工业生物技术

September 25, 2012, 28(9): 1048-1058 ©2012 Chin J Biotech, All rights reserved

利用核糖体工程选育丙酮丁醇菌提高丁醇产量

陈丽杰, 商光来, 袁文杰, 吴又多, 白凤武

大连理工大学生命科学与技术学院, 辽宁 大连 116024

陈丽杰, 商光来, 袁文杰, 等. 利用核糖体工程选育丙酮丁醇菌提高丁醇产量. 生物工程学报, 2012, 28(9): 1048-1058. Chen LJ, Shang GL, Yuan WJ, et al. Screening of *Clostridium* strains through ribosome engineering for improved butanol production. China J Biotech, 2012, 28(9): 1048-1058.

摘 要:利用核糖体工程技术对丙酮丁醇核菌 Clostridium acetobutylicum L7 进行诱变筛选,以获得丁醇高产 菌株。使用链霉素诱变 C. acetobutylicum L7 并结合设计的平板转接逐次提高链霉素浓度的筛选路线,获得丁 醇产量较高的菌株 S3。结果表明, S3 丁醇产量为 (12.48±0.03) g/L,乙醇产量为 (1.70±0.07) g/L,相对于原始 菌分别提高了 11.2%及 50%;丁醇/葡萄糖转化率由原始菌的 0.19 提高到 0.22,丁醇生产率达到 0.24 g/(L·h), 相比提高 30.5%;耐受丁醇浓度由原始菌的 12 g/L 提高到 14 g/L;发酵液粘度下降到 4 mPa/s,同比降低了 60%, 利于后续分离工作的进行,降低发酵成本。进一步研究工作表明,S3 菌株遗传稳定性良好。因此,核糖体工 程技术是一种选育丁醇高产菌株的有效方法。

关键词: 核糖体工程, 丙酮丁醇梭菌, 丁醇发酵, 丁醇耐性, 链霉素

Screening of *Clostridium* strains through ribosome engineering for improved butanol production

Lijie Chen, Guanglai Shang, Wenjie Yuan, Youduo Wu, and Fengwu Bai

School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, Liaoning, China

Abstract: We used ribosome engineering technology, with which antibiotic-resistant strains are resulted from mutations on microbial ribosome, to screen a high butanol-producing *Clostridium* strain. A novel mutant strain S3 with high butanol production and tolerance was obtained from the original *Clostridium acetobutylicum* L7 with the presence of mutagen of streptomycin. Butanol of 12.48 g/L and ethanol of 1.70 g/L were achieved in S3, 11.2% and 50%, respectively higher than the parent strain. The conversion rate of glucose to butanol increased from 0.19 to 0.22, and fermentation time was 9 h

Received: March 8, 2012; Accepted: May 14, 2012

Corresponding author: Lijie Chen. Tel: +86-411-84706308; E-mail: ljchen@dlut.edu.cn

国家高技术研究发展计划 (863 计划)(No. 2011AA02A208) 资助。

Supported by: Notional High Technology Research and Development Program of China (863 Program) (No. 2011AA02A208).

shorter. This caused an increase in butanol productivity by 30.5%, reaching 0.24 g/(L·h). The mutant butanol tolerance was increased from 12 g/L to 14 g/L, the viscosity of fermentation broth was dramatically decreased to 4 mPa/s, 60% lower than the parent strain. In addition, the genetic stability of mutant strain S3 was also favorable. These results demonstrate that ribosome engineering technology may be a promising process for developing high butanol-producing strains.

Keywords: ribosome engineering, Clostridium acetobutylicum, butanol fermentation, butanol tolerance, streptomycin

丁醇作为一种新型的生物燃料,具有其独特 的性质:能量密度高、腐蚀性低、挥发性低^[1], 与汽油的性质相似,可直接用于现有的发动机系 统,已受到世界各国的广泛关注。目前丁醇发酵 中,丁醇的产量相对较低,这加大了后续分离成 本,降低了其经济实用性,因此提高丁醇产量是 提高丁醇产业经济性的手段之一^[2]。微生物发酵 产业中,微生物菌种起着至关重要的作用。性状 优良的高产菌株可以减少发酵和产物分离成本, 提高经济效益,具有良好的科学研究价值和市场 潜力^[3],因此获得一株高产丁醇菌株成为提高丁 醇 产 量 的 前 提 。 丁 醇 本 身 对 发 酵 菌 株 C. acetobutylicum 具有很大的毒性。当丁醇浓度 达到 10~11 g/L 时, 菌体生长受到强烈抑制, 并 大量死亡^[4],从而限制更高浓度丁醇的生成,因 此菌体对丁醇的耐受性低也是制约丁醇产量提 高的重要因素^[5]。

