生物技术与方法

海藻糖对猪精子冷冻真空干燥保存效果的影响

孟祥黔^{1,2,3},顾晓龙^{1,2,3},吴彩凤^{2,3},戴建军^{2,3},张廷宇^{2,3},谢一妮^{1,2,3},吴志强^{1,2,3},刘亮^{2,3},马恒东¹,张德福^{2,3}

1 四川农业大学生命科学与理学院, 雅安 625014

2 上海农业科学院畜牧兽医研究所,上海 201106

3 上海农业遗传育种重点实验室 动物遗传工程研究室, 上海 201106

摘 要: 猪精子经冷冻干燥后,在光学显微镜和电子显微镜下观察其超微结构,并借助辅助生殖技术将其注入猪卵母 细胞后,进一步观察受精卵的发育情况。结果表明:海藻糖组雄原核形成率 (68.52%)、卵裂率 (59.17%) 和囊胚率 (19.16%) 优于 EDTA 组 (64.59%、56.26%和 15.62%) 和对照组 (35.36%、52.33%和 8.60%) (P<0.05);海藻糖组的 冷冻真空干燥猪精子分别在 4℃下保存 60、120、180 d,雄原核形成率、卵裂率和囊胚率均无显著差异 (P>0.05);海 藻糖组的冷冻真空干燥猪精子复水化后孵育 1 h和 2 h,卵裂率、卵裂率和囊胚率均差异显著 (P<0.05);海藻糖处理 组与 EDTA 处理组中的冷冻真空干燥猪精子分别在 4℃和-20℃下保存后各处理组间精子形态差异不显著 (P>0.05); 海藻糖组中 B 级冷冻真空干燥精子百分数显著多于 EDTA 处理组 (P<0.05)。超微结构分析表明,冷冻真空干燥猪精子 的损伤主要表现在顶体和颈部的肿胀与缺损、尾部断裂。

关键词: 猪精子, 冷冻真空干燥, 单精子注射

Effect of trehalose on the freeze-dried boar spermatozoa

Xiangqian Meng^{1,2,3}, Xiaolong Gu^{1,2,3}, Caifeng Wu^{2,3}, Jianjun Dai^{2,3}, Tingyu Zhang^{2,3}, Yini Xie^{1,2,3}, Zhiqiang Wu^{12,3}, Liang Liu^{2,3}, Hengdong Ma¹, and Defu Zhang^{2,3}

1 Animal Science & Technology College, Sichuan Agricultural University, Ya'an 625014, China

2 Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Science, Shanghai 201106, China

3 Division of Animal Genetic Engineering, Shanghai Municipal Key Laboratory of Agri-genetics and Breeding, Shanghai 201106, China

Abstract: After freeze-drying, the ultrastructure of boar sperms was observed by optical and electron microscopy. The in vitro development ability of the sperm was also examined with intracytoplasmic sperm injection (ICSI). The rate of male pronuclear formation was (68.52%), for cleavage (59.17%) and for blastocyst formation (19.16%) of the trehalose group (0.2 mol/L), significantly higher than those of the 50 mmol/L EDTA group (64.59%, 56.26% and 15.62%) and the control group (35.36%, 52.33%)

Hengdong Ma. E-mail: mahengdong007@163.com

Received: January 11, 2010; Accepted: May 21, 2010

Supported by: Shanghai Agricultural Genetics and Breeding Laboratory (No. Shagb2008-03), Youth Science and Technology Development Fund of Shanghai Academy of Agricultural Science (No. 2009(15)), Shanghai Agriculture Committee (No. 2007-3-7), Trangentic Major Projects of New Varieties (Nos. 2009ZX08006-014B, 2008ZX08006-005), Shanghai Municipal Science and Technology Committee (No. 103919N1800). **Corresponding author:** Defu Zhang. Tel: +86-21-52235475; E-mail: zhangdefu10@yahoo.com.cn

