农业生物技术

蔗糖转运蛋白基因 VvSUC11 和 VvSUC12 双价植物表达载体的构建及在甜菜中的遗传转化

殷东林,祝建波,王爱英,向本春

石河子大学农业生物技术重点实验室,石河子 832000

摘 要:将葡萄 Vitis vinifera L.的蔗糖转运蛋白基因 VvSUC11 和 VvSUC12 与甘薯 Ipomoea batatas L. Lam.的甘薯贮藏蛋 白 (Sporamin) 基因的根部特异性启动子命名为 SP1 和 SP2 重组。以 pCAMBIA2301 为起始载体,构建了 pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12 用农杆菌介导法转化了甜菜 Beta vulgaris L.品种 KWS-9103,发现预培养 4 d,侵染时农杆 菌的浓度 OD₆₀₀ 值为 0.5,附加 0.005%表面活性剂 Silwet L-77,延迟筛选 4 d,转化效率最高,可达 42%。对在卡那霉 素中分化并生根的甜菜植株进行 PCR 和 RT-PCR 检测,证明目的基因已整合到甜菜中并表达,为进一步研究该基因在 甜菜 Beta vulgaris 中的功能奠定了基础。

关键词: 蔗糖转运蛋白, 双价载体, 根部特异性启动子, 甜菜, 转化

Construction of a bivalent plant expression vector carrying *VvSUC11* and *VvSUC12* genes and its genetic transformation in sugar beet

Donglin Yin, Jianbo Zhu, Aiying Wang, and Benchun Xiang

Key Laboratory of Agricultural Biotechnology, Shihezi University, Shihezi 832000, China

Abstract: We have recombined genes VvSUC11, VvSUC12 from *Vitis vinifera* L., and root-specific promoters of sweet potato storage protein gene from *Ipomoea batatas* L. Lam., named as SP1 and SP2. We have constructed a vector pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12 using pCAMBIA2301 as an original vector. VvSUC11 and VvSUC12 were under the control of root-specific promoters of sweet potato storage protein gene. We transformed the vector into KWS-9103 breeding line of *Beta vulgaris* L. with *Agrobacterium*-mediated transformation. We have established the optimal genetic transformation protocol of sugar beet as following: the explants pre-cultured for 4 days were immersed in *Agrobacterium* suspension of OD_{600} =0.5, supplemented with 0.005% Silwet L-77, and followed by a 4-day culture on medium containing cefotaxime, then the buds were selected on medium containing kanamycin and cefotaxime. The percentage of kanamycin-

Received: December 21, 2010; Accepted: March 11, 2011

Supported by: Science Research Development Project of Shihezi University (No. gxjs2007-yz13).

Corresponding author: Benchun Xiang. Tel: +86-993-2058009; E-mail: xbc@shzu.edu.cn 石河子大学科学研究发展计划 (No. gxjs2007-yz13) 资助。

resistant buds was as high as 42%. Results of PCR and RT-PCR proved that the target genes had integrated into sugar beet genome and expressed. It will lay a foundation for further studying their function in *Beta vulgaris*.

Keywords: sucrose transporters, bivalent vector, root-specific promoters, Beta vulgaris, transformation

蔗糖是植物光合作用同化产物最主要的转运形 式,其转运的方向和速率对于高等植物的生长发育 至关重要^[1]。蔗糖由源向库的运输是通过韧皮部进 行的。光合同化物进出韧皮部筛管分子是通过两种 不同模式转运的,即共质体途径和质外体途径^[2]。 其中蔗糖运输的质外体途径在许多农作物中占有重 要的地位。在质外体途径中,蔗糖主动越膜装载入 韧皮部进行运输,然后在库端越膜卸载进入库器官 细胞。蔗糖的跨膜运输及其在植物中的分配需要依 赖于膜上的蔗糖转运蛋白 (Sucrose/H+cotransporters 或 sucrose transporters, SUCs 或 SUTs),因此蔗糖转 运蛋白在蔗糖转运过程中起着极为重要的作用^[3-4]。