核糖体是微生物进行蛋白质合成的重要细胞器,与胞内代谢活动、基本生理过程密切相关。 核糖体发生突变将严重影响胞内物质的代谢^[6]。 核糖体工程技术是近几年发展起来的微生物育 种方法。通过向微生物核糖体组分(核糖体蛋白 和 rRNA)引入点突变,调控代谢系统,诱导或 刺激代谢产物的表达,获得代谢产物合成能力提 高的突变菌株^[7-8]。通常使用链霉素、氯霉素、 庆大霉素、卡那霉素等抗生素诱变微生物,使其 核糖体发生突变。核糖体工程技术具有较好的诱 变效果,目前主要用于提高微生物代谢物的产量 及化学耐受程度等^[6,9-10]。Kurosawa 等^[11]以枯草 芽胞杆菌 *Bacillus subtilis* 168 为出发菌诱变获得 链霉素突变株,其α-amylase 和 protease 产量提 高了 20%~30%。Hosokawa 等^[12]对恶臭假单胞 菌 *Pseudomonas putida* KH146-2 进行链霉素、利 福平和庆大霉素的抗性诱变,筛选得到的抗生素 突变株对 4-羟基苯甲酸丁酯耐受程度由出发菌 的 0.8%提高到 5%。

与其他的育种方法相比,核糖体工程简单易 行,无需特殊设备,便于大批量的筛选。在所使 用的抗生素中,链霉素诱变效果较好,正突变和 增产率高,且其抗性突变在诱变育种中应用较 多^[10]。核糖体工程用于 C. acetobutylicum 的诱变 筛选,以提高丁醇产量目前还没有报道。鉴于此, 本文通过核糖体工程技术,使用链霉素诱变 C. acetobutylicum L7,期望获得高产高耐丁醇菌 株,解决丁醇产量低的实际问题,并为后续的研 究工作奠定基础。

1 材料与方法

1.1 材料

1.1.1 菌种

本实验室驯化保存的丙酮丁醇梭菌 *Clostridium acetobutylicum* L7。

1.1.2 培养基

活化培养基 (g/L): 葡萄糖 20, 胰蛋白胨 30, 酵母粉 10。

发酵培养基 (g/L): 葡萄糖 70, CH₃COONH₄ 2.3, MgSO₄·7H₂O 0.2, K₂HPO₄·3H₂O 0.5, KH₂PO₄ 0.5, FeSO₄·7H₂O 0.01, MnSO₄·H₂O 0.01, 酵母 粉 2, 生物素 0.01, 对氨基苯甲酸 0.01, pH 5.5。

平板培养基 (g/L): 葡萄糖 30, CH₃COONH₄ 2.3, MgSO₄·7H₂O 0.2, K₂HPO₄·3H₂O 0.5, FeSO₄·7H₂O 0.01, MnSO₄·H₂O 0.01, 胰蛋白胨 6, 琼脂 20, pH 6.2。

抗生素: 配制浓度为 20 g/L 的链霉素母液, 保存于-20 ℃。使用时按一定比例稀释。

所用培养基均在 121 ℃高压蒸汽灭菌 15 min。

1.2 方法

1.2.1 培养方法

菌种活化:将1 mL 冷冻保藏的菌种接种于 20 mL 活化培养基中,37.5 ℃厌氧箱 (Forma 1029, Thermo Fisher Scientific) 中活化培养。

摇瓶培养:将活化好的菌种以 10% (V/V)的 接种量接种于 110 mL 发酵培养基中,37.5 ℃厌 氧箱中静置培养。

发酵培养:1.2 L 发酵培养基装入 3 L 发酵罐 (1.5BG-4-3000, 上海保兴生物公司)中,通氮气 30 min,保证罐内厌氧环境。将菌种以 10% (V/V) 的接种量接于发酵罐内,发酵温度 37.5 ℃,转速 150 r/min。