上海市农业遗传育种重点实验室开放课题 (No. Shagb2008-03), 上海市农科院青年科技发展基金 (No. 2009(15)), 上海市科技兴农推广项 目 (No. 2007-3-7), 转基因生物新品种培育重大专项 (Nos. 2009ZX08006-014B, 2008ZX08006-005), 上海市科委科技成果转化项目 (No. 103919N1800) 资助。

and 8.60%) (P < 0.05). After storage for 60, 120 and 180 d at 4°C, no significant difference in the in vitro development was observed (P > 0.05). The male pronuclear, cleavage and blastocyst formation after ICSI with freeze-dried spermatozoa incubated for 1 h was superior than those incubated for 2 h (P < 0.05). No significant differences in the structures after stored at 4°C or -20°C (P > 0.05) were observed between the trehalose group and EDTA group. The percent of B grade freeze-dried boar spermatozoa in the trehalose group was higher than that of the EDTA group (P < 0.05). Based on the ultrastructure observation, main cryogenic damage in freeze-dried boar spermatozoa was swelling, damage or rupture in the sperm acrosome, neck and tail.

Keywords: boar spermatozoa, freeze-drying, intracytoplasmic sperm injection

早在 1949 年 Polge 等^[1]首次发现甘油对精子具 有冷冻保护作用,同时也进行了精子冷冻真空干燥 的试验。以往的研究表明,冷冻真空干燥的精子在 复水化后完全丧失运动能力,不能在自然条件下授 精,不具备深入研究的意义。由于冷冻真空干燥保 存后的精子具有完整的雄性遗传物质,并随着胞内 单精子注射技术 (Intracytoplasmic sperm injection, ICSI) 的不断发展和完善,使这种方法保存的精子 能够成功获得后代。目前已经成功应用 ICSI 技术使 冷冻真空干燥精子获得发育正常的胚胎,且已相继 在小鼠^[2]、大鼠^[3]和及兔^[4]等实验动物上获得正常后 代。在大家畜 (尤其是猪)上,冷冻真空干燥精子鲜 有报道,仅见 Nakai 等技术获得发育良好的胚胎, 但移植后流产^[5]。

冷冻真空干燥的精子可在 4℃条件下长期保存, 无需很多冷藏设备,更容易保存和运输。然而,目 前猪精子冷冻真空干燥技术尚处于探索阶段,国际 上至今还没有一个被认可的冷冻真空干燥和复水化 程序。本研究试图在前人研究基础上,对猪冷冻真 空干燥技术进行改进,并借助 ICSI 技术和扫描电 镜,探讨海藻糖与 EDTA 在冷冻真空干燥过程中对 猪精子的保护效果,以期为提高猪精子乃至哺乳动 物精子冷冻真空干燥保存技术提供一些理论和实践 基础。

1 材料与方法

本试验中,药品除特殊说明外均购自 Sigma 公司。

1.1 猪精液预处理

猪精液采自上海白猪原种猪场 2~3 岁、健康、 性欲旺盛的上海白猪 3 头,手握法采集精液,收集 精液中段浓厚部分,经4层纱布过滤,除去胶状物。 用 HARMONY 稀释液在等温条件下作 1:1 稀释, 保 存于保温瓶中,2h内运回实验室。取50mL猪精液 常温下 600×g 离心 10 min, 弃上清加入等体积 Modena 液 (23.5 mmol/L sodium citrate、11.9 mmol/L Bicarbonate, 6.3 mmol/L EDTA-2Na, 46.7 mmol/L Tris, 15.1 mmol/L citric acid, 152.6 mmol/L glucose, 0.3 mg/mL gentamycin), 放入 17℃恒温冰箱中使精 子上浮。30 min 后,吸取上层 10 mL 悬浮液移入离 心管中,常温下 600×g 离心 10 min,弃上清后底部 沉淀的精子用于以下实验。向含有精子沉淀的离心 管中加入 3 mL 冻干保护剂 (50 mmol/L NaCl+ 10 mmol/L Tris-HCl+0.2 mol /L Trehalose, pH 8.0, 渗透压为 268 mOsm/kg; 50 mmol/L NaCl+10 mmol/L Tris-HCl+50 mmol/L EDTA, pH 8.0, 渗透压为 268 mOsm/kg),保护剂的添加并混匀分为3步,每 步添加1mL冻干保护剂,添加间隔为2min,以便 达到渗透压平衡,精子密度为 3×10⁸/mL,最后按照 100 µL/瓶分装到安培瓶中。