在高等植物中,自 1992 年 Riesmeier 等^[5]从菠 菜 *Spinacia oleracea* L.中克隆得到第一个蔗糖转运 蛋白以来,许多蔗糖转运蛋白相继从不同植物以及 不同器官克隆得到^[6]。Davies 等^[7]于 1999 年从葡萄 *V. vinifera* 果实中克隆得到了 3 个预测为葡萄蔗糖转 运蛋白的基因 (*VvSUC11、VvSUC12、VvSUC27*), 其中 2 个 (*VvSUC11、VvSUC12*) 在酵母中得到了功 能验证^[8]。*VvSUC11*和 *VvSUC12*在葡萄果实中具有 相似的表达模式,在果实成熟的过程中表达量增高, 二者的主要功能被认为是负责蔗糖从质外体 (Apoplast)向薄壁细胞 (Parenchyma cell)装载^[8]; 而 *VvSUC27*的表达与前两者有显著不同,在果实成 熟过程中表达量降低^[7]。*VvSUC12*和 *VvSUC27*在葡 萄胚性和非胚性愈伤组织中的表达也有差异^[9]。最 近 *VvSUC27*的功能也在酵母中得到了验证^[10]。

虽然这 3 种蔗糖转运蛋白的功能在酵母中得到 了验证,并且发现转基因酵母提高了积累蔗糖的能 力、糖转运蛋白在酵母中的表达有助于蔗糖的跨膜 运输及糖转运功能的促进与温度和 pH 有很大的关 系^[8,10],但这 3 种蔗糖转运蛋白在植物中的功能验证 方面却鲜有报道。

蔗糖通过韧皮部从源到库的运输被广泛报 道^[1,3]。蔗糖从源组织运输和装载到韧皮部中的过程 已经研究很详细了,而蔗糖从韧皮部卸载到诸如 根、种子和块茎等库组织的过程研究的不够深入。 对蔗糖进入果实即一些植物主要库器官的机制了解 还很少。

基于上述原因,本研究根据蔗糖转运蛋白在糖 分积累中的作用,从调控源、库关系的角度出发, 利用分子生物学手段,构建含有甘薯的甘薯贮藏蛋 白基因根部特异性启动子的植物表达载体 pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12,把蔗 糖转运蛋白基因 VvSUC11 和 VvSUC12 转化到甜菜 中验证其在植物中的功能和探索蔗糖在甜菜块根中 可能的运输机制。

1 材料与方法

1.1 材料

1.1.1 质粒和菌种

原核表达载体 pGM-T-SP1、pGM-T-VvSUC11、 pGM-T-VvSUC12,以及植物表达载体 pBI121-SP2-GUS 均由本实验室构建并保存,植物表达载体 pCAMBIA2301,以及大肠杆菌 Escherichia coli DH5α、根癌农杆菌 Agrobacterium tumefaciens 菌株 GV3101 均为本实验室保存。

1.1.2 生化试剂

Taq DNA 聚合酶、限制性内切酶 Xba I、Sac I、 Hind II、EcoR I、Dra II、T4 DNA 连接酶、反转录 试剂盒 RNA PCR Kit (AMV) 均购于上海生物工程 公司;琼脂糖凝胶回收试剂盒购自 Promega 公司 (美国);总 RNA 提取试剂盒、DNA marker 购自北 京 Tiangen 公司;其他试剂均为国产或进口分析纯 试剂。

1.1.3 植物材料

甜菜 B. vulgaris KWS-9103 品种的种子由石河 子甜菜研究所提供。

1.2 方法

1.2.1 双价植物表达载体 pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12 的构建

本实验室已从葡萄中克隆出蔗糖转运蛋白基因 VvSUC11 和 VvSUC12,从甘薯中克隆出甘薯贮藏蛋 白 (Sporamin) 基因的根部特异性启动子^[11],本文 中命名为 SP1 和 SP2。为了构建这个双价载体需要 构建 3 个中间表达载体。

1) pCAMBIA2301-SP1 载体的构建: 启动子 SP1 左右两端的酶切位点分别为 *Hind* Ⅲ和 *Dra* Ⅲ (表 1)。用 *Hind* Ⅲ/*Dra* Ⅲ在 37 ℃下分别双酶切 pCAMBIA2301和 pGM-T-SP1 载体,回收大片段和 小片段,大、小片段在 T4 DNA 连接酶作用下 16℃连接过夜,转化大肠杆菌 DH5α,挑单克隆, 用 SP1 的引物 (表 1)进行菌液 PCR 鉴定。对阳性 菌液提取质粒用 *Hind* Ⅲ/*Dra* Ⅲ 双酶切鉴定正确后命 名为 pCAMBIA2301-SP1。同时阳性克隆的菌种和质 粒于-70℃保存备用。