1.2.2 菌体浓度的测定

在 620 nm 测量菌体的吸光度作为菌体的浓度 (*OD*₆₂₀), 空白对照为离心后的发酵液。

1.2.3 链霉素最小抑菌浓度的确定

将处于对数生长期的菌液 (OD₆₂₀≈1.0) 涂

布于含有不同浓度 (0、2、4…10…50) mg/L 的链 霉素平板上,每个平板 100 μL,相同链霉素浓度 设置 3 个平行, 37.5 ℃厌氧箱中培养 2 d,观察 菌落的生长情况,记录无菌落生长的最小链霉素 浓度,即为链霉素对 *C. acetobutylicum* L7 的最小 抑菌浓度^[13]。

1.2.4 核糖体工程诱变筛选 C. acetobutylicumL7 技术路线

使用链霉素对 C. acetobutylicum L7 进行核 糖体工程诱变育种。将活化好的菌液涂布于含有 4~5 倍 MIC 的链霉素平板上,培养 4~5 d。挑取 直径较大或形态与原始菌有差异的菌落,96 深孔 板活化培养 20 h,以 10% (V/V)的接种量接于发 酵培养基中培养 72 h,气相色谱检测丁醇产量, 比较得出产量提高较多的菌株 (以原始菌为对 照)。再以其为出发菌,涂布获得单菌落,将其 挑至链霉素平板上,此时浓度比前次筛选菌株时 增加 5 mg/L,挑取菌落进行发酵检测,重复以上 步骤直到获得高产菌株。经过长时间大批量的诱 变筛选,最终获得丁醇产量提高率在 10% 左右的 菌株。以上操作均在 37.5 ℃厌氧箱中进行。诱变 筛选技术路线如图 1 所示。

1.2.5 氧化还原电位 (ORP) 和 pH 值的测定

分别采用氧化还原电极 (Pt4805-DPAS-SC-K8S, Mettler Toledo) 和 pH 电极 (405-60-T-S7/ 120/9848, Mettler Toledo) 测定。

1.2.6 糖浓度的测定

葡萄糖浓度使用 SBA-40E 生物传感分析仪 (山东省科学院生物研究所)测定。发酵液离 心,取上清稀释至糖浓度小于1g/L,取25μL 稀释液直接进样,读取数值,并计算发酵液的 糖浓度。

图 1 核糖体工程筛选丁醇高产菌路线图

Fig. 1 Schematic diagram of screening for high butanol-yield strain by ribosome engineering.

1.2.7 溶剂及有机酸的测定

Agilent6890 气相色谱测定发酵液中各溶剂的 含量。检测条件:毛细管色谱柱 (30 m×0.25 mm× 0.50 μm),柱温 120 ℃;进样口温度 250 ℃; FID 检测器温度 300 ℃。H₂ 流速 40 mL/min;空气流 速 400 mL/min; N₂ 流速 30 mL/min,进样量 0.2 μL。采用内标法测量,内标物为异丁醇。

Waters1525 液相色谱测定有机酸浓度。检 测条件: Aminex HPX-87H 有机酸分析柱 (300 mm×7.8 mm), 柱温 50 ℃, 二极管阵列检 测波长 210 nm, 示差折光检测器温度 50 ℃。流 动相及流速: 0.005 mol/L H₂SO₄, 0.5 mL/min, 进样量: 20 µL。

1.2.8 发酵液粘度测定方法

采用NDJ-1旋转式粘度计(上海方瑞仪器有限公司)测定。选择合适转子,将其浸没在待测 发酵液中,室温下调整到合适的转速对发酵液粘 度进行测定。

1.2.9 丁醇耐性实验

将活化好的菌种以 5% (V/V)的接种量接种 于 500 mL 活化培养基中, 37.5 ℃厌氧箱中培养。 待菌体生长到 *OD*₆₂₀≈1.0 时,充分混匀,分装于 4 个摇瓶中,每瓶 100 mL,添加丁醇至浓度为 0、 6、12、14 g/L。测定不同丁醇浓度下菌体的生长 情况,以 *OD*₆₂₀表示。

2 结果与分析

2.1 链霉素对 C. acetobutylicum L7 的最小抑 菌浓度

微生物具有一定的抗生素耐受浓度,高抗生 素浓度下微生物全部被杀死,而低浓度下则发生 突变的概率极低,不易获得突变菌株^[14],因此确 定抗生素筛选浓度非常重要。合适的抗生素浓度 将有利于诱变工作的进行,提高诱变效率。最小 抑菌浓度 MIC 是反应抗菌活性和能力的一个指 标,定义抗生素的 MIC 为无菌落生长的最小抗 生素浓度。

