成本,另一方面也加大了治疗的难度。由于磷 霉素的结构和作用位点与其他常用的抗生素有 很大的不同,因此无交叉耐药性而有协同作用,

图1 磷霉素的分子结构

Fig. 1 Structure of fosfomycin.

磷霉素对这些抗药的致病菌具有很好的杀灭作 用^[3-6]。因此,在目前致病菌耐药性日益增多的 情况下,磷霉素具有不可替代的临床应用价值和 理论研究意义。

由于磷霉素的化学结构简单,目前工业上以 化学全合成法生产,在化学合成中磷霉素的直接 前体物质是顺丙烯磷酸(*cis*-propenylphosphonic acid, cPPA)。顺丙烯磷酸经环氧化产生左旋和右 旋磷霉素。由于只有左旋体才有生物活性,右旋 体全部废弃,整个生产工艺中磷霉素的收率不到 20%。因此,化学法生产磷霉素造成了巨大的资 源浪费,同时由于化学拆分等试剂的大量使用, 产生严重的环境污染问题。实现磷霉素的不对称 合成,是降低磷霉素的生产成本、提高产值、减 少污染物排放的一项迫切需求。

由磷霉素合成的中间体顺丙烯磷酸出发,利 用微生物环氧化得到磷霉素,则是另一种有效的 途径。White等首次发现青霉属 Penicillium 等属 的一些菌株能将顺丙烯磷酸立体选择性地环氧 化成有生物活性的磷霉素^[7]。从此以后,几个研 究组分别筛选到一些具有转化活力的菌株^[7-11], 其中石家骥等^[10]筛选到的一株青霉属菌株 Penicillium sp. F5,当底物浓度为 0.3%时,培养 6 d,产物浓度达到 2.2 mg/mL,转化率为 41%, 这是到目前为止生物转化产生磷霉素产量最高 的报道。

Itoh 等^[8]研究了脂香黄杆菌 *Flavobacterium esteroaromaticum* IFO3751 菌株的环氧化机制, 通过试验,他们提出了一种可能的转化机理,认 为顺丙烯磷酸在溴过氧化物酶的作用下,转化成 中间物溴代醇,然后在溴代醇环氧化酶的作用 下,将溴代醇环氧化成磷霉素。Watanabe 等^[11] 用蛋白质组学方法,从斜卧青霉 Penicillium decumbens 中找到了一种氧化酶 (EpoA),并且克 隆出了该酶的基因,将该酶的基因同源克隆到原 始菌株中,菌株的转化能力提高了4倍。在本研 究中,我们发现 B. subtilis 168 能将顺丙烯磷酸不 对称转化成磷霉素,其遗传背景也比较清楚。因 此,以 B. subtilis 168 为出发菌株,用蛋白质组方 法研究其不对称将顺丙烯磷酸转化为磷霉素的 机理,对进一步揭示微生物不对称将顺丙烯磷酸 转化为磷霉素的机理有很强的启示意义。

1 材料与方法

1.1 材料

1.1.1 菌种

B. subtilis 168 购自中国普通微生物菌种保藏管理中心 (China General Microbiological Culture Collection Center, CGMCC)。

1.1.2 主要试剂

磷霉素购自中国药品生物鉴定所 (National Institute for the Control of Pharmaceutical and Biological Products, NICPBP); 左旋、右旋磷霉 素和顺丙烯磷酸,购自东北制药总厂; N,O-双 (三 甲基硅基)乙酰胺 (Bis-trimethylsilylacetamide)、 BSA 和三甲基氯硅烷 (Trimethylchlorosilane, TMCS) 购自 Merck 公司 (Darmstadt,Germany); 尿素、3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS)、IPG strips (17 cm), Dithilthreitol (DTT)、Bio-Lyte Carrier Ampholyte (3-10, 4-7) 和 mineral oil 购自 Bio-Rad 公司 (Hercules, CA, USA); 其他所用均为分析纯试剂。

1.1.3 转化培养基 (g/L)

葡萄糖, 15; 胰蛋白胨, 10; cPPA, 2;

$$\label{eq:MgSO4} \begin{split} MgSO_4{\cdot}7H_2O\ , \ \ 1.5\ ; \ \ Na_3VO_4{\cdot}12H_2O\ , \ \ 0.1\ ; \\ CoCl_2{\cdot}6H_2O\ , \ \ 0.5\ ; \ pH\ 8.5_\circ \end{split}$$

1.2 方法

1.2.1 磷霉素活力的测定

转化产物磷霉素用气相色谱 (Gas chromatography,GC) 检测,并将结果同标准的 左旋磷霉素对比。用于GC 检测的样品按照 Xie 的方法^[12]处理。将100 µL 培养后的发酵液用氮 气流吹干,加入 100 µL 硅烷化试剂 (47.5 µL BSA,47.5 µL 二氯甲烷和 5 µL TMCS),充分混 匀,然后放于60 ℃的水浴中反应15 min,气相 色谱中上样1 µL。GC 检测的条件是:分流比为 20:1,开始柱箱的温度控制在105 ℃ 3 min,然 后以 0.8 ℃/min 的速率升温,直到115 ℃,维 持 5 min。

定量检测磷霉素也是用 GC 的方法进行。分 别将 200 mg、400 mg、600 mg、800 mg 和 1 000 mg 标准磷霉素,在温箱中烘干至恒重。向 各个重量的磷霉素加入 1 mL 硅烷化试剂 (47.5 µL BSA,47.5 µL 二氯甲烷和 5 µL TMCS), 充分混匀,置于 60 ℃的水浴中反应 15 min。将 处理好的样品进行气相色谱分析,上样量为 1 µL。根据各个磷霉素峰的峰面积和其对应的磷 霉素的浓度绘制标准曲线。测发酵液中磷霉素的 浓度时,根据磷霉素峰的峰面积和标准曲线推算 出磷霉素的浓度。