2) pCAMBIA2301-SP2-GUS-SP1 载体的构建:

表1 研究中使用的引物序列

Table 1	Sequences	of oligonucleotide	primers used	in this study
---------	-----------	--------------------	--------------	---------------

Gene/sequence name	Primer name	Primer sequence $(5'-3')$	Annealing temperature (°C)	Size (bp)
0.01	Forward	AAGCTT(Hind III) CATTGGACACTTGGACGG	<i>c</i> 0	365
5P1	Reverse	CACGTGG(Dra III) TGGCTTTCATGGTGGCAGAT	00	
6 5 2	Forward	AAGCTT(Hind III) CATTGGACACTTGGACGG	52	365
SP2	Reverse	TCTAGA(Xba I) GCTTTCATGGTGGCAGAT	53	
	Forward	GCGAAGTCTTTATACCGAAAGGTTG	~~	
Gus part sequence	Reverse	TGCCATGTTCATCTGCCCAGT	55	824
	Forward	TCTAGA(Xba I) ATGCCGGAGACGATGGACG	~	1850
VvSUC12	Reverse	GAGCTC(Sac I) TCACCTCATTGAGGCAGGGAAG	63	
	Forward	CACATTGTG(Dra III) GCCGCAACTCACCCTATACAA	-	
VvSUCII	Reverse	CACGTGGTG(Dra III) TCATGTGTGGACCCTGGATTTA	59	1547

启动子 SP2 与启动子 SP1 的区别仅在于右端酶切位 点不同,启动子 SP2 左右两端的酶切位点是 *Hind* Ⅲ 和 *Xba* I (表 1)。用 *Hind* Ⅲ/*Eco*R I 在 37 ℃下双酶 切载体 pCAMBIA2301-SP1 多克隆位点,回收大片 段,同时用 *Hind* Ⅲ/*Eco*R I 双酶切载体 pBI121-*SP2-GUS*,回收小片段得到表达框 SP2-*GUS*-NOS, 将表达框插入到载体 pCAMBIA2301-SP1 多克隆位 点,转化大肠杆菌 DH5α,挑单克隆,用 *GUS* 的 引物 (表 1)进行菌液 PCR 鉴定。对阳性菌液提取 质粒用 *Hind* Ⅲ/*Eco*R I 双酶切鉴定正确后命名为 pCAMBIA2301-SP2-*GUS*-SP1。同时阳性克隆的菌种 和质粒于-70 ℃保存备用。

3) pCAMBIA2301-SP2-VvSUC12-SP1 载体的构 建: 基因 GUS 和 VvSUC12 左右两端的酶切位点都 是 Xba I 和 Sac I (表 1)。用 Xba I /Sac I 双酶切上 面的载体 pCAMBIA2301-SP2-GUS -SP1,回收大片 段。Xba V/Sac I 双酶切 pGM-T-VvSUC12 载体,回收 小片段。小片段与大片段在 T4 DNA 连接酶的作用 下连接过夜,转化 DH5α,挑单克隆,用基因 VvSUC12 的引物 (表 1)菌液 PCR 鉴定。对阳性菌液提取质 粒用 Xba I /Sac I 双酶切鉴定正确后命名为 pCAMBIA2301-SP2-VvSUC12-SP1。阳性克隆的菌种 和质粒于-70 ℃保存备用。 4) pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12 载体的构建: 基因 VvSUC11 左右两端的酶切位点都 是 Dra Ⅲ,但两端的序列并不完全相同,右端酶切 位点的序列与启动子 SP1 右端酶切位点的序列相 同,左端的与它们不同(表 1),这样不会出现反向 连接。用 Dra Ⅲ单酶切 pCAMBIA2301-SP2-VvSUC12-SP1 载体,回收大片段,然后去磷酸化, 同时用 Dra Ⅲ单酶切 pGM-T-VvSUC11 载体,回收 小片段与大片段在 T4 DNA 连接酶作用下 16 ℃连接 过夜,转化大肠杆菌 DH5α,挑单克隆,用基因 VvSUC11 引物(表 1)菌液 PCR 鉴定。对阳性菌液 提取质粒用 Dra Ⅲ单酶切鉴定正确后命名为 pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12。同样, 阳性克隆的菌种和质粒于-70 ℃保存备用。