按照 1.2.3 方法进行平板涂布,并记录不同 链霉素浓度下 C. acetobutylicum L7 菌落生长情 况,如图 2 所示。从图中可以看出,无链霉素的 平板中, C. acetobutylicum L7 生长好,培养至 2 d 时菌体铺满整个平板,无单菌落 (图 A);在含有 链霉素的平板上,菌体生长受到抑制。10 mg/L 链霉素浓度下, C. acetobutylicum L7 在 2 d 内 无菌落生长 (图 B),确定 10 mg/L 为 MIC;在 40~50 mg/L 的链霉素平板中,大部分菌体被杀 死,培养至4d只有2~4个菌落存活,形态如图 C和图D。生长出的菌落为链霉素抗性菌,有可 能发生突变。

在确定链霉素的 MIC 后,按照 1.2.4 设计的 技术路线,通过平板转接逐次提高链霉素浓度开 始诱变筛选 C. acetobutylicum L7,以获得丁醇高 产菌株。

2.2 丁醇高产菌 S3 的获得及传代稳定性

得到丁醇高产的 C. acetobutylicum 一直是 人们关注的焦点。通过使用链霉素的核糖体工 程育种技术大批量筛选,共获得 6 株丁醇产量 较高的菌株,其中 7 倍 MIC 链霉素抗性菌株 S3 丁醇产量最高,达到(12.00±0.10) g/L,如表 1 所示。

通过分析表中筛选结果,得出链霉素用于诱 变 *C. acetobutylicum* 提高丁醇产量,效果比较理 想。抗性菌中, S13 丁醇产量最低,为 (11.72±0.11) g/L,提高了 10.05%;其他5株菌 丁醇产量提高率在 10.14%~12.68%。 连续传代次数用于表达微生物菌株的使用 寿命。传代稳定说明菌株性状优良,不易衰退^[15]。 通过核糖体工程技术筛选所获得的6株菌,对其 进行传代发酵实验,发现S3的发酵性能最稳定, 结果见表2。从表中可以看出,传代5次,S3的 丁醇和总溶剂产量较稳定,分别维持在11.8 g/L 和18.7 g/L 左右,相比于原始菌一直稳定高产; 丁醇在总溶剂中所占比例为0.62~0.63。说明S3 遗传稳定性较好,有利于后续研究的进行。

2.3 S3 与 *C. acetobutylicum* L7 的生长及发酵 特性

为考察 S3 生长及发酵情况,将 S3 进行上罐 发酵实验,并与原始菌进行了对比。两者的生长、 耗糖、各溶剂、有机酸的生成及 ORP 变化情况 如图 3~5 所示。

丁醇发酵分为两个时期:产酸期,菌体快速 生长,产生有机酸 (乙酸和丁酸),pH 降低;产 溶剂期,菌体代谢相对缓慢,溶剂 (丙酮、丁醇 和乙醇) 大量生成,并伴随乙酸和丁酸的重吸

图 2 链霉素平板中 C. acetobutylicum L7 的生长情况

Fig. 2 The growth of *C. acetobutylicum* L7 on streptomycin plates with different concentrations. (A) 0 mg/L streptomycin. (B) 10 mg/L streptomycin. (C) 40 mg/L streptomycin. (D) 50 mg/L streptomycin.

表1 核糖体工程用于 C. acetobutylicum L7 的筛选结果

Table 1 The high butanol-producing Clostridium strains by ribosome engineering

Strain	Parent strain	S3	S9	S13	S16	S26	S28
Butanol (g/L)	10.65 ± 0.08	12.00±0.10	11.73±0.08	11.72±0.11	11.86±0.06	11.90±0.10	11.78±0.04

Strain	Passage times	Butanol (g/L)	Iotal solvent (g/L)	Butanol/total solvent		
Parent strain		10.65±0.08	17.39±0.06	0.61		
S3	1	12.00±0.10	18.90 ± 0.08	0.63		
S3	2	11.54±0.06	18.61±0.08	0.62		
S3	3	11.82±0.05	18.70±0.09	0.63		
S3	4	11.83±0.05	18.67±0.10	0.63		
S3	5	11.75±0.05	18.81±0.08	0.62		
A 6 5 000 put Hd 210 10	→ <i>OD</i> ₆₂₀ → pH →	Glucose 70 60 50 40 30 00020106070	B 6 0 0 0 0 0 0 0 0 0 0	70 60 50 40 30 20 40 50 60 50 10 0 40 50 70		
	Culture time (h)		Cult	ure time (h)		

表 2 S3 传代稳定性

~

Table 2The genetic stability of S3

D

Fig. 3 Time course of OD₆₂₀, pH and residual sugars by C. acetobutylicum L7 (A) and S3 strain (B).

