生物技术与方法

利用融合蛋白 EDDIE 在大肠杆菌中高效表达抗菌肽 Cecropin AD

张贞1*, 柯涛2*, 周玉玲1, 马向东1, 马立新1

- 1 湖北大学生命科学学院, 武汉 430062
- 2 南阳师范学院生命科学与技术学院, 南阳 473061

摘 要:本研究采用猪瘟病毒(Classical swine fever virus, CSFV)定点突变外壳蛋白(EDDIE)为融合蛋白,对抗菌肽 Cecropin AD (CAD)基因进行了高效融合表达,获得了有抗菌活性的抗菌肽 CAD。首先采用重叠 PCR 基因合成技术将编码抗菌肽的 CAD 基因与猪瘟病毒定点突变外壳蛋白 EDDIE 编码基因合成为 e-cad 融合基因,接着将融合基因 e-cad 采用定点同源重组的方法连接到载体 pET30a上,构建成 pETED表达载体,然后转化大肠杆菌 BL21(DE3)表达,表达的融合蛋白在大肠杆菌中主要以包涵体形式存在,表达量占菌体总蛋白的 40%以上。蛋白质在体外复性,融合蛋白中 EDDIE 自我剪切,产生抗菌肽 CAD。抑菌试验表明抗菌肽 CAD 能有效地抑制大肠杆菌和藤黄八叠球菌的生长,并且对酵母菌的生长也有微弱地抑制作用。以 EDDIE 为融合蛋白是在大肠杆菌中高效表达抗菌肽的一种好方法。

关键词: 抗菌肽、融合蛋白、高效表达

High expression of antimicrobial peptide Cecropin AD in *Escherichia coli* by fussion with EDDIE

Zhen Zhang^{1*}, Tao Ke^{2*}, Yuling Zhou¹, Xiangdong Ma¹, and Lixin Ma¹

- 1 College of Life Science, Hubei University, Wuhan 430062, China
- 2 College of Life Science and Technology, Nanyang Normal University, Nanyang 473061, China

Abstract: In this study, we efficiently expressed the active antimicrobial peptide (CAD), which fused with the site-mutated coat protein (EDDIE) of the classical swine fever virus, in *Escherichia coli*. First, we obtained the *e-cad* fusion gene from the *CAD* gene and the *EDDIE* gene using overlapping PCR. Then to get the recombinant expression vector (pETED), the *e-cad* fusion gene was cloned into the pET30a vector by a site-directed homologous recombination technique. The EDDIE-CAD fusion protein expressed in *E. coli* as inclusion bodies, and its yield was more than 40% of total bacterial proteins. After renaturated *in vitro* and self-cleavage of the fusion protein, we obtained the antimicrobial peptide Cecropin AD. Antimicrobial experiments showed that the Cecropin AD efficiently inhibited the growth of G^+ and G^- bacteria, but it weakly inhibited the growth of *Saccharomyces*. This method provides an excellent way for high expression of antimicrobial peptides when fused with EDDIE.

Keywords: antimicrobial peptides, fusion protein, high expression

Received: February 27, 2009; Accepted: June 4, 2009

Supported by: National Natural Science Fundation of China (No. 30760009), Educational Commission of Hubei Province of China (No. D20081004).

Corresponding author: Xiangdong Ma. Tel: +86-27-88666349; E- mail: mabo1978@163.com

*These authors contributed equally to this study.