1.2 猪精子冷冻干燥及复水化

猪精子冷冻真空干燥:分装后的安培瓶放入冷 冻真空干燥仪中,使精子在-40℃下冷冻8h,随后 进行冷冻真空干燥,具体参数如下:步骤I: -40℃~-20℃,压强为7.0Pa,冷冻速率为 0.03℃/min,且在-20℃停留1h;步骤II:-20℃~4℃, 压强不变,冷冻速率为2℃/min,4℃停留1h。设定 之后对猪精子进行冷冻干燥。最后对安培瓶进行火 焰封口,并保存于4℃冰箱中,见图1A。

冷冻真空干燥猪精子的复水化:水化前对安培 瓶进行断口,立即添加 100 μL 的去离子水,充分 混匀。

1.3 顶体染色及分级观察

考马斯染色制片:1) 取1mL 生理盐水于 1.5 mL

离心管中,加入 200 μL 精液,立即常温下离心, 9 168×g,15 s (从离心机开始转动时计时);2) 弃上 清,加入 1 mL 3.7%的多聚甲醛,固定 0.5 h,再离 心,9 168×g,15 s (从离心机开始转动时计时);3) 弃 上清,加入 1 mL PBS,再离心,9168×g,15 s (从离 心机开始转动时计时);4) 弃上清,加入 50~100 μL PBS,取 10 μL 精液于载玻片一头,用一边缘整齐 的玻片呈 35 度角将精液样品均匀拖布于载玻片上, 制成精液涂片,自然风干;5) 将考马斯亮蓝染液滴 于涂片上,染色 20 min,用去离子水轻轻冲洗,晾 干备检。

按照精子形态、精子膜、顶体和尾部的完整与 否,将精子分为4种类型:A.顶体完整(精子头部外 形正常,细胞膜和顶体完整着色均匀,顶脊、赤道 段清晰)与尾部完整型;B.顶体膨胀(顶体着色均 匀,但头部边缘不整齐呈畸形,核前细胞膜不明显 或部分缺损)与尾部完整或出现部分断裂;C.顶体 破损(顶体着色不均匀,顶体脱离细胞核,形成缺口 或陷凹)、顶体脱落(赤道段以前的细胞膜缺损,顶 体已全部脱离细胞核),尾部完整或出现部分断裂; D.只剩精子头部。

1.4 冷冻干燥猪精子超微结构观察

扫描电镜:冷冻干燥猪精子经 PBS 洗 2~4 次后, 于 2.5% glutaraldehyde 中 4℃固定 6 h,再经 PBS 清洗 3 次,每次 30 min;再于 1% osmium 中固定 1.5 h,然后再经 PBS 清洗 3 次,每次 30 min;之后, 用乙醇逐级 (30%、50%、70%、90%、100%、 100%) 脱水,每级 20 min;样品脱水后,用乙酸异 戊脂置换;置换后的样品直接移到样品台上,再 放入临界点干燥仪干燥,粘台,IB-5 离子溅射仪 喷金,置于扫描电子显微镜 (PHILIPS2505) 下观 察、拍照。

1.5 冷冻真空干燥猪精子的显微注射

卵母细胞的准备:自上海市长宁区复兴屠宰场 采集猪卵巢,根据本实验室建立的方法进行卵母细 胞的成熟培养^[6],挑选有第一极体排除的卵母细胞 进行显微注射。

猪冻干精子的准备:复水化后的精子常温下

1145

(90 mmol/L 氯化钠, 12 mmol/L 氯化钾, 25 mmol/L 碳 酸氢钠, 8 mmol/L 氯化钙, 0.5 mmol/L 磷酸二氢钠, 0.5 mmol/L 硫酸镁, 2 mmol/L 丙酮酸钠, 10 mmol/L 乳酸, 2 mmol/L 咖啡因, 5 mg/mL 牛血清白蛋白和 10 mmol/L 4-羟乙基哌嗪乙磺酸),并在 38.5℃、5% CO₂ 的培养箱中孵育备用^[7]。