图 4 原始菌 (A) 和 S3 (B) 的发酵生产溶剂及有机酸曲线

Fig. 4 Time course of solvents and acids production by C. acetobutylicum L7 (A) and S3 strain (B).

图 5 原始菌和 S3 的 ORP 曲线

Fig. 5 Time course of ORP by *C. acetobutylicum* L7 and S3 strain. ORP: oxidoreduction potential.

收, pH 缓慢升高。发酵过程中, 菌体为维持自 身代谢,消耗大量的葡萄糖。如图3和图4所示, S3 和原始菌在产酸期代谢旺盛, 生物量 OD₆₂₀ 快速增加;14h左右,二者 pH 降到最低,即 pH 拐点,此时 S3 的 pH 值 (4.3) 和原始菌的 (4.2) 相当,发酵液中积累乙酸的量分别为 2.01 g/L、 2.05 g/L; 丁酸 2.06 g/L、2.13 g/L, 为发酵过程 中酸积累的最大浓度。之后有机酸毒性显现, C. acetobutylicum 开始酸的重吸收, 酸浓度降低, 溶剂快速生成, pH 升高。随着发酵进行, S3 和 原始菌 OD₆₂₀达到最大,分别为 3.18、3.19,此 时 51.4%的葡萄糖已被消耗。之后 10 h, 溶剂继 续生成,丁醇毒性开始发挥作用,菌体 OD₆₂₀下 降;此阶段 S3 和原始菌分别产生 3.78 g/L、 2.26 g/L 的丁醇, S3 优势比较明显。随着丁醇浓 度的增加,毒性进一步加大,加上营养匮乏,菌 体代谢停止,发酵结束,各溶剂产量达到最大。

微生物代谢过程中会产生和消耗氧化还原 力:NAD(P) 与 NAD(P)H,且胞内 NAD(P)/ NAD(P)H 水平与菌体代谢和溶剂产生紧密相

关^[16-18]。氧化还原电位 (ORP) 是发酵体系氧化-还原性的外在反映^[19]。分析原始菌和 S3 的发酵 过程,发现 ORP 变化与菌体生长、有机酸产生 和重吸收、溶剂生成、pH 变化密切偶联。如 图 3~5 所示, 菌体生长代谢产生大量有机酸, pH 快速下降;同时产生大量能量和 NAD(P)H, ORP 随之降低。当有机酸积累到一定程度,毒性显现, 其分子态形式可以透过细胞膜,自由进入菌体产 生解偶联毒害作用^[20-21]。于是开启酸的重吸收通 路, 溶剂大量生成, 有机酸浓度下降, pH 缓慢 升高, ORP 趋向稳定。随丁醇浓度的增加, 细胞 代谢受到抑制,菌体加速死亡,ORP升高至发酵 结束。ORP 在发酵全程伴随菌体生理代谢发生响 应变化^[16]。发酵前 24 h, S3 的 ORP 表观响应更 为迅速, 在-493 mV 至-470 mV 之间变化, 浮动 较大;随后的15h内,其维持在-490mV左右, 相比原始菌,此阶段还原力依然较强,产生 5.52 g/L 丁醇, 而原始菌只生成 3.15 g/L, 说明 在产溶剂期为主的生理代谢阶段, S3 迅速积累 溶剂丁醇,并具有更高的代谢通量,与 ORP 的 阶段性稳定 (-490 mV 状态下)存在一定的关联 性。针对 C. acetobutylicum 进行 ORP 调控以提高 菌体发酵性能的研究已有报道^[22],全程控制 ORP 有利于菌体提前进入溶剂期,溶剂产量提高,发 酵时间缩短,且 ORP 的有效调控将改变细胞的 代谢流及生理过程。本研究通过核糖体工程选育 的菌株 S3,其发酵过程 ORP 变化与丁醇代谢通 量亦存在明显关联,暗示若 ORP 控制在-490 mV, 菌体丁醇代谢通量极有可能进一步提高。