1.2.2 细胞裂解液的制备

8 mol/L 尿素 4.805 g, 4% (*W*/*V*) CHAPS 0.4 g, 65 mmol/L DTT 0.098 g, 2% (*V*/*V*) Bio-Lyte (3-10) 200 μL, 加 MilliQ 水定容至 10 mL, 分装 每管 1 mL, -20 ℃保存。

1.2.3 菌株的培养

将 B. substilis 168 的单菌落接种于 LB 培养 基中, 摇床培养 (30℃, 200 r/min) 24 h。分别取 1 mL 培养液接种于含有顺丙烯磷酸和不含有顺 丙烯磷酸的转化培养基中 (500 mL 三角瓶,装培 养基 50 mL; 每种培养基接种 3 瓶作平行样), 摇 瓶培养 48 h (30 ℃, 200 r/min)。

1.2.4 蛋白样品的制备

将发酵液离心 (10 000 r/min, 10 min, 4 ℃), 收集细胞, 用缓冲液 (50 mmol/L Tris-HCl, 1 mmol/L EDTA, pH 7.5) 洗涤菌体 3 次。称量 湿菌重,每 1.5 mL 离心管中装菌体 100 mg, 然 后每管加 1 mL 细胞裂解液, 10 µL 100 mmol/L 苯甲基磺酰氟 (Phenylmethanesulfonyl fluoride, PMSF), 混匀后,在冰浴条件下采用超声破碎仪 进行细胞破碎。在细胞破碎液中加入 DNase I (终浓度为 15 µg/mL) 和 RNase A (终浓度为 15 µg/mL),4 ℃反应 60 min 以除去其中的核 酸。4 ℃、20 000×g 离心 15 min, 收集上清蛋 白溶液。

1.2.5 蛋白质浓度测定

根据 Bradford 方法^[13],对蛋白质溶液的浓度 进行定量测定。

1.2.6 双向凝胶电泳

等电聚焦电泳:双向电泳主要参考 Görg A 等提出的方法^[14]及 Bio-Rad 仪器操作手册进行, 重复 3 次。蛋白上样量为 300 µg,与上样缓冲液 充分混合,总体积均为 350 µL。干胶条水化和 聚焦在 20 ℃条件下进行。50 V 主动水化 12 h 后进行等电聚焦,设置等电聚焦的程序达到 65 kVh。等电聚焦结束后,取出胶条,准备进行 第二向电泳。

第二向 SDS-PAGE: 用湿的滤纸将等电聚焦 后的胶条上的矿物油吸干。将胶条转移至水化盘 中。每根胶条中加入 6 mL 胶条平衡缓冲液 I (6 mol/L 尿素, 2.5% SDS, 50 mmol/L Tris-HCl, pH 8.8, 30% 甘油, 1% DTT, 0.002% 溴酚蓝), 在水平摇床上缓慢摇动,平衡 15 min。第一次平 衡结束后,倒掉平衡缓冲液 I,用 MilliQ 水冲洗 胶条背面。再加入6 mL 胶条平衡缓冲液Ⅱ(将 平衡缓冲液 I 中的 1% DTT 替换成 4%碘乙酰 胺),继续在水平摇床上缓慢平衡 15 min。将平 衡好的胶条转移至 protean Ⅱ xi cell 垂直电泳槽 中进行 SDS-PAGE, 垂直电泳分离胶的浓度为 12.5%。在电泳槽中加入1×电泳缓冲液后,接通 电源,起始时用 20 mA/gel 的低电流电泳 30 min, 使样品完全走出 IPG 胶条, 并浓缩成一条线。然 后加大电流至 30 mA/gel, 直到溴酚蓝指示剂达 到底部边缘时即可停止电泳。取出凝胶,进行考 马斯亮蓝 G-250 染色。

1.2.7 图像采集和分析

将凝胶小心地放置在 UMAX Powerlook 1120 扫描仪上,以 600 dpi 的分辨率,合适的对比度 和清晰度,对胶图进行扫描。用 ImageMaster[™] 2D Platinum 6.0 (GE Healthcare, USA)软件对蛋 白图像进行分析。通过设置参数 (Smooth 3, Min Area 50, Saliency 3.0),检测胶图上的蛋白点, 每个胶点的体积通过与一块胶内所检测到的所 有蛋白点总体积的比值再乘以 100 进行标准化 (Normalization)。用同样的方法处理每张胶图。 通过选定若干个蛋白点作为 Landmark,以定义 的 Landmark 为坐标,将不同培养条件下培养的 菌体胶图之间的蛋白点作匹配 (Matching),通过 对3次重复的胶图进行比对后,进行统计学分析。 蛋白点标准化体积 (vol %) 的变化在 2 倍以上 为差异显著。

1.2.8 差异蛋白点的胶内酶解

用刀片从凝胶上挖取差异蛋白点,置于 Eppendorf 管中,并记录点号和相应的位置。加 入 200 µL 脱色液 (100 mmol/L NH4HCO3/50% 乙腈), 置于 30 ℃摇床中振荡脱色, 中间换 1~2 次脱色液,直至蓝色完全褪去。用去离子水洗蛋 自点 3 次。加 10 mmol/L DTT (10 µL 1 mol/L DTT 加 990 µL 25 mmol/L NH₄HCO₃) 50 µL, 56 ℃反应 1 h。冷却到室温后, 吸干, 快速加 55 mmol/L 碘乙酰胺 (55 µL 1 mol/L 碘乙酰胺加 945 µL 25 mmol/L NH4HCO3) 50 µL, 放置在黑暗 中反应 45 min。用去离子水洗蛋白点 3 次。用真 空离心浓缩仪将胶颗粒彻底抽干。加入 25 μg/μL 的测序级胰蛋白酶 (Promega 公司产品,按说明 书配制) 3~10 µL (酶量的多少视蛋白多少而改 变), 在4℃放置1h, 使胶颗粒充分溶胀。待溶 液被胶颗粒完全吸收,加适量 25 mmol/L NH4HCO3覆盖胶颗粒,酶解消化过夜 (12~15 h)。 加入 1%三氟乙酸终止反应, 使三氟乙酸终浓 度为 0.1%,将液体取出放入干净的 Eppendorf 管 (可能含有超过 70%的肽片段), 加入 5% 三 氟乙酸/50%乙腈 100 μL, 37 ℃保温 1 h, 将提 取液放入装有含肽覆盖液的 Eppendorf 管中。 将肽提取液用 Speed Vac 彻底抽干,用于质谱 分析。