1.2.2 双价植物表达载体用冻融法转化根癌农杆菌 GV3101

农杆菌 GV3101 感受态的制备及转化,参考本 实验室的方法^[11],并使用基因 VvSUC11 的引物(表 1)进行菌液 PCR 检测。

1.2.3 农杆菌介导法转化甜菜

1) 外植体的制备:将甜菜 KWS-9103 品种的种 子用自来水浸泡 1 h,在超净工作台中转移到灭过菌 的三角瓶中,先用 10%的 H₂O₂处理 3 min,然后用 0.1%的升汞处理 8 min,再用无菌水漂洗 5~6 次。 将消过毒的种子接种于含琼脂 0.7%、蔗糖 3%的 1/2 MS (pH 5.8) 基本培养基上,在 24 ℃±2 ℃下暗 培养,使种子萌发。取发芽 10 d 左右的小苗,剪掉 根部,转移至预培养培养基 (Pre-culture medium) (表 2) 中进行预培养 50~60 d 后剪甜菜的叶柄 1 cm 左右做外植体。甜菜的叶柄在预培养培养基 (表 2) 中再预培养 2、4、6 d。

2) 农杆菌的培养:取保存的含有目的基因的菌种 GV3101 在含有 50 mg/L 卡那霉素 (Kan)、40 mg/L 利福平 (Rif)和 50 mg/L 庆大霉素的 LB 固体培养基 上划线,28 ℃培养 2 d。从平板上挑取单菌落接入 10 mL 含有 50 mg/L Kan、40 mg/L Rif和 50 mg/L 庆 大霉素的 LB 液体培养基中,28 ℃、150 r/min 振荡

培养过夜。吸取 2 mL 农杆菌菌液,转入 100 mL 含 有 50 mg/L Kan、40 mg/L Rif 和 50 mg/L 庆大霉素 的 LB 液体培养基中, 28 ℃、150 r/min 振荡培养 4~5 h,直到菌液浓度 *OD*₆₀₀为 0.6~0.7,将菌液 4 ℃、 4 000 r/min 离心 8 min,收集菌体,并将菌体重悬于 已加入 0、0.005%、0.01% 的表面活性剂 Silwet L-77 的重悬培养基 (Suspension medium) (表 2) 中,使重 悬培养基 (表 2) 的 *OD*₆₀₀为 0.3、0.5、0.7、0.9。

3) 甜菜转化:将预培养的叶柄浸泡到农杆菌的重悬培养基(表 2)中,摇荡10min后弃掉菌液;用无菌滤纸吸干表面菌液后,将叶柄接种于铺有滤纸的共培养培养基(Co-cultivation medium)(表 2)中,暗培养3d。

4) 延迟筛选、选择培养及植株再生:将共培养后的叶柄转接到延迟筛选培养基 (Delay-screening medium)(表 2)中,培养0d、2d、4d、6d。然后,转接到选择培养基 (Selection medium)(表 2)中进行选择培养,每隔15d左右更换一次培养基。待抗卡那霉素甜菜再生芽长至2~3 cm时,切下放入生根培养基 (Root-induction medium)(表 2)中,诱导生根。

1.2.4 转基因甜菜的 PCR 及 RT-PCR 检测

待转化的甜菜生根后,采用 CTAB 法提取甜菜 叶片基因组 DNA。通过 PCR 扩增来检测目的基因 是否整合到甜菜基因组中。用 Trizol 法提取 PCR 阳

表 2 甜菜转化和再生培养基

Table	2	Media	used	in	transformation	and	regeneration	of
sugar	be	eet						

Medium types	Medium compositions
Pre-culture medium	MS+6-BA0.5 mg/L+NAA 0.05 mg/L
Suspension medium	MS+AS 100 mg/L+Silwet L-77
Co-cultivation medium	MS+AS100 mg/L
Delay-screening medium	MS+6-BA0.5 mg/L+NAA 0.05 mg/L+ Cef500 mg/L
Selection medium	MS+6-BA0.5 mg/L+NAA 0.05 mg/L+ Cef500 mg/L+Kan 50 mg/L
Root-induction medium	MS+2.0 mg/L IBA+Cef 500 mg/L+ Kan 50 mg/L

