生物技术与方法

多头绒泡菌微原质团瞬时表达系统的构建

刘士德^{1*}、程彩霞^{1*}、林子扬²、张建华¹、李明华¹、周卓龙¹、田生礼¹、邢苗¹

1 深圳大学生命科学学院 深圳市微生物基因工程重点实验室, 深圳 518060 2 深圳大学光电子研究所, 深圳 518060

摘 要: 真核生物多头绒泡菌的原质团是研究细胞周期的好材料。但尚无合适的表达体系可供选择。本研究用多头线 泡菌 ardC actin 基因启动子和终止子分别替换哺乳动物细胞表达质粒 pDsRed1-N1 的 CMV IE 和 SV40 polyA 片段、构建 了多头绒泡菌红色荧光蛋白(RFP)表达质粒 pXM1;用 PardC-MCS-DsRed1-TardC 替换 pTB38 表达盒 PardC-hph-TardC, 构建了多头绒泡菌 RFP 表达质粒 pXM2。将多头绒泡菌转录延伸因子类似蛋白(PELF1)基因与质粒 pXM2 重组,构建了 PELF1 红色荧光融合蛋白(PELF1-RFP)表达质粒 pXM2-pelf1。通过荧光显微镜和激光扫描共聚焦显微镜观察 RFP 表达 发现, 电转参数为4kV/cm(电场)、1A(电流)、70 μs(电击时间)时, 质粒pXM1和pXM2电转多头绒泡菌微原质团(≤500 μm) 后 24~48 h 内, RFP 荧光最显著;而 PELF1-RFP 则主要聚集在多头绒泡菌细胞核,说明本试验建立的表达系统可以用于 研究特定蛋白在多头绒泡菌内的瞬时表达。 M. A.

关键词: 多头绒泡菌, 微原质团, 瞬时表达

Transient expression in microplasmodia of Physarum polycephalum

Shide Liu^{1*}, Caixia Cheng^{1*}, Ziyang Lin², Jianhua Zhang¹, Minghua Li¹, Zhuolong Zhou¹, Shengli Tian¹, and Miao Xing¹

1 Shenzhen Key Laboratory of Microbial and Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen 518060, China 2 Institute of Photoelectron, Shenzhen University, Shenzhen 518060, China

Abstract: The plasmodium of *Physarum polycephalum* is a suitable eukaryotic cell for cell cycle investigation, but there is no compatible transient expression system for the plasmodium. Using the promoter and terminator of ardC actin of Physarum polycephalum substituted the CMV IE and SV40 polyA of plasmid pDsRed1-N1, using cassette PardC-MCS-DsRed1-TardC substituted the cassette PardC-hph-TardC of plasmid pTB38, we constructed plasmids pXM1 and pXM2 for transient expression of red fluorescent protein (RFP) in Physarum polycephalum respectively. After reconstituting the transcription elongation factor homologous gene (pelf1) of Physarum polycephalum into the pXM2, we generated a plasmid pXM2-pelf1. After the plasmid pXM1, pXM2 and pXM2-pelf1 were electroporated into the plasmodium of Physarum polycephalum, we observed optimum RFP and PELF1-RFP expression under fluoroscope and confocal microscope between 24-48 h after electroporation, and found that ELF1-RFP expression was accumulated in nucleus of microplasmodium, the optimum electroporation parameters were 40 V/cm electric field, 1

Received: January 14, 2009; Accepted: March 24, 2009

Supported by: National Natural Science Foundation of China (No. 30470113), Guangdong Natural Science Foundation (No. 04011314), Shenzhen Science & Technology Foundation (No. 200442).

Corresponding author: Miao Xing. Tel: +86-755-26557245; E-mail: xingmiao@szu.edu.cn

国家自然科学基金项目(No. 30470113), 广东省自然科学基金项目(No. 04011314), 深圳市科技基金项目(No. 200442)资助。

^{*} These authors contributed equally to this study.

ampere current, and 70 µs electric shock time. The results suggest that this expression system is qualified for transient expression of specific protein in plasmodium of *Physarum polycephalum*.