显微注射:将2μL 孵育后的冷冻真空干燥猪精 子吹入含有4% PVP的N-23中,再将卵母细胞吹 入N-23滴中,一次25枚左右。最后,持卵针吸住 卵母细胞,并调整极体的位置,使其保持在"12点 或6点"方向,再横向将注射针中的精子注入卵母 细胞中^[7],见图1B。

卵母细胞激活和培养: 注射后先放入 N-23 中在 培养箱培养 20 min, 使卵母细胞复原。随后采取电 激活 (1 000 V/cm) 30 s, 转入化学激活剂 (CHX) 中 激活, 4 h 后转入 N-23 中进行培养观察卵裂率和囊 胚率。

原核检查: ICSI 胚胎培养 15 h 后,利用 Hochest33342 进行荧光染色,以判断精子头部染色 体的变化状态。仍为致密染色体的视为雄原核没有 形成,精子头部染色体去致密化、膨胀或扩张则视 为原核正在形成或已经形成,见图 1F。

1.6 统计分析

使用 SPSS 统计软件进行分析, P<0.05 时即视为差异显著。

2 结果

2.1 添加不同保护剂的冻干精子对 ICSI 后胚胎发 育的影响

以添加 0.2 mol/L 海藻糖和 50 mmol/L EDTA 的 冷冻真空干燥猪精子,研究 4℃保存 7 d 并观察单 精注射后胚胎的发育情况。冷冻真空干燥猪精子水 化后孵育时间均 1 h,注射入卵后观察雄原核、卵 裂率和囊胚率。由表 1 可知:海藻糖处理组中雄原 核形成率 (68.52%)显著高于 EDTA 处理组 (64.59%)和对照组 (未添加保护剂) (35.36%),后 者之间差异显著 (P<0.05);添加 0.2 mol/L 海藻糖 Chin J Biotech

的冷冻干燥猪精子在 ICSI 后的卵裂率 (59.17%) 和 囊胚率 (19.16%) 较添加 50 mmol/L EDTA 的卵裂 率 (56.26%) 和囊胚率 (15.62%) 差异显著,二者 较未添加组 (52.33%和 8.60%) 均差异显著 (*P* < 0.05)。图 1C、1D、1E 分别为海藻糖处理组,EDTA 处理组和对照组中冷冻真空干燥猪精子 ICSI 后培养 7 d 所获取的囊胚。

表 1 添加海藻糖对 ICSI 后胚胎发育的影响 Table 1 Effect of trehalose on embryonic development

Disposal	No. of oocytes successfully injected	With male pronucleus (%)	Cleavage rate (%)	Blastocyst rate (%)
Trehalose	135	$68.52{\pm}1.88^a$	59.17±1.51 ^a	$19.16{\pm}1.48^{a}$
EDTA	115	$64.59{\pm}1.15^{\text{b}}$	$56.26{\pm}1.03^{b}$	$15.62{\pm}1.48^{b}$
Control	104	35.36±1.97°	52.33±1.08 ^b	8.60±1.89°

Values with different superscripts in the same column differ significantly (P<0.05); Values with same superscripts in the same column differ no significantly (P>0.05). The experiment was repeated five times. The same as below.

图 1 冻干猪精子及其单精子注射后体外发育

Fig. 1 Freeze-dried boar spermatozoa and the *in vitro* development after ICSI. (A) Freeze-dried boar spermatozoa. (B) ICSI process. (C) Blastula formed from trehalose group. (D) Blastula formed from EDTA group. (E) Blastula formed from control group. (F) Male and female pronucleus.

2.2 冷冻真空干燥猪精子的保存时间对胚胎发育 的影响

以 0.2 mol/L 海藻糖作为保护剂的冷冻干燥猪精 子,研究在 4℃下分别保存 60、120 和 180 d,水化 后孵育时间均为 1 h,随后进行 ICSI,观察雄原 核、卵裂率和囊胚率。由表 2 可知:保存在 4℃ 下 60、120 和 180 d 的冷冻干燥猪精子通过 ICSI 注 射后,雄原核形成率(69.32%、68.61%、68.14%), 卵裂率(53.65%、52.60%和 51.71%)和囊胚 率(17.82%、17.43%和 17.15%)均无显著差异 (P>0.05)。