对 S3 与 C. acetobutylicum L7 发酵终点时, 消耗糖浓、各溶剂产量及丁醇/糖等参数进行了比 较 (表 3)。

Stains	Total sugar fermented (g/L)	Maximal biomass (OD_{620})	Acetone (g/L)	Butanol (g/L)	Ethanol (g/L)	Total solvent (g/L)	A/B/E	$\begin{array}{c} Y_{Butanol/Sugar} \\ (g/g) \end{array}$
Parent strain	58.6±0.28	3.19±0.08	6.11±0.06	11.22±0.04	1.13±0.06	18.46±0.04	0.33/0.61/0.06	0.19
S 3	57.5±0.28	3.18±0.03	6.07±0.01	12.48±0.03	1.70±0.07	20.25±0.11	0.30/0.62/0.08	0.22

表 3 S3 与原始菌的比较

 Table 3
 The comparison of S3 with C. acetobutylicum L7

C. acetobutylicum 发酵产生 3 种溶剂:丙酮 (A)、丁醇 (B) 和乙醇 (E)。发酵终点, A、B、 E 三者比例一般在3:6:1 左右。表3数据显示, S3 和原始菌的 A/B/E 比例相差不大; 生长过程 中消耗的葡萄糖和最大生物量 OD620 基本相同, 而最终 S3 生成的丁醇和乙醇比原始菌高,分别提 高 11.2% (1.26 g/L)、50% (0.57 g/L), 丙酮相差 很小, 总溶剂相应提高 9.7% (1.79 g/L); 丁醇/糖 转化率由原始菌的 0.19 提高到 0.22。S3 发酵结 束用时 52 h,相比原始菌少 9 h,发酵周期缩短, 而产生的丁醇较多, 说明 S3 丁醇的生产效率较 高,达到 0.24 g/(L·h),相比提高 30.5%;因此 S3 在发酵中将更有优势,可以产生较多的溶剂, 其经济可行性得到提高。整个丁醇发酵过程中, 有机酸的重吸收与溶剂产生相偶联。S3 与原始菌 有机酸的重吸收量分别为 2.70 g/L、2.89 g/L,相 差不大; 二者丙酮产量基本相同, 而 S3 的丁醇 与乙醇总产量相比原始菌高 1.83 g/L,可以推测 S3 的丁醇与乙醇代谢通量有可能发生了变化。 生成丁醇与乙醇的途径中,丁醇脱氢酶和乙醇脱 氢酶是两个关键酶,且相互关联;二者结构是否 发生改变或活性增强,是否为核糖体工程作用的 靶点,有待于下一步进行研究确定。

丁醇发酵后期,发酵液里存有大量菌体和一些其他物质,例如金属离子、无机盐、菌体自溶产生的蛋白、多糖、核酸等,致使发酵液具有一定的粘性,影响了整个发酵体系的传质传热,并增加搅拌的能量消耗^[23]。若粘度较大,发酵效果和设备利用率将降低,不利于后续工作的进行,增加溶剂分离的难度。对 S3 发酵液的粘度进行考察,发现其粘度由原始菌的 10 mPa·s 减小到4 mPa·s,降低了 60%;这将便于溶剂分离和发酵工作的展开,从而减少发酵成本。

2.4 S3 与 C. acetobutylicum L7 的丁醇耐性

微生物发酵法生产生物燃料时例如乙醇、1-丙醇等,目标产物通常会对菌体产生很大的毒害 作用,影响菌体生长。丁醇发酵中,丁醇因其疏 水性 (离液序列高)堆积在细胞膜表面,干扰膜 功能,其通透性和流动性增加,使 ATP、离子、 磷脂、RNA、蛋白等流失,破坏适合菌体生长的 pH,影响胞内新陈代谢和能量的运输及转换,加 速了菌体的死亡^[5,24-25]。丁醇的毒性作用限制了 发酵液中丁醇的浓度,增加后期的分离成本。因 此对 S3 的丁醇耐性进行了考察,如图 6 所示不同 丁醇浓度下 (0、6、12、14 g/L), *C. acetobutylicum* L7 与 S3 菌体的生长情况。

图 6 不同丁醇浓度下原始菌与 S3 的生长情况

Fig. 6 Growth profiles of *C. acetobutylicum* L7 and S3 challenged with different concentration of butanol. (A) 0 g/L butanol. (B) 6 g/L butanol. (C) 12 g/L butanol. (D) 14 g/L butanol.