性植株 RNA,按照 Tiangen 公司的 Trizol 试剂说明 书进行。首先反转录合成 cDNA,然后以此为模板 进行 PCR 来检测目的基因是否表达。

2 结果与分析

2.1 双价植物表达载体 pCAMBIA2301-SP1-*VvSUC11-SP2-VvSUC12*的构建和鉴定

2.1.1 pCAMBIA2301-SP1 载体的构建和鉴定

用 Hind Ⅲ /Dra Ⅲ 双 酶 切 重 组 质 粒 pCAMBIA2301-SP1,得到预期大小 (365 bp) 的片段 (图 1A)。

2.1.2 *pCAMBIA2301-SP2-GUS-SP1* 载体的构建和 鉴定

用 *Hind* Ⅲ /*Eco*R I 双 酶 切 重 组 质 粒 pCAMBIA2301-SP2-GUS-SP1,得到预期大小 (约 2.2 kb) 的片段 (图 1B)。

2.1.3 *pCAMBIA2301-SP2-VvSUC12-SP1* 载体的构 建和鉴定

重组质粒 pCAMBIA2301-SP2-VvSUC12-SP1 用 Xba I /Sac I 双酶切鉴定,得到 1 850 bp 大小的片段 (图 1C),与目标片段一致。 **2.1.4** *pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12* 载体的构建和鉴定

重组质粒 pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12 用 Dra III单酶切鉴定,得到 1 547 bp 大小的片段 (图 1D),与目标片段一致。

2.2 双价植物表达载体转化根癌农杆菌和 PCR 鉴定

将 质 粒 pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12转化制备好的根癌农杆菌 GV3101 感受态 细胞,在固体培养基 (LB+50 mg/L Kan+40 mg/L Rif+50 mg/L 庆大霉素) 上筛选转化子。随机挑取不 同单菌落接种于加有 50 mg/L Kan、40 mg/L Rif 和 50 mg/L 庆大霉素的 LB 液体培养基中,28 ℃, 200 r/min 培养大约 48 h,使用基因 VvSUC11 的引 物进行菌液 PCR 鉴定,得到预期 1 547 bp 的片段 (图 2)。

2.3 双价植物表达载体转化甜菜和甜菜遗传转化 体系的建立

2.3.1 外植体预培养时间对抗性芽分化频率的影响

取甜菜的叶柄约 1 cm 作外植体,在 Pre-culture medium (表 2) 中预培养 2、4、6 d,进行遗传转化

图 1 双价植物表达载体 pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12 的构建和鉴定

Fig. 1 Construction and identification of the bivalent plant expression vector pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12. (A) 1: pCAMBIA2301-SP1 is digested by *Hind* III/*Dra* III to get the 365 bp SP1 fragment; 2: recombined plasmid pCAMBIA2301-SP1; M: marker III. (B) M: marker III; 1: pCAMBIA2301-SP2-GUS-SP1 is digested by *Hind* III/*EcoR* I to get about 2.2 kb SP2-GUS-NOS fragment. (C) 1: pCAMBIA2301-SP2-VvSUC12-SP1 is digested by *Xba* I/Sac I to get the 1 850 bp *VvSUC12* fragment; 2: recombined plasmid pCAMBIA2301-SP2-VvSUC12-SP1; M: marker III. (D) 1: pCAMBIA2301-SP2-VvSUC12 is digested by *Dra* III to get the 1 547 bp *VvSUC11* fragment; M: marker III.

图 2 双价植物表达载体转化根癌农杆菌的 PCR 鉴定

Fig. 2 Identification of recombinant plasmid pCAMBIA2301- SP1-VvSUC11-SP2-VvSUC12 in A. tumefaciens strains GV3101 by PCR. M: marker III; 1–7: Results of PCR of single-colony of A. tumefaciens strains GV3101 transformed by recombinant plasmid pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12; 8: PCR product of recombined plasmid pCAMBIA2301-SP1-VvSUC11-SP2-VvSUC12; 9: negative control.

研究。预培养时间对抗性芽分化率有很大的影响, 预培养4d抗性芽分化率最高,可达37%。预培养 过短或过长都会大大降低转化率(图3)。预培养过 短侵染后外植体褐化严重,这可能是由于伤口尚未 愈合的外植体对农杆菌比较敏感,恢复农杆菌对其 的伤害能力较弱,在筛选培养基中褐化比较严重; 预培养过长(大于6d)抗性芽的分化频率降低,是 因为部分外植体在侵染前已分化产生不定芽,这些 不定芽在以后的选择培养中逐渐褐化死亡。