Keywords: Physarum polycephalum, microplasmodium, transient expression

多头绒泡菌(Physarum polycephalum)是一种黏 菌,也是一种有线粒体的低等真核生物,其生命周 期包括单细胞变形体(Amoeba)、多核原质团 (Plasmodium)和孢子(Spore)形成等几个过程。其中、 原质团是多头绒泡菌的主要生命形态, 也是一种多 核体细胞(非细胞结构, 无胞壁, 仅原生质膜)^[1]。多 头绒泡菌的有丝分裂没有 G1 期, 只有 S 期、G2 期 和 M 期, DNA 合成始于有丝分裂末期结束^[2]。原质团 内的基因复制与转录以及其他细胞生物学事件都是 按同步化方式进行的^[3]。原质团在同步化培养 20 h 后 进入第一次同步有丝分裂中期; 第一次至第二次有 丝分裂中期的原质团生长最快、同步化效果最好^[4]; 是研究细胞周期变化的好材料。在前期研究中、先 后从多头绒泡菌 cDNA 文库中分离出一个 SR 蛋白 激酶(Physarum SRPK, PSRPK)基因和一个 14-3-3 蛋 白(P14-3-3)基因, 之后又以 PSRPK 和 P14-3-3 为饵 蛋白, 通过酵母双杂交分离出 200 余个 cDNA 片段 及 50 余个完整的 cDNA。 生物信息学分析结果显示, 上述基因编码的蛋白涉及多头绒泡菌的多个生命过 程。由于缺少合适的多头绒泡菌表达系统、制约了 上述蛋白的细胞生物学研究。因此,构建多头绒泡 菌微原质团的表达质粒、建立质粒转化方法和表达 产物的检测方法对多头绒泡菌基因表达及蛋白的生 理功能研究具有重要意义。

多头绒泡菌 ardC actin 基因上游的 1082 bp 片段 内含有 ardC actin 基因的启动子 *PardC*和一个 DNA 复制子^[5,6]。本研究用 *PardC*(GenBank Accession No. M73459)和 ardC actin 基因终止子 *TardC*(GenBank Accession No. M73460)分别替换质粒 pDsRed1-N1 的 *CMV IE*和 *SV40 polyA* 片段,构建了多头绒泡菌 的 RFP表达质粒 pXM1;通过改造质粒 pTB38,引入 RFP 基因序列,构建了多头绒泡菌 RFP 表达质粒 pXM2;将多头绒泡菌转录延伸因子(Transcription elongation factor 1, ELF1)类似蛋白(*Physarum* ELF1, PELF1)基因与 pXM2 重组,构建了 PELF1 的红色荧 光融合蛋白表达质粒 pXM2-*pelf1*。通过荧光显微镜 和激光扫描共聚焦显微镜观察 RFP 的表达,确定了 质粒 pXM1 和 pXM2 的表达功能以及多头绒泡菌微 原质团的电转条件。通过观察疑似核蛋白 PELF1 的 核定位, 印证了该瞬时表达系统的可信性。

1 材料与方法

1.1 多头绒泡菌 ELF1 类似蛋白 cDNA

P14-3-3 是从多头绒泡菌 TU291 菌株(由法国 Reims 大学细胞生物学实验室惠赠)分离的 1 个 14-3-3 蛋白, PELF1 是以 P14-3-3 C-端的 181 个氨基 酸残基为饵蛋白, 通过酵母双杂交从多头绒泡菌 TU291 菌株 cDNA 文库^[7]分离的 1 个 ELF1 类似蛋 白, 其完整 cDNA 的 GenBank 序列号为 No. FJ422212。

1.2 多头绒泡菌表达质粒的构建

以质粒 pTB38(由加拿大 Wisconsin 大学 McArdle 实验室 Gerard Pierron 惠赠)为模板, 用引物 F1/R1(表 1)PCR PardC1 片段。通过 Ase I、Bgl II 内 切酶和 T4 DNA 连接酶(TaKaRa), 用 PardC 替换质 粒 pDsRed1-N1 (Clontech)的 pCMV IE 片段;转化 E. coli DH5a, 制备过渡质粒 pXM。以质粒 pTB38 为模 板, 用引物 F2/R2(表 1)PCR TardC1 片段; 以 TardC1 片段为模板,用引物 F3/R3(表 1)PCR 扩增 C²⁵ 突变 为 G²⁵ 的 mTardC 片段。通过 Not I 和 Afl II 内切酶 (TaKaRa), 用 mTardC 替换 pXM 上的 SV40 poly A 片 段;制备成红色荧光蛋白表达质粒 pXM1(图 1)。以 pDsRed1-N1 为模板, 用引物 F4/R4(表 1)PCR DsRed1 片段; 以 pTB38 为模板, 用引物 F5/R5(表 1)PCR 扩增 PardC2 片段, 用引物 F6/R6(表 1)PCR 扩增 TardC2 片段; 之后再用引物 F7/R7(表 1)overlap-PCR 扩增 DsRed1 和 TardC2 片段; 通过 Kpn I 酶切 PardC2 和 DsRed1-TardC2 片段, 并连接 成含 MCS(Kpn I、Sma I 和 Sal I)的表达盒 PardC-MCS-DsRed1-TardC; 通过 Hind III 和 Sac I 酶切酶, 用 PardC-MCS-DsRed1-TardC 替换 pTB38 的 PardC-hph-TardC 片段;转化 E. coli DH5a、制备 成红色荧光表达质粒 pXM-2(图 2)。以质粒 pGADT7-pelf1 为模板, 用引物 F8/R8(表 1)PCR 扩增