国家自然科学基金(No. 30760009), 湖北省教育厅重点项目(No. D20081004)资助。

抗菌肽是宿主防御系统产生的一类抵抗外界病原体感染的肽类物质,是宿主免疫防御系统的重要组成部分。抗菌肽不仅具有广泛的抗菌谱,而且有抑制癌细胞生长的作用及不易产生耐药性的特点[1-4],这使得抗菌肽开发利用成为近来的研究热点^[5]。但抗菌肽的开发利用并非易事,抗菌肽天然资源有限,提取非常复杂;化学合成,不但成本很高,还对环境造成严重污染;因此迫切需要一种廉价安全的生产技术来生产抗菌肽。基因工程生产方法是满足这种需要的一种合适途径。

目前抗菌肽基因工程表达主要在大肠杆菌和酵 母菌系统中进行。酵母菌表达体系具有直接分泌表 达抗菌肽的潜力, 但酵母菌生长周期长, 含较多碱 性氨基酸的抗菌肽易被降解, 表达效率并不高[6]; 该表达系统还存在 N 端信号肽剪切不完全, 直接影 响到抗菌肽的活性; 同时还存在对表达的抗菌肽进 行修饰的潜在问题, 如糖基化、甲基化等。大肠杆 菌表达系统具有生长快、表达量高、对表达抗菌肽 不存在修饰等优点、但抗菌肽在大肠杆菌中直接表 达、对大肠杆菌本身具有毒性, 一般采用融合表达策 略。现在通用的大肠杆菌融合表达方式是采用大肠杆 菌的 RepA 蛋白[7]、大肠杆菌 PurF 蛋白的 F4 片段[8]、 GST(谷胱甘肽)^[9]、Trx(硫氧还原蛋白)^[10]等作为融合 蛋白对抗菌肽进行表达。这些方法虽然提高了抗菌 肽的表达水平和稳定性, 但是融合蛋白与抗菌肽裂 解操作过程复杂,效率低下。如用羟氨[11]、溴化氢 的化学方法裂解^[12], 用 TEV 蛋白酶等酶法裂解, 这 些裂解方法不仅引入了一些有毒的物质、给后续操 作带来很大麻烦, 而且还为了引入裂解位点和酶切 位点, 人为地给抗菌肽蛋白质 N 端引入了多余的氨 基酸、引入的多余氨基酸会对抗菌肽的活性产生不 同程度的影响。蛋白内含子 Inteins 作为融合标签蛋 白虽然解决了在蛋白质 N 端多出氨基酸的问题, 但 是其操作过程复杂,需要温度变化或者 pH 变化才 实现自我剪切[13],同时还有部分胞内剪切,是否能 够表达抗菌肽还有待完善, 再者体外剪切效率也不 高。因此如何高效准确表达抗菌肽成为了制约抗菌 肽发展应用的障碍。

NPRO 蛋白是猪瘟病毒外壳蛋白的一部分,由

168 个氨基酸组成, 它能将联在其 C 端的蛋白质准 确地剪切下来,而形成具有原始 N 端的蛋白质[14], 同时它能在大肠杆菌中高效表达,由于由高度疏水 氨基酸组成, 所以易形成包涵体, 因此可以利用它 的这一特点在体内以包涵体表达其融合蛋白,在体 外复性高效准确地切除融合表达的抗菌肽。然而原 始自我剪切蛋白 NPRO 在细胞内也有部分自我剪切 的功能、用它表达抗菌肽时会对宿主细胞产生毒害 作用, 并且 NPRO 具有高度疏水的结构, 在体外复性 的时候很容易沉淀,严重影响其折叠成有功能的构 象。利用定点突变技术突变氨基酸产生的突变体 EDDIE, 能避免了其在体内剪切, 在体外能够增加蛋 白质的溶解性,并能够快速折叠和准确剪切[14],将这 个突变蛋白命名为 EDDIE。本研究将编码抗菌肽 $CAD^{[15]}$ 的基因链接在编码 EDDIE 基因的第 168 位, 构建表达载体进行高效融合表达。融合表达量占菌 体总蛋白的 40%以上。表达的融合蛋白质在体外复 性、融合蛋白中 EDDIE 剪切 C 端抗菌肽 CAD、形成 的抗菌肽 CAD 能有效地抑制大肠杆菌和藤黄八叠 球菌的生长, 并且对酵母菌地生长也有一定的抑制 作用。