2.3.2 农杆菌重悬液的浓度对抗性芽分化频率的 影响

不同的外植体材料对根癌农杆菌的敏感性不同,为了确定最佳的侵染浓度,将预培养后的甜菜叶柄置于不同浓度的农杆菌重悬液中进行侵染。由图4可知,农杆菌重悬液浓度 OD₆₀₀为 0.5 时,侵染效果最佳,抗性芽分化率最高。菌液浓度 OD₆₀₀高于 0.7 时,外植体褐化加重,可能是因为高浓度的菌液对叶柄细胞有毒害作用。同时菌液浓度过高暗培养后农杆菌不易抑制,污染较重。

图 4 农杆菌重悬液浓度对抗性芽分化频率的影响 Fig. 4 Effect of concentrations of *Agrobacterium* suspension on resistant buds rates. 1170 ISSN1000-3061 CN11-1998/Q

2.3.3 表面活性剂 Silwet L-77 的浓度对抗性芽分化 频率的影响

表面活性剂 Silwet L-77 可以降低菌液的表面张 力,增加菌液与外植体的接触面积,从而促进转化。 但表面活性剂浓度过大对外植体有一定的伤害,所 以要确定最适宜的浓度。为此,侵染前在农杆菌重 悬液中加了 0、0.005%、0.01%的表面活性剂 Silwet L-77 进行试验。由图 5 可知,当表面活性剂 Silwet L-77 的浓度为 0.005%时叶柄的褐化率最低,抗性 芽的分化频率最高,可达 39%。

2.3.4 延迟筛选时间对对抗性芽分化频率的影响

共培养后的叶柄如果立刻进行筛选,则抗性芽的分化率比较低(图 6),如果适当在 Delayscreening medium (表 2)中,培养一段时间会大大增加转化率。延迟筛选4d,抗性芽的分化率最高,可达42%。延迟筛选时间大于4d时,抗性芽也随 之降低(图 6)。

2.3.5 转化甜菜的再生

甜菜叶柄预培养 4 d (图 7A), 在 OD₆₀₀为 0.5 的 含有 0.005% Silwet L-77 的农杆菌 Suspension medium 中侵染 10 min; 转入 Co-cultivation medium

图 6 延迟筛选时间对抗性芽分化频率的影响 Fig. 6 Effect of delay-screening time on resistant buds rates.

中培养 3 d,转入 Delay-screening medium 中培养 4 d;移入 Selection medium 中选择培养 30 d,得到 抗性芽 (图 7B)。待抗性芽长至 2~3 cm 时,切下放 入 Root-induction medium 中生根 (图 7C、D)。

2.4 转基因甜菜的 PCR 及 RT-PCR 检测 2.4.1 *转基因植株的 PCR 检测*

取 6 株转化甜菜和 1 株对照甜菜的叶片提 DNA,分别用基因 VvSUC11 和 VvSUC12 的引物 (表 1) 进行 PCR 检测。有 4 株检测到基因 VvSUC11 的 活性 (图 8A),有 3 株检测到基因 VvSUC12 活性 (图 8B)。PCR 结果表明,在 6 株转化甜菜中有 3 株是 VvSUC11 和 VvSUC12 共整合到甜菜基因组中 (图 9A、B)。

2.4.2 转基因植株的 RT-PCR 检测

以3株同时转化了2个基因的甜菜植株为材料, 用基因 VvSUC11 和 VvSUC12 引物(表 1)进行 RT-PCR 检测。有 2 株甜菜在根和茎中都检测到 VvSUC11 和 VvSUC12 的活性(图 9A、B),这可能 是因为一般情况下,甘薯的甘薯贮藏蛋白 (Sporamin) 基因的根部特异性启动子主要在块根中 起作用^[12],而在含蔗糖的培养基上生长的植物茎部 也有其活性^[13]。

图 7 转化甜菜的再生

Fig. 7 Regeneration of transformation sugar beet. (A) Pre-culture of petioles. (B) Regeneration of resistant buds. (C, D) Induced roots.

图 8 转化甜菜的 PCR 检测结果

Fig. 8 Identification of transformed sugar beets by PCR. (A) M: marker III; 1–6: PCR results of transformed sugar beets using the primers of VvSUC11; 7: PCR results of wild-type sugar beet using the primers of VvSUC11; 8: PCR results of plasmid carrying VvSUC11 using the primers of VvSUC11. (B) M: marker III; 1–6: PCR results of transformed sugar beets using the primers of VvSUC12; 7: PCR results of wild-type sugar beet using the primers of VvSUC12; 8: PCR results of plasmid carrying VvSUC12 using the primers of VvSUC12.