从图中可以看出,在添加丁醇的情况下,S3 的生长均强于原始菌,同时间点 *OD*₆₂₀ 一直较原 始菌大,表现出较强的丁醇耐受力。原始菌在 12 g/L 丁醇中,起初能够维持生长,最大 *OD*₆₂₀ 为 1.39;之后因其丁醇耐受低,菌体大量死亡。 在添加 14 g/L 丁醇浓度下,S3 菌体 *OD*₆₂₀缓慢 增加,最大为 1.41;而原始菌无法存活,*OD*₆₂₀ 一直减小,得出 S3 的丁醇耐受浓度比原始菌高, 分别为 14 g/L 和 12 g/L。 丁醇对 C. acetobutylicum 的毒害作用相当严 重。无丁醇的培养基中,原始菌和 S3 生长良好, 最大 OD₆₂₀ 各为 2.43、2.46;含有丁醇的情况下, 原始菌与 S3 的生长受到明显抑制,菌体增殖缓 慢,最大 OD₆₂₀ 都未能达到 2.4;并且 4 种丁醇 浓度下,出现正增殖的时间逐渐缩短,分别为: 原始菌 12 h, 12 h, 6 h, 0; S3 15 h, 15 h, 9 h, 6 h。在耐受丁醇极限浓度下 (原始菌 12 g/L, S3 14 g/L), OD₆₂₀ 只能增殖到 1.40,比无丁醇浓 度下减小 42.9%。可以得出,丁醇毒性严重影响 了菌体的生长代谢。文献指出^[26-27],丁醇作用下, 菌体细胞膜的组成发生很大改变;菌体不能维持 内部 pH, ATPase 活性降低。基于此,下一步可 对 S3 进行丁醇耐性机理的探索,并提出提高丁 醇耐受程度的策略,为进一步提高丁醇产量奠定 基础。

3 结论

本研究首次使用链霉素诱变 C. acetobutylicum L7提高丁醇产量。筛选获得的菌株,丁醇产量提高率均超过10%;其中S3产量 最高,达到12.48g/L,丁醇耐受程度也有显著提高,表明核糖体工程技术在筛选丁醇高产菌株方 面有效、可行。通过分析比较 S3 与 C. acetobutylicum L7发酵性能差异,推测S3的 丁醇及乙醇代谢通量有可能发生变化,后续研究 工作将对菌株S3的抗性突变、丁醇耐受机理及 代谢通路作进一步的研究,为更大程度提高丁醇 产能提供技术支持。

REFERENCES

- Lee SY, Park JH, Jang SH, et al. Fermentative butanol production by clostridia. Biotechnol Bioeng, 2008, 101(2): 209–228.
- [2] Gheshlaghi R, Scharer JM, Young M, et al. Metabolic pathways of clostridia for producing butanol. Biotechnol Adv, 2009, 27(6): 764–781.
- [3] Qureshi N, Blaschek HP. Recent advances in ABE fermentation: hyper-butanol producing *Clostridium beijerinckii* BA101. J Ind Microbiol Biotechnol, 2001, 27(5): 287–291.
- [4] Hermann M, Fayolle F, Marchal R, et al. Isolation and characterization of butanol-resistant mutants of *Clostridium acetobutylicum*. Appl Environ

Microbiol, 1985, 50(5): 1238-1243.

- [5] Ezeji T, Milne M, Price ND, et al. Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol, 2010, 85(6): 1697–1712.
- [6] Xie SJ, Xiao J, Xu J. Advance in microbial ribosome engineering. Acta Microbiol Sin, 2009, 49(8): 981-986.
 谢庶洁,肖静,徐俊. 微生物核糖体工程研究进展. 微生物学报, 2009, 49(8): 981-986.
- [7] Ochi K. From microbial differentiation to ribosome engineering. Biosci Biotechnol Biochem, 2007, 71(6): 1373–1386.
- [8] Hosaka T, Ohnishi-Kameyama M, Muramatsu H, et al. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat Biotechnol, 2009, 27(5): 462–464.
- [9] Ochi K, Okamto S, Tozawa Y, et al. Ribosome engineering and secondary metabolite production. Adv Appl Microbiol, 2004, 56: 155–184.
- [10] Sun YW, Cui CB. Antibiotic-resistance mutation technique in microorganism breeding. J Intern Pharm Res, 2008, 35(3): 213-217.
 孙玉雯, 崔承彬. 抗生素抗性筛选在微生物菌株选育中的作用. 国际药学研究杂志, 2008, 35(3):213-217.
- [11] Kurosawa K, Hosaka T, Tamehiro N, et al. Improvement of α-amylase production by modulation of ribosomal component protein S12 in *Bacillus subtilis* 168. Appl Environ Microbiol, 2006, 72(1): 71–77.
- [12] Hosokawa K, Park NH, Inaoka T, et al. Streptomycin-resistant (*rpsL*) or rifampicinresistant (*rpoB*) mutation in *Pseudomonas putida* KH146-2 confers enhanced tolerance to organic chemicals. Environ Microbiol, 2002, 4(11): 703–712.
- [13] Hai L, Huang YQ, Liao G J, et al. Ribosome engineering of *Streptomyces* sp. FJ3 from Three Gorges reservoir area and metabolic product of the