1 材料和方法

1.1 菌株和质粒

表达载体 pET30a、用于克隆的大肠杆菌 (Escherichia coli)XL10-GOLD、用于表达的大肠杆菌 BL21(DE3)均购自 Novagen 公司; 抗菌肽活性检测指示菌: 藤黄八叠球菌(Sarcina luteus ACCC11001)、大肠杆菌(Escherichia coli ACCC10141)和酵母菌 (Saccharomyces cerevisiae ACCC20034), 本实验室保藏。

1.2 主要仪器和试剂

限制性内切酶购自 Introvergene 公司;分子量标准 DNA、Tricine 购自上海生工生物工程技术有限公司;Urea,DTT 购自 FLUKA 公司;低分子量标准蛋白质购自 AMRESCO 公司;超低分子量标准蛋白质购自华美公司;质粒抽提试剂盒、胶回收试剂盒购自上海华舜生物工程有限公司。所有的分子克隆操作都按照 Sambrook 提供的方法进行^[16]。

1.3 方法

1.3.1 融合基因 e-cad 的合成

根据编码融合蛋白 EDDIE 和抗菌肽 CAD蛋白质的 DNA 序列,利用 DNAWorks 工具,以大肠杆菌标准密码子优化设计引物序列,采用重叠 PCR技术合成 e-cad 融合基因序列。合成引物共 20 条,其中上游引物 P1,下游引物 P20,黑体部分表示与载体 pET30a 同源的部分,其余为基因特异性引物,P1、P20 下划线表示 Nde I、Sal I 酶切位点(表1)。

表 1 引物序列

Table 1 Primer sequences

Primer name	Primer sequences(5′-3′)
P1	AGAAGGAGATATA CATATGATGGAACTGAA TCATTTTGAACTGCTGTATAAAACC
P2	TCCACGCCCACGGGTTTCTGTTTGCTGGTTT TATACAGCAGTTCAAAATG
Р3	CCCGTGGGCGTGGAAGAACCGGTGTATGAT ACTGCAGGCCGTCCGCTGTT
P4	GGGTGCTCTGCGGATGAACTTCGCTCGGAT TGCCAAACAGCGGACGGCCT
P5	CATCCGCAGAGCACCCTGAAACTGCCGCAT GATCGTGGCGAAGATGATAT
P6	TTACGCGGCAGATCACGCAGGGTGGTCTCA ATATCATCTTCGCCACGATC
P7	CGTGATCTGCCGCGTAAAGGCGATTGTCGT AGCGGCAATCACCTGGGGCC
P8	CACTGGCCCTGGTTTAATGTAAATGCCGCTC ACAGGCCCCAGGTGATTGC
P9	CATTAAACCAGGGCCAGTGTATTATCAGGAT TATACGGGCCCTGTATATC
P10	TCATCAAAAAACTCCAGCGGCGCACGGTGA TATACAGGGCCCGTATAATC
P11	CCGCTGGAGTTTTTTGATGAAACCCAGTTT GAAGAAACCACGAAACGTAT
P12	GTTTGCCATCGCTGCCGGTCACACGGCCAA TACGTTTCGTGGTTTCTTCA
P13	GGCAGCGATGGCAAACTGTACCATATATAC GTCGAAGTGGATGGAGAAAT
P14	GGGGTGCCACGCTTCGCCTGTTTTAACAGT ATTTCTCCATCCACTTCGAC
P15	GAAGCGTGGCACCCCGCGTACCTTAAAGTG GACCCGTAATACCACCAATT
P16	ATTTCATGCAGCTGGTCACCCACAGCGGGC AATTGGTGGTATTACGGGTC
P17	GTGACCAGCTGCATGAAATGGAAACTGTTT AAGAAGATAGAGAAAAAAGT
P18	ACCGCATCACGGACACGCTGGCCCACTTTT TTCTCTATCTTCTTAAACAG
P19	GTGTCCGTGATGCGGTGATTAGCGCGGGAC CGGCGGTGGCTACCGTGGCG
P20	GGCCGCAAGCTTGTCGACTTAATTTTTCGC CAACGCGGTCGCCTGCGCCACGG TAGCCAC