图 9 转化甜菜的 RT-PCR 检测结果

Fig. 9 Identification of transformed sugar beets by RT-PCR. (A, B) M: marker III; 1-3: RT-PCR results of root, stem, leaf of the fist transformed sugar beet respectively using the primers of *VvSUC11* and *VvSUC12*; 4-6: RT-PCR results of root, stem, leaf of the second transformed sugar beet respectively using the primers of *VvSUC11* and *VvSUC12*; 7-9: RT-PCR results of root, stem, leaf of the third transformed sugar respectively using the primers of *VvSUC11* and *VvSUC12*; 10: RT-PCR results of wild-type sugar beet respectively using the primers of *VvSUC12*; 11: RT-PCR results of plasmid pCAMBIA2301-SP1-*VvSUC11*-SP2-*VvSUC12* respectively using the primers of *VvSUC11* and *VvSUC12*.

3 讨论

根据系统发生学的分析,所有已知的蔗糖转运 蛋白和蔗糖转运蛋白类似蛋白可以分为 3 个亚群: SUT1、SUT2 和 SUT4: VvSUC11 属于 SUT4 亚群, *VvSUC12* 属于 SUT2 亚群^[14]。SUT4 亚群中的成员 一般都具有低亲和性/高转运能力 (Low-affinityhigh-capacity, LAHC)^[14]。尽管该类 SUT 对蔗糖的 亲和力要弱一些,但在蔗糖浓度高时却有助于大量 蔗糖的转运。它们主要参与高浓度蔗糖的转运步骤, 向库组织大量转运蔗糖,在决定库容大小上起主要 作用,还可能参与蔗糖吸收效率的调控^[15]。SUT2 亚族或为无蔗糖转运能力、可能具有蔗糖信号感应 (Sucrose sensing) 功能的类蔗糖载体蛋白^[4], 或为低 亲和性/高转运能力的蔗糖载体蛋白^[16-17]。Manning 等^[8]研究表明, VvSUC11 和 VvSUC12 在葡萄果浆中 作用是负责蔗糖从质外体向薄壁细胞装载。可见, VvSUC11 和 VvSUC12 决定着葡萄浆果的糖含量。

植物 SUC 属于 MFS (Major facilitator superfamily) 中的糖转运家族的一个中等规模的亚家族^[18]。属于 MFS 的膜蛋白,通过寡聚化 (Oligomerization) 而形成同源二聚体、异源二聚体、

甚至四聚体等是一种非常普遍的现象,这可能是其 调节自身转运活性的一种方式^[19]。根据不同蔗糖载 体蛋白在植株中的分布和组织细胞定位、不同的动 力学特征及表达调控模式等推测,寡聚化可能也是 植物对其蔗糖载体转运活性进行精确调控的一种主 要方式^[20]。Davies 等^[7]研究发现,*VvSUC11* 和 *VvSUC12*在葡萄浆果中的表达模式一致,当己糖开 始在液泡中积累的时候,*VvSUC11*和*VvSUC12*在浆 果中的表达增加。这暗示了*VvSUC11*和*VvSUC12*在浆 构建了含这两个基因的双价植物表达载体。

农业生产中,为了获得高产,不仅要设法提高 光合作用形成的生物学产量,而且要通过一定的措 施来提高经济学产量。本研究把甘薯的甘薯贮藏蛋 白 (Sporamin) 基因的根部特异性启动子构建到载 体上用于启动 VvSUC11 和 VvSUC12 基因的表达, 就是根据蔗糖转运蛋白在糖分积累中的作用,从调 控源到库关系的角度出发,来定向的提高甜菜的经 济学产量,为通过基因工程的方法来提高农作物的 产量提供新的思路。

本研究成功构建了含有甘薯的甘薯贮藏蛋白基因 根部特异性启动子的植物表达载体 pCAMBIA2301SP1-VvSUC11-SP2-VvSUC12;并首次将 VvSUC11 和 VvSUC12 基因转化到甜菜中使其表达,来研究其能 否提高甜菜的含糖量,为利用蔗糖转运蛋白来提高 农作物的有效的经济学产量奠定坚实理论和应用基 础。建立了高效的甜菜遗传转化体系,为通过基因 工程的方法来改良甜菜的品质提供方便。