表 2 冷冻干燥猪精子不同保存时间对胚胎发育的影响 Table 2 Effect of different storage time of freeze-dried sperm on embryonic development

Time for freeze-drying (month)	No. of oocytes successfully injected	With male pronucleus (%)	Cleavage rate (%)	Blastocyst rate (%)
2	148	69.32±2.35	53.65±1.84	17.82±1.77
4	134	68.61±1.69	53.40±1.42	17.43±2.05
6	137	$68.14{\pm}2.02$	52.91±1.59	17.15±2.36

2.3 冷冻干燥猪精子水化后孵育时间对培养发育 的影响

保存在 4℃下,以 0.2 mol/L 海藻糖为保护剂 的冷冻干燥猪精子复水化后孵育时间分别为 1 h 和 2 h,注射入卵后,对比水化后孵育时间长短对胚胎 发育的影响。由表 3 可知:冷冻干燥猪精子水化后孵 育 1 h 和 2 h 后,雄原核形成率,卵裂率和囊胚率均 差异显著 (P<0.05),且囊胚率上,孵育 1 h (17.98%) 的冻干精子优于孵育 2 h (12.67%) 组 (P<0.05)。

表 3 冷冻干燥猪精子水化孵育时间对培养发育的影响 Table 3 Effects of different hydration time for freeze-dried sperm on embryonic development

Hydration time (h)	No. of oocytes successfully injected	With male pronucleus (%)	Cleavage rate (%)	Blastocyst rate (%)
1	136	68.22±2.17 ^a	59.17±2.01ª	17.98±1.53 ^a
2	135	66.80±1.21 ^b	53.67±2.36 ^b	12.67±2.47 ^b

2.4 保存温度对冷冻干燥猪精子形态的影响

本试验海藻糖处理组 (0.2 mol/L 海藻糖) 和 EDTA 处理组 (50 mmol/L EDTA) 中的猪冻干猪精 子保存在 4℃和-20℃下, 180 d 后水化, 对冻干精 子整体形态分为 A、B、C、D 四个等级进行染色观 察,结果见表 4,海藻糖处理组与 EDTA 处理组中 的冻干精子分别在 4℃和-20℃下保存后各处理组间 差异不显著 (P>0.05);海藻糖处理组中 B 级冻干精 子百分数显著多于 EDTA 处理组 (P<0.05)。

表 4 保存温度对冷冻干燥猪精子的影响

Table 4Effect of storage temperature for freeze-dried boarsperm

Strorage temperature (°C)	No. of sperm	A (%)	B (%)	C (%)	D (%)
Trehalose: 4	210	11.42±1.72	$78.24{\pm}1.80^{a}$	7.10±1.41	3.23±1.17
-20	154	10.89±1.65	$78.81{\pm}1.04^{a}$	7.87±2.27	2.42±1.58
EDTA: 4	183	9.46±3.32	74.75 ± 2.14^{b}	10.24±2.16	5.53±1.66
-20	165	9.10±1.25	$74.40{\pm}1.51^{b}$	10.29±2.72	6.20±139

2.5 扫描电镜观察冷冻干燥猪精子

通过扫描电镜对冷冻真空干燥保存猪精子进行 超微结构观察。由图可知,冷冻真空干燥时添加 0.2 mmol/L 海藻糖作为猪精子保护剂,对精子外部 形态具有较好的保护效果。精子在冷冻真空干燥后 仍具有较完整的形态,如顶体和尾部 (图 2A),冷冻 干燥猪精子头部的顶体和赤道清晰可见 (图 2B)。冷 冻干燥时添加 50 mmol/L EDTA 作为猪精子保护剂, 猪精子外部形态较为完整,样品处理时精子尾部尚 存少许杂质 (图 2C),顶体清晰可见 (图 2D),而尾 部与头部后环 (RING)之间出现断痕 (图 2D,箭头 处),并未完全断裂。未添加保护剂的冷冻干燥猪精 子在干燥过程中出现不同程度的损伤,如顶体的丢 失 (图 2E),精子头部后环 (RING) 与尾部中段相连 处出现断裂损伤,尾部并未完全脱落和精子尾部完 全脱落 (图 2F,箭头处)。