PELF1 基因片段, 之后重组到 pXM2 对应位点上, 转化 *E. coli* DH5α后, 制备成 PELF1 红色荧光融合 蛋白表达质粒 pXM2-*pelf1*。通过酶切和测序确认质 粒 pXM1、pXM2 和 pXM2-*pelf1* 重组序列的正确。

1.3 质粒电转化多头绒泡菌微原质团

参照 Daniel 等^[8]的方法,在 250 mL 三角烧瓶中, 加入 20 mL SDM 的 A 贮液(1000 mL 溶液含 Glucose 10 g, DifCo BactoSoytone 10 g, Citric Acid monohydrate 3.54 g, KH₂PO₄ 2 g, CaCl₂·2H₂O 1.026 g, MgSO₄·7H₂O 0.6 g, ZnSO₄·7H₂O 0.034 mg, Thiamine-

表 1 DNA 片段扩增引物 Table 1 Primers used for cloning DNA fragments

HCl 0.0424 mg, Biotin 0.0158 mg, 用4 mol/L的KOH 调整 pH 至 4.6)、0.2 mL SDM 的 B 贮液(含 0.05% hematin 和 1% NaOH(W/V)和 1%多头绒泡菌(P. polycephalum PpII(+/-) strain, ATCC 编号为 24467, 由德国雷根斯堡大学生物物理学所惠赠) 微原质团 (W/V),在 260 r/min、24~26°C 下暗培养,每 3 d 传代 1 次。参考 Burland 等^[9-11]电转化 Physarum amoebae 的方法,取悬浮培养 48~72 h、直径小于 500 μm 的 微原质团,在 2000 r/min 下离心 2 min, 用等体积

DNA fragments Primers name		Forward and reward primers with cleaving sites	Cleaving sites	
PardC1	F1	5'-AGTTATTAATG GATCTCCACACTATTGCAC-3'	Ase I	
	R1	5'-GGAAGATCTTGCGGTTTGTTTGTTTGTTG-3'	Bgl II	
TardC1	F2	5'-ACGCACCCGTAGTCGCTCCCATTGC-3'		
	R2	5'-CGCTTAAGACATTCTCCCCACACAATATAGCCGCGAC-3'	Afl II	
mTardC	F3	5'-ATTTGCGGCCGCACGCACCCGTAGTCGCTCCCATTGGTTAAG-3'	Not I	
	R3	5'-CGCTTAAGACATTCTCCCCACACAATATAGCCGCGAC-3'	Afl II	
DsRed1	F4	5'-CGGGGTACCCCGGGGTCGACGTGCGCTCCTCCAAG-3'		
	R4	5'-CTACGGGTGCGTTTACAGGAACA GGTGGTGGC-3' 🦳 🚫		
PardC2	F5	5'-CCCAAGCTTGGATCTCCACACTATT GCAC-3'	Hind III	
	R5	5'-GGGGTACCTGC GGTTTGTTTGTTTGTTG-3'	Kpn I	
TardC2	F6	5'-CCTGTTCCTGTAAACGCAC CCGTAGTCGCTCCC-3'		
	R6	5'-CGAGCTCGAATTCA CATTCTCCCCACAC-3'	Sac I	
Overlap	F7	5'-CGGGGTACCCCGGGGTC GACGTGCGCTCCTCCAAG-3'	Kpn I, Sma I, Sal I	
DsRed1-TardC	R7	5'-CGAGCTCGAATTCACATTCTC CCCACAC-3'	Sac I	
pelfl	F8	5'-CGGGGTACCATGGGTAAAAGAAA GAAG-3'	Kpn I	
	R8	5'-ACGCGTCGACTGTT GCATATTCCTCTC-3'	Sal I	

Fig. 1 Schematic diagrams of *Physarum polycephalum* vector pXM1 constructed basing on plasmid pDsRed1-N1. After fragment *pCMV IE* of pDsRed1-N1 was replaced by *PardC* with enndonucleases *Ase*1 and *Bgl* II, and fragment *SV40 poly A* of pDsRed1-N1 was replaced by mutant *TardC* (C^{25} mutated to G^{25}) with endonucleases *Not* I and *Afl* II, plasmid pXM1 was constructed.