REFERENCES

- Kühn C, Barker L, Bürkle L, et al. Update on sucrose transport in higher plants. J Exp Bot, 1999, 50: 935–953.
- [2] Buchanan BB, Gruissem W, Jones RL. Biochemistry & Molecular Biology of Plants. Rockville: American Society of Plant Physiologists, 2000: 748–776.
- [3] Williams LE, Lemoine R, Sauer N. Sugar transporters in higher plants-a diversity of roles and complex regulation. Trends Plant Sci, 2000, 5(7): 283-290.
- [4] Barker L, Kühn C, Weise A, et al. SUT2, a putative sucrose sensor in sieve elements. Plant Cell, 2000, 12(7): 1153–1164.
- [5] Riesmeier JW, Willmitzer L, Frommer WB. Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J, 1992, 11(13): 4705–4713.
- [6] Lalonde S, Boles E, Hellmann H, et al. The dual function of sugar carriers: transport and sugar sensing. Plant Cell, 1999, 11(4): 707-726.
- [7] Davies C, Wolf T, Robinson SP. Three putative sucrose transporters are differentially expressed in grapevine tissues. Plant Sci, 1999, 147(2): 93–100.
- [8] Manning K, Davies C, Bowan HC, et al. Functionalcharacterization of two ripening-related sucrose transporters from grape berries. Ann Bot, 2001, 87(1): 125–129.
- [9] Chen S, Zeng L, Chen SW, et al. Differentiated expression of VvSUC12 and VvSUC27 in embryogenic and nonembryogenic calli of Vitis vinifera L. Chin J Biotech, 2010, 26(4): 530-537.
 陈思, 曾磊, 陈尚武, 等. 蔗糖转运蛋白基因 VvSUC12

和 VvSUC27 在葡萄胚性和非胚性愈伤组织中的差异表达. 生物工程学报, 2010, 26(4): 530-537.

[10] Zhang YL, Meng QY, Zhu HL, et al. Functional characterization of a LAHC sucrose transporter isolated

from grape berries in yeast. Plant Growth Regul, 2008, 54(1): 71-79.

- [11] Zhang YW. Preliminary studies of sucrose transporter function in improving the yield of sugar of sugar beet [D]. Shihezi: Shihezi University, 2009.
 张彦伟. 蔗糖转运蛋白基因在提高甜菜含糖量中的初 步研究[D]. 石河子: 石河子大学, 2009.
- [12] Hattori T, Nakamura K. Genes coding for the major tuberous root protein of sweet potato: identification of putative regulatory sequence in the 5'upstream region. Plant Mol Biol, 1988, 11(4): 417–426.
- [13] Ohta S, Hattori T, Morikami A, et al. High-level expression of a sweet potato sporamin gene promoter: β -glucuroidase (GUS) fusion gene in the stems of transgenic tobacco plants is conferred by multiple cell type-specific regulatory elements. Mol Gen Genet, 1991, 225(3): 369–378.
- [14] Kühn C, Hajirezaei MR, Fernie AR, et al. The sucrose transporter *StSUT1* localizes to sieve elements in potato tuber phloem and influences tuber physiology and development. Plant Physiol, 2003, 131(1): 102–113.
- [15] Weise A, Barker L, Kühn C, et al. A new subfamily of sucrose transporters, SUT4, with low affinity/high capacity is localized in enucleate sieve elements of plants. Plant Cell, 2000, 12(8): 1345–1355.
- [16] Schulze W, Weise A, Frommer WB, et al. Function of the cytosolic N-terminus of sucrose transporter AtSUT2 in substrate affinity. FEBS Lett, 2000, 485(2/3): 189–194.
- [17] Meyer S, Melzer M, Truernit E, et al. AtSUC3, a gene encoding a new Arabidopsis sucrose transporter, is expressed in cells adjacent to the vascular tissue and in a carpel cell layer. Plant J, 2000, 24(6): 869–882.
- [18] Lemoine R. Sucrose transporters in plants: update on function and structure. BBA Biomembranes, 2000, 1465(1/2): 246–262.
- [19] Veenhoff LM, Heuberger EHML, Poolman B. The lactose transport protein is a cooperative dimer with two sugar translocation pathways. EMBO J, 2001, 20(12): 3056–3062.
- [20] Reinders A, Schulze W, Kühn C, et al. Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element. Plant Cell, 2002, 14(7): 1567–1577.