1.2.9 MALDI-TOF/TOF 质谱分析

加入 3 μL 的 matrix 基质溶液 (10 mg/mL α-氰基-4-羟基肉桂酸, 50%乙腈) 到装抽干的肽提 取物的管子中,充分混合,然后取 1 μL 点到 anchorchip 上,室温干燥。然后在质谱仪 (4700 Proteomics Analyzer, Applied Biosystems, Foster City, CA 94404, U.S.A) 上进行一级质谱或二级 质谱 (MS, MS/MS) 分析。

1.2.10 蛋白质鉴定

获得了一级质谱 (Peptide Mass Fingerprint, PMF) 和二级质谱 (MS/MS) 的结果后,利用 MASCOT 软件将质谱结果在 NCBInr database 数 据库 (http://www.matrixscience.com) 中进行蛋 白质同源查询,获取差异表达的蛋白质信息。

2 结果

2.1 *B. subtilis* 168 不对称将顺丙烯磷酸转化 成磷霉素

将 B. subtilis 168 接种到转化培养基中,摇床 培养 2 d,用 GC 法测磷霉素的活性 (图 2),发 现发酵液的上清液中有 816.6 μg/mL 的磷霉素, 转化率为 36.05%。这说明 B. subtilis 168 能不对 称将顺丙烯磷酸转化成磷霉素,是研究转化机理 的理想材料。

2.2 蛋白质差异表达的图谱分析

用含有底物顺丙烯磷酸培养的菌体和不含 底物的培养基培养的菌体蛋白提取液分别用 pH 4~7 胶条进行等电聚焦,然后经过 SDS-PAGE 分离,每种培养条件重复做 3 次,得到 6 块 2-DE 图谱。结果发现 3 次重复试验得到的 2-DE 图谱 的重复性非常高,这就说明这 6 块 2-DE 图谱能 真实反映细胞体内参与环氧化反应和其他代谢 的蛋白状态。用 ImageMaster 软件对这些胶图进 行统计分析,结果发现有底物和没有底物的两个

Fig. 2 Transformation of *cis*-propenylphosphonic acid to fosfomycin by *B. subtilis* strain 168.

样品的胶图在蛋白点的分布、表达数目和表达量方 面差异点非常明显。当 B. subtilis 168 在没有底物 时,在 pH 4~7 的范围内检测到 527 个蛋白点;在 有底物时,检测到 562 个蛋白点。

将有底物的 2-DE 图谱和没有底物的 2-DE 图谱进行比较。我们规定,差异值大于 2 的为差 异表达蛋白。结果发现有 98 个差异表达蛋白 (图 3)。其中在有底物存在时,表达量下调的点 有 20 个,表达量上调的点 52 个,底物特异性表 达的点有 26 个。

2.3 差异表达蛋白的质谱鉴定结果

将差异表达的蛋白点从 2-DE 胶上切下来, 进行胶内酶解。用 4700 Proteomics Analyzer 质谱 仪对酶解肽段进行 MALDI-TOF 质谱分析,获得 的肽指纹图谱用 MASCOT 软件检索 NCBInr 数 据库。经过肽指纹图谱未能够得到鉴定的蛋白 点,继续进行了 MALDI-TOF/TOF 二级质谱测定。

经质谱鉴定,共鉴定到 80 个差异表达蛋白 点 (表 1),其中鉴定出上调的点 45 个,下调的 点 17 个,顺丙烯磷酸诱导表达的特异性蛋白点 18 个。按照蛋白功能进行分类,这些蛋白分别参 与胞内的不同代谢过程。其中 10 个参与对抗胁 迫反应,11 个蛋白参与合成胞内酶促反应的辅助 因子,3 个蛋白点与氧化还原反应有关,5 个蛋 白与物质转运有关,5 个点与核苷酸代谢有关, 20 个蛋白点参与糖代谢,16 个点参与氨基酸和 蛋白质的代谢,10 个点参与其他的代谢途径。没 有鉴定出来的蛋白点有 18 个。

2.3.1 底物顺丙烯磷酸所引起的胁迫反应

顺丙烯磷酸对菌株 B. subtilis 168 来说是一种异源物质,当该菌株在含有顺丙烯磷酸的培养

基中生长时无疑会诱导大量的胁迫反应蛋白的 产生。这些胁迫蛋白分为热胁迫蛋白和氧化胁迫 蛋白。热胁迫蛋白包括: 60 kDa chaperonin、 Chaperone protein dnaK、Trigger factor 和 Stress response protein SCP2。氧化胁迫蛋白包括: Superoxide dismutase、Thiazole biosynthesis protein thiG、Alkyl hydroperoxide reductase 和 Pyridoxal biosynthesis lyase pdxS。但有趣的是, 在有底物存在时,胁迫反应蛋白 Chaperonin GroEL 和 NH₃-dependent NAD⁺ synthetase 的表达 量却下降了,这种表达量的变化的原因尚不清 楚。菌株能在顺丙烯磷酸和生成的抗生素磷霉素