Journals.im.ac.cn

图 2 基于质粒 pTB38 构建的多头绒泡菌红色荧光蛋白表达质粒 pXM2

Fig. 2 Schematic diagrams of *Physarum polycephalum* vector pXM2 constructed basing on plasmid pTB38. After fragment *PardC-hph-TardC* of plasmid pTB38 was replaced by fragment *PardC-MCS-DsRed1-TardC* with enndonucleases *Hind* III and *Sac* I, plamid pXM2 was constructed.

ZAPP 液(40 mmol/L Sucrose, 10 mmol/L HEPES, pH 8.2)洗涤,用 ZAPP 液重悬,之后在 4°C 下过夜。取 800 µL 直径小于 500 µm 的多头绒泡菌微原质团液 悬液(约 $0.5 \times 10^4 \sim 1 \times 10^4$ 个)和 5 µg 质粒溶液,在直径 为 4 mm 的 Bio Rad 电转杯中混匀,冰浴后按表 2 的 参数,在 Multiporator[®]电转仪(Eppendorf AG)上进行 电转化。将多头绒泡菌微原质团转移到 EP 管中,在 30°C 水浴中复苏 20 min。取 800 µL 复苏的电转化 微原质团滴加到 10 mL SDM 培养基中, 24°C~26°C 下暗培养 8 h 后,每隔 8 h 取 1 mL 菌液,2000 r/min 离心 4 min 后,用无菌蒸馏水清洗 2 次并压片,通过 荧光显微镜观察荧光蛋白的表达情况。

1.4 多头绒泡菌细胞核的常规染色

取少量液体培养的多头绒泡菌于载玻片上,加 一滴卡宝品红染液[45 mL 品红母液(0.3 g 碱性品红, 10 mL 70%乙醇,90 mL 5%苯酚(W/V)),6 mL 冰醋酸 和 6 mL 37%甲醛的混合液]于菌体上,之后在 Olympus BX51 显微镜下(可见光)观察、拍照。

1.5 荧光蛋白的表达观测

在荧光显微镜(Olympus BX51)下观察质粒电转 化多头绒泡菌微原质团后红色荧光蛋白(RFP)及 PELF1-RFP 的表达情况,之后通过激光扫描共聚焦 显微镜(TCS SP2, Leica), 在 558 nm 激发波长下, 560~600 nm 范围内观察 RFP 或 PELF1-RFP 的表达 或分布。

2 结果

2.1 质粒的构建和酶切鉴定

通过酶切和琼脂糖凝胶电泳检测质粒 pXM1、 pXM2 和 pXM2-pelf1 的重组序列。图 3 显示、用 Ase I 和 Bgl II 酶切 pXM1,产生一个与 PardC 大小一致的 DNA 片段; 用 Not I 和 Afl II 酶切质粒 pXM1, 产生 一个与 TardC 大小一致的 DNA 片段; 说明 PardC 和 TardC 片段存在于质粒 pXM1 上。用 Hind III 和 Sac I 酶切质粒 pXM2, 产生一个与 PardC-MCS-DsRed1-TardC 大小一致的 DNA 片段,说明 PardC-MCS-DsRed1-TardC 存在于质粒 pXM2 上。 用 Kpn I 和 Sac I 酶切质粒 pXM2-pelf1, 产生一个与 PELF1 基因大小一致的 DNA 片段, 说明 PELF1 基 因存在于质粒 pXM2-pelf1 上。质粒 pXM1、pXM2 和 pXM2-pelf1 的测序结果进一步证实, PardC 和 TardC 分别替换了质粒 pDsRed1-N1 的 CMV IE 和 SV40 polyA, PardC-MCS-DsRed1-TardC 替换了质粒 pTB38 的 PardC-hph-TardC, PELF1 基因正确插入到

pXM2 的 *Kpn* I 和 *Sac* I 的酶切位点间, 说明上述 3 个质粒的构建是成功的。

2.2 红色荧光蛋白在多头绒泡菌微原质团内表达 分别取 5 μg 测序确认的质粒 pXM1 和 pXM2 电转化(电转参数为 4 kV/cm、1 A、70 μs)多头绒泡菌 微原质团(500 μm), 36 h 后用荧光显微镜(Olympus BX51)和激光扫描共聚焦显微镜(Leica TCS SP2)观 察红色荧光蛋白在多头绒泡菌微原质团内的表达, 发现 2 个转化菌内均有红色荧光出现(图 4); 说明由 PardC 启动、TardC 终止的红色荧光蛋白表达质粒 pXM1 和 pXM2 均能在多头绒泡菌微原质团中表达 外源基因。