1.3.2 融合表达载体 pETED 的构建

载体 pET30a 经 Nde I 和 Sal I 双酶切后, 胶回

收大片段, PCR 技术合成的编码 EDDIE-CAD 的基因割胶回收。将回收到的载体片段与合成的融合基因,同时转化大肠杆菌 XL10-GOLD,通过体内定点同源重组,获得 pETED 重组表达载体,送上海英骏生物公司测序(图 1)。

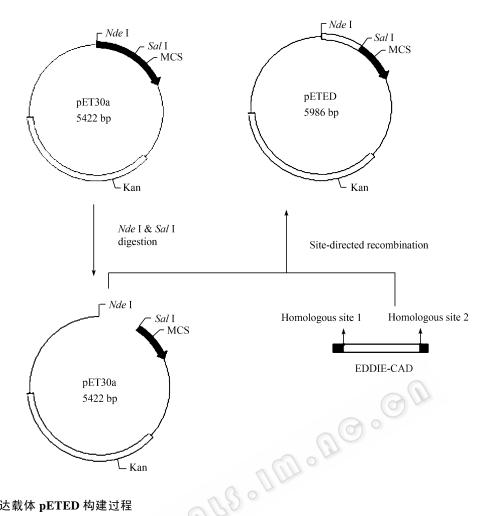
1.3.3 融合蛋白 EDDIE-CAD 的表达

将 测 序 正 确 的 表 达 质 粒 转 化 大 肠 杆 菌 BL21(DE3)感受态细胞,获得的 EDDIE-CAD 表达工程菌 BL21(DE3)/pETED。挑单菌落接种于 LB 培养液(30 mg/mL 卡那霉素),37 °C 振荡培养过夜,转接 1%到 YT 液体培养基中,37 °C 振荡培养至 OD_{600} 为 0.5 时,加入 IPTG 使其终浓度为 1 mmol/L,37 °C 振荡培养,诱导 4 h 后,6000 r/min 离心 10 min 收集菌体,取样采用 12% SDS-PAGE 检测,并用 BandScan软件分析重组蛋白表达量。

1.4 融合蛋白包涵体复性

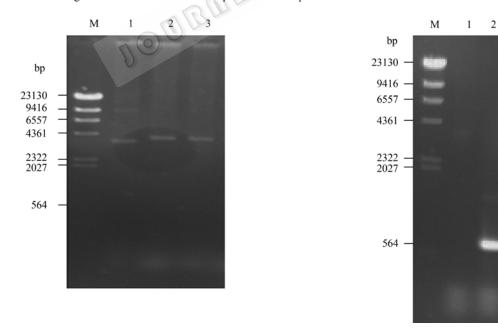
将上步收集的菌体重悬于破菌缓冲液(20 mmol/L Tris, 2 mmol/L EDTA, pH 8.0), 在冰浴下超声破菌,接着 $4\,^{\circ}$ C、12 000 r/min 离心 20 min, 收集沉淀部分;沉淀用缓冲液(1% (V/V) Triton X-100, 1 mol/L NaCl)清洗 2 次, $4\,^{\circ}$ C、12 000 r/min 离心 20 min, 沉淀溶于尿素变性缓冲液(8 mol/L Urea, 50 mmol/L Tris, pH 7.5, 25 mmol/L DTT)室温 1 h; $4\,^{\circ}$ C、12 000 r/min 离心 20 min, 取上清,按照体积比 1:50 快速稀释到复性缓冲液 (1 mol/L Tris, pH 7.5, 5% glycerol, 2 mmol/L EDTA, 10 mmol/L DTT)20 $^{\circ}$ C 放置 6 h。 Tricine-SDS- PAGE 分析复性剪切效果,并测定抗菌肽的抗菌活性。