selected mutant strain. Acta Microbiol Sin, 2011, 51(7): 934–940.

海乐, 黄宇琪, 廖国建, 等. 放线菌 Streptomyces sp. FJ3 的核糖体工程改良与活性产物的分离. 微 生物学报, 2011, 51(7): 934-940.

- [14] Wang JY, Zhu SG, Xu CF. Biochemistry. 3rd ed. Beijing: Higher Education Press, 2002: 523-549. 王镜岩,朱圣庚,徐长法. 生物化学. 3 版. 北京: 高等教育出版社, 2002: 523-549.
- [15] Kashket ER, Cao ZY. Isolation of a degenerationresistant mutant of *Clostridium acetobutylicum* NCIMB 8052. Appl Environ Microbiol, 1993, 59(12): 4198–4202.
- [16] Du CY, Yan H, Zhang Y P, et al. Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by *Klebsiella pneumoniae*. Appl Microbiol Biotechnol, 2006, 69(5): 554–563.
- [17] Meyer CL, Papoutsakis ET. Increased levels of ATP and NADH are associated with increased solvent production in continuous cultures of *Clostridium acetobutylicum*. Appl Microbiol Biotechnol, 1989, 30: 450–459.
- [18] Girbal L, Soucaille P. Regulation of *Clostridium acetobutylicum* metabolism as revealed by mixed-substrate steady-state continuous cultures: role of NADH/NAD ratio and ATP pool. J Bacteriol, 1994, 176(21): 6433–6438.
- [19] Husson F, Tu VP, Santiago-Gomez M, et al. Effect of redox potential on the growth of *Yarrowia lipolytica* and the biosynthesis and activity of heterologous hydroperoxide lyase. J Mol Catal B: Enzym, 2006, 39(1/4): 179–183.
- [20] Herrero AA, Gomez RF, Snedecor B, et al. Growth

inhibition of *Clostridium thermocellum* by carboxylic acids: a mechanism based on uncoupling by weak acids. Appl Microbiol Biotechnol, 1985, 22(1): 53–62.

- [21] Huesemann M, Papoutsakis ET. Effect of acetoacetate, butyrate, and uncoupling ionophores on growth and product formation of *Clostridium* acetobutylicum. Biotechnol Lett, 1986, 8(1): 37-42.
- [22] Wang SH, Zhu Y, Zhang YP, et al. Controlling the oxidoreduction potential of the culture of *Clostridium acetobutylicum* leads to an earlier initiation of solventogenesis, thus increasing solvent productivity. Appl Microbiol Biotechnol, 2012, 93(3): 1021–1030.
- [23] Kilonzo PM, Margaritis A. The effects of non-Newtonian fermentation broth viscosity and small bubble segregation on oxygen mass transfer in gas-lift bioreactors: a critical review. Biochem Eng J, 2004, 17(1): 27–40.
- [24] Dunlop MJ. Engineering microbes for tolerance to next-generation biofuels. Biotechnol Biofuels, 2011, 4(1): 32.
- [25] Liu SQ, Qureshi N. How microbes tolerate ethanol and butanol. New Biotechnol, 2009, 26(3/4): 117–121.
- [26] Lepage C, Fayolle F, Hermann M. Changes in membrane lipid composition of *Clostridium* acetobutylicum during acetone-butanol fermentation: effects of solvents, growth temperature and pH. J Gen Microbiol, 1987, 133(1): 103–110.
- [27] Bowles LK, Ellefson WL. Effects of butanol on *Clostridium acetobutylicum*. Appl Environ Microbiol, 1985, 50(5): 1165–1170.