 5.3 质粒电转多头绒泡菌微原质团的最佳条件 按表 2 的电转参数,分别将 5 μg 质粒 pXM2 电

图 3 质粒 pXM1、pXM2 和 pXM2-pelf1 酶切产物的琼 脂糖凝胶电泳结果

Fig. 3 Agarose gel electrophoresis pattern of plasmids pXM1, pXM2, pXM2-*pelf1*, and their digested products. *Ase* I/*Bgl* II: pXM1 digested by *Ase* I and *Bgl* II; *Not* I/*Afl* II: pXM1 digested by *Not* I and *Afl* II; *Hind* III/*Sac* I: pXM2 digested by *Hind* III and *Sac* I; *Kpn* I/*Sac* I: pXM2-*pelf1* digested by *Kpn* I and *Sac* I.

图 4 质粒 pXM1 和 pXM2 电转多头绒泡菌微原质团 36 h 后观察的红色荧光蛋白表达

Fig. 4 RFP expression in microplasmodium of *Physarum polycephalum* after vectors pXM1 and pXM2 were electroporated for 36 h. Figures on left lane: RFP expression observed under fluoroscope (Olympus BX51, $1000\times$, 500 ms exposure); figures on right lane: RFP expression observed under confocal microscope (Leica TCS SP2, $1000\times$); electroporation parameters: 4.0 kV/cm, 1.00 A, 70 μ s.

Journals.im.ac.cn

转到 800 μL 多头绒泡菌微原质团中, 8 h 后观察多头 绒泡菌的生长变化,发现电转参数为 4.0 kV/cm、 1.00 A、60 μs, 4.0 kV/cm、1.00 A、70 μs 和 5.0 kV/cm、 1.25 A、60 μs 时,菌体生长基本正常,形态没有明显 改变(见表 2),培养 36 h 后,可以在荧光显微镜下观 察到 RFP 的表达(图 5);其中,电转参数为 4.0 kV/cm、1.00 A、70 μs 时,荧光最显著。而电转 参数为 4.0 kV/cm、1.00 A、75 μs 和 5.5 kV/cm、1.38 A、 60 μs 时,菌体培养 30 h 后出现死亡(表 2);说明多 头绒泡菌微原质团的最佳电转参数为 4.0 kV/cm、

1.00 A、70 μs。通过跟踪观察转基因微原质团的荧 光强度变化,发现质粒 pXM2 转化多头绒泡菌的 24 h内,只有微量 RFP表达,48 h后荧光强度明显降 低,72 h后基本观察不到荧光,说明质粒在多头绒泡 菌表达的最佳观察时间为电转化后的24~48 h。此外, 还将线性质粒 pXM2 及表达盒 PardC-red-TardC 电转 化到多头绒泡菌微原质团中(电转参数为4.0 kV/cm、 1.00 A、70 μs),36 h后分别在荧光显微镜和激光扫 描共聚焦显微镜下观察红色荧光蛋白在多头绒泡菌 微原质团的表达情况。与环型质粒 pXM2 不同,线 性质粒 pXM2 及表达盒 PardC-red-TardC 均不能在多 头绒泡菌中看到红色荧光蛋白表达,说明只有环型 质粒能在多头绒泡菌中表达外源基因。

表 2 电转参数对多头绒泡菌微原质团的生长和 RFP 表达的影响

Table 2Electrofusion parameters effect on the growth andRFP exression of microplasmodium of P. polycephalum

Electric field	Current	Charge time	Effect on growth	Effect on expression
4.0 kV/cm	1.00 A	60 µs	+	+
4.0 kV/cm	1.00 A	70 µs	+	++
5.0 kV/cm	1.25 A	60 µs	+	+
4.0 kV/cm	1.00 A	75 µs	_	-
5.5 kV/cm	1.38 A	60 µs	_	-

Notes: +: normal; ++: positive; -: negative.