1.5 抗菌肽活性测定


以管碟法作为检测抗菌肽 CAD 抑菌活性的标准方法,G⁺菌采用藤黄八叠球菌(Sarcina luteus ACCC11001)为代表,G⁻以大肠杆菌(Escherichia coli ACCC10141) 为代表,真菌采用酵母菌(Saccharomyces cerevisiae ACCC20034)作为代表测试菌株,测定抗菌肽的抗菌活性。

2 结果

2.1 融合蛋白表达载体的构建


采用1.3.2的方法构建了重组质粒pETED,将重组质粒pETED 和 pET30a 利用 1%琼脂糖凝胶电泳鉴定,从结果可以看出,pETED 与 pET30a 载体分子

3

图 1 融合表达载体 pETED 构建过程

Fig. 1 Schematic diagram of construction for the expression vector pETED.

图 2 表达质粒 pETED 分子量琼脂糖凝胶电泳分析

Fig. 2 Identification of expression vector pETND by agarose gel electrophoresis. M: DNA maker; 1: vector pET30a (5422 bp); 2, 3: recombinant expression vector pETED (5986 bp).

图 3 PCR 鉴定 EDDIE-CAD 融合基因

Fig. 3 Identification of EDDIE-CAD fusion gene by PCR. M: DNA maker; 1: PCR product of vector pET30a; 2, 3: PCR product of recombinant expression vector pETED.

量相比, 重组子 pETED 明显比载体 pET30a 大(图 2); 并且正好在预测 6 kb 左右, 符合质粒 pETED 分子量 的大小。以构建的重组质粒 pETED 为模板, 用基因 特意性引物(P1 和 P20)扩增, 1%琼脂糖凝胶电泳鉴 定, 在 600 bp 左右有一条特异性条带(图 3), 符合外 源 DNA 分子量大小。将阳性克隆送上海英骏生物公 司测序, 测序结果和预期一致, 证明本研究构建的 表达载体 pETED 正确。

2.2 工程菌 BL21(DE3)/pETED 表达及表达条件 优化

按照 1.3.3 对工程菌的表达条件, 获得的表达产物进行 SDS-PAGE 分析, 在 23 kD 处有一条明显的重组蛋白表达条带, 与预期值相符, 采用 BandScan软件分析重组蛋白表达量。融合蛋白约占菌体总蛋白的 40%左右, 分析菌体超声波处理的上清和沉淀,结果表明 EDDIE-CAD 融合蛋白 95%以上以包涵体形式表达(图 4)。

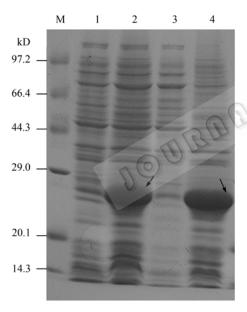


图 4 表达蛋白 EDDIE-CAD 的 SDS-PAGE 分析

Fig. 4 SDS-PAGE analysis of the EDDIE-CAD fusion protein expressed in *E. coli*. M: protein maker; 1: cells harboring plasmid pETED without induction; 2: cells harboring plasmid pETED after induction; 3: supernatant of sonicated cells after induction; 4: pellet of sonicated cells after induction.