图 2 冻干猪精子的超微结构

Fig. 2 ultrastructure of freeze-dried boar sperm. (A) Acrosome (AC) of freeze-dried spermatozoa of trehalose group (arrow). (B) Acrosome (AC) and equatorial segment (ES) of freeze-dried spermatozoa of trehalose group. (C) Freeze-dried spermatozoa of EDTA group. (D) Acrosome (AC) of freeze-dried spermatozoa of EDTA group. Basal cords and posterior ring aren't seen as well as the beginning of the middle piece with circumferential strings of particles around the plasma membrane (arrow). (E) Acrosome loss of freeze-dried spermatozoa of control group. (F) Posterior ring is clearly seen. Freeze-dried spermatozoa tail of control group damage or loss (arrow).

3 讨论

在冷冻真空干燥过程中水分子桥的失去、蛋白 构象的改变会引起精子的损伤。精子在冷冻真空干 燥的恶劣条件下会产生应变蛋白,这种蛋白能避免 干燥所带来的损伤影响,人们也在寻找能够替代这 种蛋白的物质。精子膜在干燥状态下,其完整性会 被破坏,影响对离子的传输能力,降低膜上脂质的 融点,造成相变从而导致损伤。在冷冻真空干燥过 程中精子经历了低温 (-40℃) 和干燥, 这必将受到 来自这两方面的损伤,特别是形态发生变化,如: 精子质膜的破损,尾部损伤甚至脱落,细胞器(线 粒体)暴露在与胞内不一样的环境中等等,冷冻真空 干燥猪精子的电镜图可以清晰看到上述损伤。这些 可能都是减低显微注射后受精率低下的原因[8-9]。在 保护精子质膜方面, Aisen 等^[10]认为海藻糖效果较 好, Bayarad 等^[11]在小鼠和 Aboagla 等^[12]在山羊精 液冷冻保存研究中也得到相同的结论,本试验所得 的结果完全与上述一致。

目前关于冷冻真空干燥猪精子所添加的保护剂 都是基于生化角度来选择保护剂的成分。Ca²⁺与 Mg²⁺与核酸内切酶作用,增大长期保存后精子染色 体异常的比例,而添加保护剂则可以与之结合,防 止与核酸内切酶作用。目前冷冻真空干燥精子所使 用的保护剂多为 EDTA 或 EGTA 的 Tris-HCl 缓冲液 ^[3-4,8,13-17]。而本试验结果显示海藻糖更有利于保护猪 冷冻真空干燥精子。

Jennings 等^[18]认为冻干保护剂在蛋白分子周围 形成环境,提供水分子,避免因为蛋白分子中水分 子桥的失去和蛋白构象的改变而引起细胞损伤。其 中糖在蛋白质稳定性保持中具有重要作用,能大幅 提高细胞中酶的稳定性。当环境恶劣时,海藻糖呈 现出优于其他糖类的优点。在许多生物中,海藻糖的 自动生成经常是与一些应变蛋白同时出现的^[19-21]。这 些蛋白处于精子膜上,能参与保护精子免受冷冻真 空干燥损伤的影响,作用类似与海藻糖。该机理可 能与海藻糖有利于许多生物材料的稳定性有关^[22-23]。 关于海藻糖保护细胞的分子机理,不同学者提出不 同学说,但众多研究表明^[24-25],海藻糖的保护机制 与其晶体结构、溶液的物理构象和化学特性密切相 关。当干燥过程中水分被去除时,海藻糖和脂质之 间的氢键能避免脂质分子改变构象,这就是所谓的 "水替代假说"^[26]。与其他糖类相比,海藻糖更有 利于保存膜在干燥状态下的完整性和对离子的传输 能力^[27],降低膜上脂质的融点,防止膜相变造成的 损伤^[26,28],具有很高的玻璃化温度,是细胞悬浮液 容易达到玻璃化^[29]。

Kaneko 等^[13]还发现精子冻干保护剂的 pH 8.0~ 8.2 时效果较好。精子核内的一些酶,如核酸内切酶 在酸性条件下较稳定,高 pH 值的环境下这些酶的活 性被抑制,这对保护染色体的完整是有益的。故本 试验中添加的保护剂的 pH 值均为 8.0。