的发酵液中生长,可能与这些胁迫蛋白的差异表 达有关。

2.3.2 顺丙烯磷酸对转运蛋白表达的影响

当菌株 B. subtilis 168 在含有顺丙烯磷酸的 培养基中生长时,其 ABC 转运系统的组分都上 调表达,如 Oligopeptide ABC transporter (Binding protein) 总共上调表达 9.79 倍,这意味着顺丙烯 磷酸向胞内转运和新生成的磷霉素的向胞外转 运可能都依靠 ABC 转运系统完成。

2.3.3 糖代谢蛋白的差异表达

这类差异表达的蛋白几乎涉及到了糖代谢 所有的途径。包括糖酵解途径,如磷酸甘油醛 异构酶 (Triosephosphate isomerase)、3-磷酸甘 油 醛 脱 氢 酶 (Glyceraldehyde-3-phosphate dehydrogenase)、果糖二磷酸醛缩酶 (Fructose-1,6-bisphosphate aldolase)等;参与磷酸戊糖途径 的酶包括转醛酶 (Translaldolase)和脱氧核糖磷 酸醛缩酶 (Deoxyribose-phosphate aldolase),其中 后者上调表达 2.05 倍,该酶将脱氧核糖磷酸转化

图 3 B. subtilis 168 在无底物的培养基 (A) 和有底物的培养基 (B) 中培养后细胞质中的可溶性蛋白双向电泳图 谱分析

Fig. 3 2-DE gels of total cytoplasmic proteins of *B. subtilis* strain 168 in transformation medium without substrate *cis*-propenylphosphonic acid (A) and with substrate *cis*-propenylphosphonic acid (B) in the pH 4–7 range. The numbers present in (A) indicate the down-regulated proteins, while the numbers present in (B) indicate the proteins that are up-regulated and those induced by the substrate.

表 1	В.	subtilis 168 在不同培养基	(含有顺丙烯磷酸和不含顺丙烯磷酸)	中生长时差异蛋白点的鉴定
Table	1	Identified proteins from	B. subtilis strain 168 cells grown in	the presence of <i>cis</i> -propenylphosphonic
acid in	n tl	he medium and in the abs	ence of <i>cis</i> -propenylphosphonic acid i	n the medium

	Spot number	Protein name	$pI/MW^{T \oplus}$	$pI/MW^{E\textcircled{2}}$	Score	Fold	Match	Coverage (%)
Stress	response proteir	15						
¢	313	Superoxide dismutase	4.71/12	4.83/29	93		8	65
¢	329	Stress response protein SCP2	5/27	4.83/29	172		17	43
¢	490	Pyridoxal biosynthesis lyase pdxS	5.26/32	5.76/23	73		15	32
¢	505	Thiol peroxidase	4.89/18	4.68/23	331		19	84
¢	526	60 kDa chaperonin	4.73/57	4.75/19	72		25	20
+	4	Chaperone protein dnaK	4.76/66	4.81/70	127	2.22	30	48
+	25	Trigger factor	4.42/47	4.54/65	143	4.61	24	43
+	447	Alkyl hydroperoxide reductase	4.48/21	4.6/25	86	15.62	5	45
-	27	Chaperonin GroEL	4.73/57	4.8/58	58	8.15	11	24
-	178	NH ₃ -dependent NAD ⁺ synthetase	5.07/30	5.28/48	182	12.03	16	40
Transp	port proteins							
+	237	ATPase component	6.16/33	4.46/31	79	5.45	9	52
+	309	Oligopeptide ABC transporter (binding protein)	5.83/62	5.83/29	60	2.80	13	16
+	371	ATP synthase subunit alpha	5.83/62	5.83/29	60	2.80	13	16
+	383	Oligopeptide ABC transporter (binding protein)	5.83/62	5.22/26	64	6.69	33	29
-	374	YvrB	5.25/53	5.54/25	61	2.32	11	31
Proteins related to the formation of co-enzymes								
ţ.	362	Phosphomethylpyrimidine kinase	5.41/22	6.1/27	137		19	86
¢	54	1-Pyrroline-5-carboxylate dehydrogenase	5.5/57	5.95/50	396		29	47
+	99	Phosphomethylpyrimidine kinase	5.74/29	5.88/38	61	3.52	12	35
+	316	Thiazole biosynthesis protein	4.91/27	5.01/29	195	6.03	17	57
+	322	1-Pyrroline-5-carboxylate dehydrogenase	4.65/22	4.88/31	66	3.67	8	58
+	466	bifunctional riboflavin kinase	6.19/36	5.97/23	67	8.51	15	45
+	500	Bifunctional riboflavin kinase/FMN adenylyltransferase	6.19/36	6.72/21	66	4.70	8	33
+	517	NADH-dependent flavin dehydrogenase	5.22/38	5.82/20	132	6.87	23	54
+	522	Riboflavin biosynthesis protein	7.19/33	5.31/19	53	7.90	9	27
-	308	Phosphomethylpyrimidine kinase	5.74/29	6.06/30	238	2.20	19	63