同时本研究对工程菌 BL21(DE3)/pETED 的最适表达条件进行了研究,结果表明在 YT 液体培养基中, 37° C 振荡培养至 OD_{600} 为 0.5 时,添加 IPTG 至终浓度为 1.0 mmol/L,诱导 7 h,可以获得最大量的表达蛋白,融合蛋白占菌体总量最高达到

46.5%(结果未显示)。

2.3 包涵体复性及抗菌肽活性测定

采用 1.4 融合蛋白复性的条件对表达的融合蛋白进行复性, 然后采用 Tricine-SDS-PAGE 对复性结果进行分析。从图中可以看出在 4 kD 处有一条带(图5), 与预期大小一样。

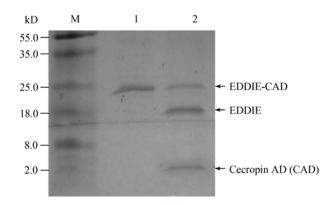
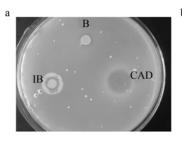
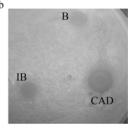
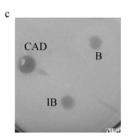


图 5 复性 EDDIE-CAD 融合蛋白的 Tricine-SDS-PAGE 分析

Fig. 5 Tricine-SDS-PAGE analysis of renaturerated EDDIE-CAD fusion protein. M. protein maker; 1: refolding of EDDIE-CAD fusion protein after 0 h; 2: refolding of EDDIE-CAD fusion protein after 6 h


2.4 抗菌肽活性的检测


将获得的抗菌肽和融合蛋白 EDDIE-CAD 和复性缓冲液做对照进行抑菌试验,结果表明抗菌肽 CAD 对大肠杆菌(图 6a)和藤黄八叠球菌(图 6b)均有较强的抑制活性,对酵母菌有微弱的抑制活性(图 6c)。


3 讨论

抗菌肽在各行各业中都有良好的应用前景。然而从天然资源中提取,含量非常低、操作复杂、得率低;而化学合成抗菌肽成本又太高,都不能满足实际需求。因此研究利用基因工程技术低成本、大规模快速制备抗菌肽具有实际意义。

目前利用基因工程技术表达抗菌肽的表达系统存在 2 大问题,一是表达效率不高;二是不能获得准确的抗菌肽。现在采用的融合蛋白有大肠杆菌的RepA蛋白、大肠杆菌 PurF蛋白的 F4 片段、GST(谷胱甘肽)、Trx(硫氧还原蛋白)、ELPS(类弹性蛋白)等,这些融合蛋白表达载体虽都能用于抗菌肽的表达,但是存在表达效率低、相对表达量不高,还可能

图 6 CAD 抗菌肽的抑菌分析

Fig. 6 Analysis of the antimicrobial activities of CAD. (a) Antimicrobial activities against the *E. coli*. B: refolding buffer; IB: inclusion bodies of EDDIE-CAD; CAD: mixture of fusion protein EDDIE-CAD, EDDIE, CAD. (b) Antimicrobial activities against the *Sarcina luteus*. B: refolding buffer; IB: inclusion bodies of EDDIE)-CAD; CAD: mixture of fusion protein EDDIE-CAD, EDDIE, CAD. (c) Antimicrobial activities against *Saccharomyces cerevisiae*. B: refolding buffer; IB: inclusion bodies of EDDIE-CAD; CAD: mixture of fusion protein EDDIE-CAD, EDDIE, CAD.