冷冻真空干燥精子的目标是能在 4℃下长期保存。2003 年, Monika 等^[30]利用保存了 1.5 年的小鼠 冷冻真空干燥精子成功获得后代。本研究保存 180 d 的冷冻真空干燥猪精子 ICSI 后虽能获得囊胚, 但并 未进行胚胎移植, 因此还有待于进一步的研究。

Kwon 等^[16]注入冷冻真空干燥猪精子头部和整 个精子并进行发育对比,发现前者形成雄原核率要 优于后者,笔者只注入整体的精子在雄原核形成率 上低于上述冻干4h、9h、16h且保存在4℃或25℃ 的冷冻真空干燥猪精子,但获得囊胚率上要高于上 述试验。Nakai等对冷冻真空干燥猪精子进行了水化 后孵育时间 (0~60 min、60~120 min、20~180 min) 之间的对较,发现 0~60 min 水化后孵育时间的冷 冻真空干燥精子单精注射后囊胚率为23.1%,120~ 180 min 的为22.6%,二者之间差异不显著^[5]。本试 验中针对水化后孵育时间 (1h和2h) 做了研究,所 得结果与上述不一致。

综上所述,海藻糖对猪冷冻真空干燥的精子具 有较好的保护作用,但仍需对冻干工艺等进一步优 化和完善。

致谢:感谢上海市农业科学院生态环境保护研究所 在冷冻真空干燥,上海同济大学在扫描电镜观察中 的帮助!

REFERENCES

[1] Polge C, Smith AU, Parkes AS. Revival of spermatozoa

after vitrification and dehydration at low temperature. *Nature*, 1949, **164**(10): 666–676.

- [2] Wakayama T, Yanagimachi R. Development of normal mice from oocytes injected with freeze-dried spermatozoa. *Nat Biotechnol*, 1998, 16(7): 639–641.
- [3] Hirabayashi M, Megumi K, Junya I, et al. Viable offspring derived from oocytes intracytoplasmically injected with freeze-dried sperm heads. Zygote, 2005, 13(1): 79–85.
- [4] Liu JL, Kusakabe H, Chang CC, et al. Freeze-dried sperm fertilization leads to full-term development in rabbits. *Biol Reprod*, 2004, **70**(6): 1776–1781.
- [5] Nakai M, Kashiwazaki N, Takizawa A, et al. Effects of chelating agents during freeze-drying of boar spermatozoa on DNA fragmentation and on developmental ability *in* vitro and *in vivo* after intracytoplasmic sperm head injection. Zygote, 2007, 15(1): 15–24.
- [6] Zhang DF, Liu D, Tang LL, *et al.* A modified enucleation method of porcine oocytes. *Chin J Veter Sci*, 2006, 26(5): 574–577.
 张德福,刘东,汤琳琳,等. 猪卵母细胞去核方法的改进. 中国兽医学报, 2006, 26(5): 574–577.
- [7] Yong HY, Pyo BS, Hong JY, *et al.* A modified method for ICSI in the pig: injection of head membrane-damaged sperm using a 3-4 μm diameter injection pipette. *Human Reprod*, 2003, **18**(11): 2390–2396.
- [8] Kusakabe H, Szczygiel MA, Whittingham DG, et al. Maintenance of genetic integrity in frozen and freeze2dried mouse spermatozoa. Proc Natl Acad Sci USA, 2001, 98(24): 13501–13506.
- [9] Tateno H, Kimura Y, Yanagimachi R. Sonication perse is not as deleterious to sperm chromosomes as previously inferred. *Biol Reprod*, 2000, 63: 341–343.
- [10] Aisen EG, Medina VH, Venturino A. Cryopreservation and post-thawed fertility of ram semen frozen in different trehalose concent rations. *Theriogenology*, 2002, 57(7): 1801–1808.
- [11] Bayarad TS, Esther EN, Kathleen AT. Comparison of glycerol, other polyols, trehalose, and raffinose to provide a defined cryoprotectant medium for mouse sperm cryopreservation. *Cryobiology*, 1998, **37**(1): 46–58.
- [12] Aboagla EM, Terada T. Trehalose-enhanced fluidity of the goat sperm memebrane and it protection during freezing. *Biol Reprod*, 2003, 69(4): 1245–1250.
- [13] Kaneko T, Whittingham DG, Yanagimachi R. Effect of pH value of freeze-drying solution on the chromosome integrity and development talability of mouse spermatozoa. *Biol Reprod*, 2003, 68(1): 136–139.