								续表 1
-	222	Methenyltetrahydrofolate cyclohydrolase	5.67/31	6.38/32	144	3.16	17	57
Central	carbon metabo	lism						
¢	134	Triosephosphate isomerase	5/27	5.35/38	147		19	29
¢	243	Fructose-1,6-bisphosphate aldolase	5.19/31	5.54/40	110		16	46
¢	278	Dihydrolipoamide dehydrogenase E3	4.95/50	4.66/31	133		15	22
¢	496	Glyceraldehyde-3-phosphate dehydrogenase	5.2/36	5.25/22	60		12	39
+	258	Fructose 1,6-bisphosphatase II	5.24/34	5.03/40	157	11.42	19	44
+	292	Glyceraldehyde-3-phosphate dehydrogenase	5.2/36	6.9/30	80	3.12	10	32
+	368	Enolase (2-phosphoglycerate dehydratase)	4.68/47	5.11/26	64	4.75	10	43
+	459	Translaldolase	5.89/23	6.25/24	360	8.12	20	73
+	229	Malate dehydrogenase	4.92/34	5.01/35	166	5.51	17	44
+	381	Deoxyribose-phosphate aldolase	5.11/22	5.37/27	210	2.05	15	58
+	472	Triosephosphate isomerase	5/27	5.16/26	84	3.63	10	47
+	480	Glycerol-3-phosphate dehydrogenase	7.73/62	6.12/25	97	13.61	19	27
+	503	Translaldolase	5.89/23	5.61/22	280	12.56	15	62
+	507	Glycerol-3-phosphate dehydrogenase	7.73/62	6.14/23	113	7.43	16	24
-	40	Dihydrolipoamide dehydrogenase E3	4.95/50	5.11/50	68	15.8	18	52
_	154	Glyceraldehyde-3-phosphate dehydrogenase	5.2/36	5.32/41	112	16	20	40
-	165	Glyceraldehyde-3-phosphate dehydrogenase	5.2/36	5.31/41	150	5.39	18	47
-	232	Malate dehydrogenase	4.92/34	4.94/34	69	7.3	13	54
-	305	Pyruvate dehydrogenase (E1 alpha subunit)	5.44/27	5.8/28	115	4.79	13	40
-	393	Translaldolase	5.89/23	6.06/23	268	7.82	17	58
Protein	s related to ami	no acid metabolism						
¢	106	Acetolactate synthase	5.31/62	4.88/44	104		6	10
¢	312	Alpha-acetolactate decarboxylase protein	4.82/29	5.46/22	117		14	37
¢	358	Phosphoserine aminotransferase	5.64/40	5.35/28	130		17	28
¢	387	Cysteine synthetase A	5.64/33	5.07/29	194		23	50
+	92	Urocanate hydrotase	6.33/61	6.31/43	108	8.12	27	57
+	133	Ketol-acid reductoisomerase	5.49/37	5.9/41	66	3.08	14	54

								续表1
+	219	Arginase	5.1/32	5.2/35	76	2.65	13	46
+	241	Cysteine synthetase A	5.64/33	5.82/40	107	2.76	16	49
	301	Alpha-acetolactate decarboxylase protein	4.82/29	4.94/30	162	2.85	17	51
+	302	Cysteine synthetase A	5.64/33	5.48/29	135	13.80	18	65
+	296	L-alanine dehydrogenase	5.28/40	5.84/31	65	13.70	6	18
+	475	Serine hydroxymethyltransferase	5.56/45	5.73/23	109	5.60	15	52
-	22	Acetolactate synthase	5.31/62	5.56/67	56	6.75	11	22
-	90	Serine hydroxymethyltransferase	5.56/45	5.93/50	74	3.20	16	47
-	91	Serine hydroxymethyltransferase	5.56/45	5.81/50	81	2.33	9	30
-	275	Cysteine synthetase A	5.64/33	6.06/34	62	2.03	7	35
Nucleoti	des metabolis	sm						
¢	233	Inosine-5'-monophosphate dehydrogenase	6.18/53	6.1/35	45		16	28
+	122	Inositol-5-monophosphate dehydrogenase	6.18/53	6.22/41	83	2.06	14	35
+	384	DNA topoisomerase I, omega subunit	6.35/14	4.38/26	63	2.66	16	28
-	366	Uracil phosphoribosyltransferase	5.9/23	6.31/26	93	2.82	16	76
Proteins related to oxidoreductase								
+	194	Aldo-Keto Reductase	5.5/35	5.85/36	113	21.95	16	73
+	281	3-Hydroxyisobutyrate dehydrogenase	5.28/31	5.56/38	90	2.45	17	40
+	320	2,3-Dihydroxybenzoate-2,3-dehy drogenase	5.44/28	5.74/32	297	2.18	15	37
Other function								
Ċ.	461	Hypothetical protein BSU29220	5.23/44	5.46/23	44		11	26
Ċ.	482	Uncharacterized protein ybfN		4.68/24	38		7	52
+	205	Flagellin	4.75/29	4.9/35	474	21.84	16	63
+	206	Flagellin	4.97/33		170	13.40	17	66
+	226	Flagellin	4.97/33	5.07/32	71	27.00	9	52
+	345	Sigma-54	5.35/30	5.26/28	160	2.57	4	12
+	353	Cell-shape determining protein	5.09/36	5.09/36	124	3.76	19	41
+	438	Hypothetical protein BSU31030	6.19/19	6.89/23	77	4.19	8	58
+	446	Spore germination B3	8.83/42	5.35/24	58	12.31	16	38
-	203	Flagellin	4.97/33	5.01/38	61	5.11	10	55

①: theoretical pI value and molecular weight (MW); ②: the actual pI value and molecular weight (MW); +: up-regulated protein; \neg : down-regulated protein; \diamondsuit : protein induced by cPPA.