存在增加多余氨基酸的问题,如用经改造后的人胰 岛素原 mhP1 来表达抗菌肽 GK1, 融合蛋白占大肠 杆菌总蛋白的 20%^[12], 用羟氨裂解在抗菌肽的 N 端 多出一个甘氨酸[11]。蛋白内含子 Inteins 做为融合标 签蛋白虽然解决了在蛋白质 N 端多出氨基酸的问题, 但是其操作过程复杂, 需要温度变化或者 pH 变化 才实现自我剪切[13],剪切效益低,还存在细胞内剪 切问题、由于抗菌肽的毒性、是否能表达抗菌肽还 有待于进一步完善。而用 EDDIE 作为融合蛋白时, 表达效率高、融合蛋白占细菌总蛋白 40%以上。融 合蛋白的复性,操作过程简单,条件温和,且将抗 菌肽进行准确地剪切; 而且当第 169 位氨基酸是甲 硫氨酸时, 在细胞内的剪切效率为 0, 而在体外复性 时,融合蛋白质 EDDIE 剪切效率可以达到 88%^[14]。 本研究采用 Achmüller^[14]的方法, 将自我剪切蛋白 EDDIE 作为融合蛋白表达抗菌肽 CAD, 既解决了抗 菌肽 CAD 在表达过程中对宿主的毒害和表达产物 易分解的问题,同时也解决了用化学方法或酶学方 法来剪切融合蛋白和抗菌肽的低剪切效率, 引入有 毒物质和在抗菌肽的 N 端引入额外氨基酸而影响抗 菌肽活性等问题。虽然本研究没有给出证明,证明 抗菌肽CAD是原始的N端,但和其他表达方法相比 具有成本低、效率高、时间短、不需要复杂仪器设 备等显著优点。在简化实验步骤的同时, 也保证了 抗菌肽的活性。

REFERENCES

[1] Hoffmann JA. Innate immunity of insects. *Curr Opin Immunol*, 1995, **1**(1): 4–10.

- [2] Boman HG. Peptide antibiotics and their role in innateimmunity. *Annu Rev Immunol*, 1995, **13**: 61–92.
- [3] Hancock REW, Chapple DS. Peptide antibiotics. *Antimicrob Agent Chemother*, 1999, **43**(6): 1317–1323.
- [4] Ganz T. Defensins antimicrobial peptides of innate immunity. *Nat Rev immunol*, 2003, **3**(9): 710–720.
- [5] Zasloff M. Antimicrobial peptides of multicellular organisms. *Nature*, 2002, 415(6870): 389–395.
- [6] Jiang LH, Qian CJ, Lu M. Expression of porcine β-defensin l gene in *Pichia pastoris*. Chin J Biotech, 2006, 22(6): 1036–1039.
 - 姜丽华, 钱承军, 陆敏. 猪防御素 1 在毕赤酵母中的分泌表达. 生物工程学报, 2006, **22**(6): 1036-1039.
- [7] Zhang L, Falla T, Wu M. Determinants of recombinant production of antimicrobial cationic peptides and creation of peptide variants in bacteria. *Biochem Biophys*, 2008, **247**(3): 233–237.
- [8] Rao XC, Li S, Hu JC. A novel carrier molecule for high-level expression of peptide antibiotics in *Escherichia coli. Protein Expr Purif*, 2004, **36**(1): ll-l8.
- [9] Lee JH, Kim JH, Hwang SW. High-level expression of antimicrobial peptide mediated by a fusion partner reinforcing form ation of inclusion bodies. *Biochem Biophys Res Commun*, 2000, 277(3): 575–580.
- [10] Wei Q, Kim YS, Seo JH. Facilitation of expression and purification of an antimicrobial peptide by fusion with baculoviral polyhedrin in *Escherichia coli*. Appl Environ Microbiol, 2005, 71(9): 5038-5043.
- [11] Hu F, Ke T, Ma XD, *et al.* Expression and purification of the antimicrobial peptide by fusion with elastin-like polypeptide. *J Mol Cell Biol*, 2008, **41**(3): 233–237. 胡凡, 柯涛, 马向东, 等. 类弹性蛋白 ELPs 融合表达在 抗菌肽分离纯化中的应用. 分子细胞生物学报, 2008, **41**(3): 233–237.
- [12] Lu HR, Li GD, Wu HY, et al. Fusion expression of antimicrobial peptide GK1 in Escherichia coli. Chin J Biotech, 2008, 24(1): 21-26. 陆海荣, 李国栋, 吴宏宇, 等. 抗菌肽 GK1 在大肠杆菌

中的融合表达. 生物工程学报, 2008, **24**(1): 21-26.