- [14] Ward MA, Kaneko T, Kusakabe H, et al. Long-term preservation of mouse spermatozoa after freeze-drying and freezing without cryoprotection. *Biol Reprod*, 2003, 69(6): 2100–2108.
- [15] Kusakabe H, Kamiguchi Y. Chromosomal integrity of freeze-dried mouse spermatozoa after 137Cs γ-ray gamma-ray irradiation. *Mutat Res*, 2004, 556(1/2): 163–168.
- [16] Kwon IK, Park KE, Niwa K. Activation, pronuclear formation, and development *in vitro* of pig oocytes following intracytoplasmic injection of freeze-dried spermatozoa. *Biol Reprod*, 2004, 71(5): 1430–1436.
- [17] Kusakabe H, Kamiguchi Y. Ability to activate oocytes and chromosome integrity of mouse spermatozoa preserved in EGTA Tris-HCl buffered solution supplemented with antioxidants. *Theriogenology*, 2004, **62**(5): 897–905.
- [18] Jennings TA. Lyophilization: introduction and basic principles: US, 1574910817. 1999-08-31.
- [19] Elliott B, Haltiwanger RS, Futcher B. Synergy between trehalose and Hsp104 for thermotolerance in Saccharomyces cerevisiae. *Genetics*, 1996, 144(3): 923-933.
- [20] Devirgilio C, Hottiger T, Dominguez J, et al. The role of trehalose synthesis for the acquisition of thermotolerance in yeast 1. genetic evidence that trehalose is a thermoprotectant. Eur J Biochem, 1994, 219(1/2): 179–186.
- [21] Reinders A, Romano I, Wiemken A, et al. The thermophilic yeast hansenula polymorpha does not require trehalose synthesis for growth at high temperatures but does for normal acquisition of thermotolerance. J Bacteriol, 1999, 181(15): 4665–4668.

- [22] Xie GF, Timasheff SN. The thermodynamic mechanism of protein stabilization by trehalose. *Biophys Chem*, 1997, 64(1/3): 25-43.
- [23] Timasheff SN. Control of protein stability and reactions by weakly interacting cosolvents: the simplicity of the complicated. *Adv Protein Chemy*, 1998, **51**: 355–432.
- [24] Crow JH. Virification involved in depression of the phase transiaton temperature in dry phorspholipid. *Bioch Bioph Atca*, 1996, **1280**: 187–196.
- [25] Li AM, Zhang YZ, Xu H. Research and application of trehalose. *J Hanzhong Teach Coll: Natl Sci*, 2003, 21(2): 89-94.
 李爱民,张银志,徐晖.海藻糖的研究与应用. 汉中师 范学院学报: 自然科学, 2003, 21(2): 89-94.
- [26] Crowe JH, Carpenter JF, Crowe LM, et al. The role of vitrification in anhydrobiosis. Annl Rev Physiol, 1998, 60: 73-103.
- [27] Crowe JH, Crowe LM, Carpenter JF, et al. Stabilization of dry phospholipids bilayers and proteins by sugars. Biochem J, 1987, 242(1): 1–10.
- [28] Hays LM, Crowe JH, Wolkers W, et al. Factors affecting leakage of trapped solutes from phospholipid vesicles during thermotropic phase transitions. *Cryobiology*, 2001, 42(2): 88–102.
- [29] Chen TN, Fowler A, Toner M. Literature review: supplemented phase diagram of the trehalose water binary mixture. *Cryobiology*, 2000, 40(3): 277–282.
- [30] Monika AW, Takehito K, Hirokazu K, et al. Long-term preservation of mouse spermatozoa after freeze-drying and freezing without cryoprotection. *Biol Reprod*, 2003, 69(6): 2100–2108.