746

成 3-磷酸甘油醛和乙醛, 3-磷酸甘油醛进入糖酵 解途径;参与三羧酸循环途径的酶包括二氢硫辛 酰胺脱氢酶 E3 (Dihydrolipoamide dehydrogenase E3)、苹果酸脱氢酶 (Malate dehydrogenase);参 与糖异生途径的酶包括 1,6 二磷酸果糖酶 II (Fructose 1,6-bisphosphatase II)等。其中,在培 养基中有底物存在时, 3-磷酸甘油醛脱氢酶的 表达量下调了 21.39 倍。在差异表达的糖代谢 蛋白中,参与甘油代谢的关键酶都上调表达,

如 3-磷酸甘油脱氢酶 (Glycerol-3-phosphate dehydrogenase) 上调表达量达 21.04 倍, 2-磷酸 甘油酸脱氢酶 (Enolase, 2-phosphoglycerate dehydratase) 上调表达 4.75 倍。在底物顺丙烯磷 酸的诱导下,与糖代谢相关的酶的差异表达多 样、复杂。这一方面说明与糖有关的代谢很活跃,另一方面,底物顺丙烯磷酸分子是一个三碳骨架 分子,其进入菌体细胞以后,一部分会被转化成 磷霉素,而另一部分可能在与糖代谢有关的酶 的作用下进入糖代谢。

2.3.4 参与氨基酸代谢的差异表达

检测到很多参与氨基酸和蛋白代谢的差异 表达的酶。菌株 *B. subtilis* 168 在有底物顺丙烯磷 酸的培养基中生长时,诱导表达乙酰乳酸合成酶 (Acetolactate synthase)、α-乙酰乳酸脱羧酶 (Alpha-acetolactate decarboxylase)、磷酸丝氨酸转 氨酶 (Phosphoserine aminotransferase)、半胱氨酸 合成酶 A (Cysteine synthetase A)等,同时,尿刊 酸水合酶 (Urocanate hydrotase)、酮醇酸还原异 构酶 (Ketol-acid reductoisomerase)、精氨酸酶 (Arginase)、半胱氨酸合成酶 A、α-乙酰乳酸脱羧 酶和 L-丙氨酸脱氢酶 (L-alanine dehydrogenase) 等酶上调表达。其中变化最大的是半胱氨酸合成 酶 A,它的表达水平上调了 14.53 倍以上;磷酸 丝氨酸转氨酶是丝氨酸合成途径中的一个关键 酶,它的上调表达意味着胞内丝氨酸水平的上 升;丙氨酸脱氢酶的表达量上调了 6 倍,该酶涉 及到丙氨酸的降解。总的来看,这些参与氨基酸 代谢的酶表达量的变化量最大的几种是涉及到 三碳骨架的氨基酸的代谢,而底物顺丙烯磷酸和 产物磷霉素也都是三碳结构分子,因此,它们的 转化与代谢可能与这些酶的表达水平有关。

2.3.5 顺丙烯磷酸对核苷酸代谢的影响

当菌株 B. subtilis 168 在有底物顺丙烯磷酸的培养基中生长时,次黄嘌呤核苷酸脱氢酶(Inosine-5'-monophosphate dehydrogenase) 和 DNA 拓扑异构酶 I (DNA topoisomerase I)上调表达。DNA 拓扑异构酶 I 的上调表达可能是在底物顺丙烯磷酸和一定浓度的产物磷霉素存在的条件下菌体形成的一种胁迫反应。

2.3.6 顺丙烯磷酸对辅酶合成的影响

在底物顺丙烯磷酸的诱导下,参与合成很多 辅酶合成的酶的表达量都发生了很大的变化。如 双功能核黄素激酶 (Bifunctional riboflavin kinase)的表达量上调了13.21倍,该酶催化将核 黄素和 ATP 转化成 FMN, FMN 是很多酶的辅 酶,参与很多代谢过程。磷酸甲基嘧啶激酶 (Phosphomethylpyrimidine kinase)表达量上调, 该激酶将硫胺素 (Thiamine)磷酸化,形成硫胺 素焦磷酸 (TPP),它是涉及到糖代谢中羰基碳 (醛和酮)合成与裂解反应的辅酶,如α-酮酸的脱 羧和 α-羟酮的形成与裂解都依赖于硫胺素焦磷 酸。此外,核黄素合成酶 (Riboflavin biosynthesis protein) 的表达量上调 7.9 倍; 1-吡咯啉-5-羧酸 脱氢酶 (1-Pyrroline-5-carboxylate dehydrogenase) 的表达量上调。

2.3.7 参与氧化反应的酶的表达量的变化情况

在底物顺丙烯磷酸的诱导下,参与异源物质 氧化还原反应的酶的表达量发生了很大的变化。 其中 3-羟基异丁酸脱氢酶 (Hydroxyisobutyrate dehydrogenase)的表达量上调了 2.45 倍; 2,3-二 羟基苯甲酸脱氢酶 (2,3-Dihydroxybenzoate-2,3dehydrogenase)的表达量上调了 2.18 倍; Aldo-Keto Reductase酶的表达量上调了 21.95倍, 这是一种能催化很多的不同底物发生氧化还原 反应的酶。

2.3.8 顺丙烯磷酸对其他功能的酶和蛋白的影响

由于底物顺丙烯磷酸的存在,诱导了参与一些决定细胞形态和其他功能蛋白的差异表达。包括鞭毛蛋白 (Flagellin)、转录因子 sigma-54、决定细胞形态的蛋白 (Cell-shape determining protein)、芽胞萌发蛋白 (Spore germination B3) 等。

2.3.9 顺丙烯磷酸诱导的蛋白翻译后修饰情况

当菌株 *B. subtilis* 168 在有底物顺丙烯磷酸 的培养基中生长时,有 11 个蛋白在 2-DE 图谱上 表现出两个以上的点,它们分别是蛋白点 309 和 383 所代表的 Oligopeptide ABC transporter (Binding protein), 99 和 308 代表的 Phosphomethylpyrimidine kinase, 466 和 500 代表 的 Bifunctional riboflavin kinase, 154 和 165 代表 的 Glyceraldehyde-3-phosphate dehydrogenase, 393 和 503 所代表的 Translaldolase, 229 和 232 代表的 Malate dehydrogenase, 241 和 387 所代表 的 Cysteine synthetase A, 301 和 312 代表的 Alpha-acetolactate decarboxylase, 90 和 91 代表的 Serine hydroxymethyltransferase, 122 和 233 代表 的 Inosine-5'-monophosphate dehydrogenase, 206 和 226 代表的 Flagellin。虽然它们在双向电泳图 谱上的位置明显不同,但质谱结果显示它们为相 同的蛋白。这种现象在许多已经报道的双向电泳 过程中经常出现^[15-16]。产生这种现象的原因可能 有以下几种:由于蛋白质翻译后的修饰作用所引 起的蛋白质等电点的变化;尿素引起的蛋白质氨 甲酰化作用;蛋白质中的谷氨酰胺和天冬酰胺的 脱氨基作用,引起蛋白质等电点的偏移;蛋白的 断裂、降解、糖基化、甲基化、乙酰基化等因素 会导致蛋白的分子量的变化。这些变化导致一种 蛋白可能出现多个蛋白点。