- [13] Banki, MR, Wood DW. Inteins and affinity resin substitutes for protein purification and scale up. *Microb Cell Fact*, 2005, **4**: 32.
- [14] Achmüller C, Kaar W. Npro fusion technology to produce proteins with authentic N termini in *E. coli. Nat Methods*, 2007, 4(12): 1037–1043.
- [15] Deng PJ, Fang SS, Yang DY. Safety assessment of GM yeast feed additive with cecropin CAD gene. *J Hygiene*
- Res, 2004, **5**: 565-569. 邓平建, 房师松, 杨冬燕. 转抗菌肽 CAD 基因酵母饲料添加剂的安全性评价. 卫生研究, 2004, **5**: 565-569.
- [16] Sambrook J & Russell DW. Molecular Cloning: A Laboratory Manual. 3rd ed. New York: Cold Spring Harbor Laboratory Press, 2002.

2009 年中国微生物学会及各专业委员会学术活动计划表

序号	会议名称	主办单位	时间	人数	地点	联系人
1	致病菌微进化论坛	中国微生物学会分析微生物学 专业委员会	1月	80	北京	杨瑞馥 yangrf@nic.bmi.ac.cn
2	第十五届国际神经免疫 ,病毒及 药物学会 (SNIP) 年会	中国微生物学会病毒学专业委 员会	4月	待定	湖北 武汉	www.whcdc.org
3	2009 国际医学真菌大会北京卫 星会	中国微生物学会真菌学专业委员会	5月 29-31日	400	北京	www.fungalinfection. cn/isham2009 何苗苗: 010-65041809
4	第十二届全国微生物学教学科 研研讨会	中国微生物学会基础、农业微 生物学专业委员会	7月	100	湖北 武汉	孙明 027-87283455
5	食品微生物监测技术与实验室 质量管理	中国微生物学会分析微生物学 专业委员会	8月	100	山东 青岛	杨瑞馥 yangrf@nic.bmi.ac.cn
6	第八届全国病毒学术研讨会	中国微生物学会病毒学专业委 员会	8月 17-19日	150	北京	王健伟 bdhy2009@163.com
7	全国第六届感染与免疫和生物 制品学术研讨会	中国微生物学会医学微生物学 与免疫学专业委员会	8月	100	吉林 延吉	孟繁平
8	第三届病毒学国际学术会议	中国微生物学会病毒学专业委 员会	9月	200	湖北 武汉	刘芳 027-68754592
9	第十五届国际放线菌生物学大 会	中国微生物学会	8月 20-25日	600	上海	白林泉 021-62932418
10	全国酶工程会议	中国微生物学会酶工程专业委 员会	9月 16-19日	待定	待定	黎高翔 010-62643074
11	2009 年生物过程模型化与控制 学术会议	中国微生物学会生化过程模型 化与控制专业委员会	9月	100	上海	袁景淇 021-34204055
12	重要人兽共患病研究新进展学 术研讨会	中国微生物学会人兽共患病病 原学专业委员会	10月 14-18日	200	湖南 衡阳	万康林 010-61739466
13	第七届全国微生物毒素学术会 议	中国微生物学会微生物毒素专 业委员会	10月	180	重庆	梁华平 023-68757404
14	第三届全国资源生物技术与糖 工程学术研讨会	中国微生物学会基础微生物学 专业委员会	10月	150	山东 济南	李越中 0531-88564288
15	首届全国生物固氮学术研讨会	中国微生物学会农业微生物学专业委员会	10月	100	湖北武汉	李友国,张忠明 027 - 87281685 027 - 87281687
16	2009 年中国微生物学会学术年 会	中国微生物学会	10月	400	湖南	王旭 010-64807200
17	第十二次全国环境微生物学术 研讨会	中国微生物学会环境微生物学 专业委员会	11月	250	湖北 武汉	蒋建东 025-84396348
18	植物线虫的微生物防治研讨会	中国微生物学会农业微生物学 专业委员会	12月	60	昆明	张克勤 0871-5033790