3 讨论

B. subtilis 168 的基因组已经测序^[17], 对该菌株的生理生化背景已经研究得非常清楚了, 同时该菌株能将顺丙烯磷酸不对称地环氧化成磷霉素, 因此将该菌株作为出发菌株, 用蛋白质组学方法研究顺丙烯磷酸不对称环氧化成磷霉素的转化机理和转化步骤是可行的。

在本研究中,我们通过蛋白质组学的方法, 分析和揭示了 *B. subtilis* 168 在有底物顺丙烯磷 酸的培养基中生长时,细胞内代谢过程发生的变 化。结果显示,在菌株将顺丙烯磷酸转化成磷霉 素的同时,胞内很多的代谢过程都发生了变化, 包括糖代谢、氨基酸代谢、核苷酸代谢等,这说 明顺丙烯磷酸转化成磷霉素的途径和其他的代 谢途径是相互联系的,它们之间形成一个很大的 代谢网络。

B. subtilis 168 在没有底物和有底物的培养

748

基中生长后, 菌体蛋白的 2-DE 图谱差异很大。 分析原因, 一方面是由于在底物顺丙烯磷酸的诱 导下, 很多蛋白的表达量发生了很大的变化, 有 的上调了, 有的下调了, 同时产生了很多底物诱 导的特异表达的蛋白; 另一方面, 当培养基中含 有底物时, 很多蛋白发生了翻译后修饰, 经过修 饰后的蛋白所带的电荷数和分子量都可能发生 变化, 导致了它的电泳行为也发生变化, 因此在 试验中的很多蛋白同时有几个点。这对蛋白质组 的分析带来了很大的干扰, 对分析形成了很大的 困难。

顺丙烯磷酸对 B. subtilis 168 来说是一种异 源物质,当菌株在含有顺丙烯磷酸的培养基中生 长时,一方面会诱导或上调代谢顺丙烯磷酸的酶 或蛋白,另一方面会产生保护自身细胞的机制。 在本实验中,我们发现顺丙烯磷酸诱导表达和上 调表达很多热激蛋白,这种异源物质诱导产生热 激蛋白的现象在微生物中是非常普遍的。热激蛋 自分为 6 个不同的家族: Hsp100s、Hsp90s、 Hsp70s、Hsp60s、Hsp40s 和 small Hsps^[18],它们 是分子伴侣系统的组成成分,每个家族的热激蛋 白都有许多的生理功能,如可以帮助蛋白复性, 降解和修复受损蛋白,阻止由于胁迫反应所引起 的蛋白质聚集,确保膜蛋白的正确定位以及控制 蛋白之间的相互作用等^[19-21]。当 B. subtilis 168 的细胞在含有顺丙烯磷酸的培养基中生长时,大 量热激蛋白的诱导表达有利于维持胞内酶的正常 活性,抵抗顺丙烯磷酸和磷霉素所引起的胁迫。 在将顺丙烯磷酸氧化成磷霉素的过程中,肯定会 产生副产物活性氧 (Reactive oxygen species, ROS), 如过氧化物离子和过氧化氢, 这些物质都 会损伤细胞^[22]。超氧化物歧化酶、碱性过氧化氢 还原酶 AhpC 等都会修复由活性氧产生的损伤。 此外,对 B. subtilis 来说,还普遍存在另外一种 修复机制,那就是将酶蛋白的半胱氨酸巯基化, 这样可以防止含有半胱氨酸的酶由于半胱氨酸 残基的氧化而失活^[23-25]。

到目前为止, 文献中关于用微生物转化的方 法将顺丙烯磷酸转化成磷霉素的报道非常少,关 于其转化机理的研究也很有限。在本研究中,在 用蛋白质组学的方法研究 B. subtilis 168 菌株将 顺丙烯磷酸氧化成磷霉素的过程中,我们开始希 望从胞内蛋白中找到与转化相关的氧化酶,但如 结果所示,没有氧化酶诱导表达或上调表达,也 没有溴过氧化物酶和溴代醇环氧化酶的诱导表 达。这说明,在不同的微生物中,将顺丙烯磷酸 氧化成磷霉素的过程和机理是不一样的。对 B. subtilis 168 的蛋白质组学的研究中,在有底物顺 丙烯磷酸时,我们发现了一种水合酶,那就是92 号蛋白点代表的尿刊酸水合酶的表达量上调了 8.12 倍, 推测它在催化组氨酸代谢的同时, 还可 能催化一个水分子加成到一分子的底物顺丙烯 磷酸上,形成丙醇磷酸;在底物顺丙烯磷酸的诱 导下,有很多脱氢酶上调表达,在这些脱氢酶中, 281 号蛋白点 3-羟基异丁醇脱氢酶作用底物与丙 醇磷酸的结构相近, 推测在 3-羟基异丁醇脱氢酶 的作用下, 丙醇磷酸发生脱氢作用, 环氧化成磷 霉素。因此,结合转化的特点和蛋白质组学结果, 我们认为,转化分两步进行,第一步,在一种水 合酶的作用下,顺丙烯磷酸被转化成丙醇磷酸; 第二步,在脱氢酶的催化下,丙醇磷酸被脱氢, 环氧化成磷霉素 (图 4)。我们下一步的工作将对 这两种酶的基因进行克隆和过表达,以验证上述 转化机理的推论。

图 4 B. subtilis 168 将顺丙烯磷酸转化成磷霉素的可能机制

Fig. 4 Hypothesized mechanism of transformation of *cis*-propenylphosphonic acid to fosfomycin.

REFERENCES

- Hendlin D, Stapley EO, Jackson M, et al. Phosphonomycin, a new antibiotic produced by strains of *Streptomyces*. Science, 1969, 166(3901): 122–123.
- [2] Shoji J, Kato T, Hinoo H, et al. Production of fosfomycin (phosphonomycin) by *Pseudomonas syringae*. J Antibiot, 1986, 39(7): 1011–1012.
- [3] Ribes S, Taberner F, Domenech A, et al. Evaluation of fosfomycin alone and in combination with ceftriaxone or vancomycin in an experimental model of meningitis caused by two strains of cephalosporin-resistant *Streptococcus pneumoniae*. J Antimicrob Chemother, 2006, 57(5): 931–936.
- [4] Apisarnthanarak A, Mundy LM. Successful treatment of disseminated methicillin-resistant *Staphylococcus aureus* with fosfomycin, cefoperazone/sulbactam and rifampin followed by fusidic acid and rifampin. Int J Infect Dis, 2007, 11(3): 283–284.
- [5] Higgins LJ, Yan F, Liu PH, et al. Structural insight into antibiotic fosfomycin biosynthesis by a mononuclear iron enzyme. Nature, 2005, 437(7060): 838–844.
- [6] Cilli F, Pullukcu H, Aydemir S, et al. *In vitro* activity of fosfomycin tromethamine and linezolid against vancomycin-resistant *Enterococcus faecium* isolates. Int J Antimicrob Agents, 2008, 31(3): 296–298.
- [7] White RF, Birnbaum J, Meyer RT, et al. Microbial

epoxidation of *cis*-propenylphosphonic to (-)-*cis*-1,2-epoxypropylphosphonic acid. Appl Microbiol, 1971, 22(1): 55–66.

- [8] Itoh N, Kusaka M, Hirota T, et al. Microbial production of antibiotic fosfomycin by a stereoselective epoxidation and its formation mechanism. Appl Microbiol Biotechnol, 1995, 43(3): 394–401.
- [9] Aisaka K, Ohshiro T, Uwajima T. Optimum culture conditions for the epoxidation of *cis*-propenylphosphonate to fosfomycin by *cellvibrio gilvus*. Appl Microbiol Biotechnol, 1992, 36(4): 431–435.
- [10] Shi JJ, Cui FM, Ge M. the epoxidation of *cis*-propenylphosphonic acid to fosfomycin by *Penicilliium* sp.. Acta Microbiol Sin, 2001, 41: 353-356 (in Chinese).
 石家骥, 崔福绵, 葛猛. 青霉菌立体选择性环氧 化顺丙烯磷酸产生磷霉素. 微生物学报, 2001, 41: 353-356.
- [11] Watanabe M, Sumida N, Murakami S, et al. A phosphonate-induced gene which promotes *Penicillium*-mediate bioconversion of *cis*-propenylphosphonic acid to fosfomycin. Appl Environ Microbiol, 1999, 65(3): 1036–1044.
- [12] Xie F, Chao Y, Xue Z, et al. Stereoselective epoxidation of *cis*-propenylphosphonic acid to fosfomycin by a newly isolated bacterium *Bacillus simplex* strain S101. J Ind Microbiol Biotechnol, 2009, 36(5): 739–746.
- [13] Bradford MM. A rapid and sensitive method for the

quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72: 248–254.

- [14] Gorg A, Obermaier C, Boguth G, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000, 21(6): 1037–1053.
- [15] Büttner K, Bernhardt J, Scharf C, et al. A comprehensive two-dimensional map of cytosolic proteins of *Bacillus subtilis*. Electrophoresis 2001, 22: 2908–2935.
- [16] Eymann C, Dreisbach A, Albrecht D, et al. A comprehensive proteome map of growing *Bacillus subtilis* cells. Proteomics, 2004, 4: 2849–2876.
- [17] Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the gram-positive bacterium *Bacillus subtilis*. Nature, 1997, 390: 249–256.
- [18] Morimoto R, Tissieres A, Georgopoulos C, et al. Progress and Perspectives on the Biology of Heat Shock Proteins and Molecular Chaperones. New York: Cold Spring Harbor Laboratory Press, 1994.
- [19] Ellis RJ, Hemmingsen SM. Molecular chaperones: proteins essential for the biogenesis of some

macromolecular structures. Trends Biochem Sci, 1989, 14: 339–342.

- [20] Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem, 1993, 62: 349–384.
- [21] Thirumalai D, Lorimer GH. Chaperonin-mediated protein folding. Annu Rev Biophys Biomol Struct, 2001, 30: 245–269.
- [22] Godon C, Lagniel G, Lee J, et al. The H₂O₂ stimulon in *Saccharomyces cerevisiae*. J Biol Chem, 1998, 273: 22480–22489.
- [23] Hochgrafe F, Mostertz J, Pother D-C, et al. S-Cysteinylation is a general mechanism for thiol protection of *Bacillus subtilis* proteins after oxidative stress. J Biol Chem, 2007, 282(36): 25981–25985.
- [24] Das KC, White CW. Redox systems of the cell: possible links and implications. Proc Natl Acad Sci USA, 2002, 99: 9617–9618.
- [25] Michelet L, Zaffagnini M, Marchand C, et al. Glutathionylation of chloroplast thioredoxin f is a redox signaling mechanism in plants. Proc Natl Acad Sci USA, 2005, 102: 16478–16483.

(本文责编 陈宏宇)