2.4 重组表达的 PELF1 红色荧光融合蛋白主要定 位在细胞核

本课题组从多头绒泡菌分离的 ELF1 类似蛋白 cDNA 含有 565 个核苷酸,编码 100 个氨基酸。编码 序列与人(Homo sapiens)、拟南芥(Arabidopsis thaliana)和酿酒酵母(Saccharomyces cerevisiae)的 ELF1 蛋白(GenBank Accession Nos.分别为 NP 115753、NP 568654和 NP 012762)序列高度同

源(图 6),本研究将其命名为 PELF1(Physarum ELF1)。SWISS-MODEL 软件^[12-14]模拟的三级结构 图谱显示, PELF1 与其他物种 ELF1 一样, 也是一个 锌指蛋白、锌指结构域内也存在 4 个保守的半胱氨 酸(图 6 内*标记的氨基酸)。PSORT II 软件^[15]分析结 果显示, PELF1 N-端还存在一个经典的核定位信号 序列(序列比对图谱中下划线标记的肽段), 说明 PELF1 可能是一个核蛋白、可以用于观察红色荧光 融合蛋白在多头绒泡菌内的表达分布。将质粒 pXM2-pelf1 电转化到多头绒泡菌微原质团(电转参 数为 4.0 kV/cm、1.00 A、70 μs),培养 36 h 后,在荧 光显微镜下初步观察 PELF1-RFP 在多头绒泡菌内的 表达情况,再通过激光扫描共聚焦显微镜观察 PELF1-RFP 在多头绒泡菌细胞内的分布,结果见图 7。参考多头绒泡菌细胞核在原质团内的分布(图 7C) 可以看出, pXM2-pelf1 在多头绒泡菌表达的 PELF1-RFP 在核内外均有分布(图 7B), 但核内的分 布密度更高, 说明 PELF1 是一个核蛋白。上述结果 也说明, 质粒 pXM1、pXM2 和 pXM2-pelf1 电转化 多头绒泡菌微原质团后, 通过荧光显微镜和激光扫 描共聚焦显微镜观察到的红色荧光是由 RFP 或 PELF1-RFP 发射光产生的。

3 讨论

多头绒泡菌有4个 actin 基因, 其中, ardC actin 基因的复制发生在有丝分裂早 S 期^[16]。Burland 等^[5,6] 发现, ardC actin 基因上游的 1082 bp 片段(PardC)内 不仅含有 ardC actin 基因的启动子还含有一个复制 子。Burland 等将 PardC 片段重组在酵母表达质粒 pGEM-7Zf(+)的 pSP6 启动子下游, 并在 PardC 和 pT7 之间分别插入了氯霉素乙酰转移酶(CAT)基因、 潮霉素磷酸转移酶(HPH)基因和萤火虫荧光素酶 (LUC)基因、构建了CAT、HPH和LUC表达质粒;将 上述质粒电转化到多头绒泡菌变形体后,能检测到 CAT、HPH 和 LUC 的瞬时表达^[9-11]; 说明以质粒 pGEM-7Zf(+)为基础构建的, PardC 启动的质粒能在 多头绒泡菌变形体内表达外源基因。Burland 等^[10] 还在 pGEM-7Zf(+)的基础上构建了 PardC 启动的、 ardC actin 基因终止子 TardC 终止的 HPH 表达质粒 pTB38, 并发现环型和线型 pTB38 都能在多头绒泡 菌变形体内瞬时表达 PHP。本研究构建的多头

图 5 电转参数对质粒 pXM2 转化多头绒泡菌微原质团的影响

Fig. 5 Electroporation parameters effect on plasmid pXM2 transformed into microplasmodium of *Physarum polycephalum*. (A) Microplasmodium of *Physarum polycephalum observed* under optical microscope. (B) RFP expression in *Physarum polycephalum* observed under fluoroscope (Olympus BX51, $1000 \times$, 500 ms exposure) after pXM2 were electroporated into microplasmodium (parameter are 4.0 kV/cm, 1.00 A, 60 µs; 4.0 kV/cm, 1.00 A, 70 µs; and 5.0 kV/cm, 1.25 A, 60 µs respectively) for 36 h.

HELF1	1	MGRRKSKRKPPPKKKMTGTLETQFTCPFCNHEKSCDVKMDRARNTGVISCTVCLEEFQTPUTYLSEP	67
AELF1	1	MGKRKSRAKPAPTKRMD-KLDTIFSCPFCNHGSSVECITDMKHLIGKAACRICEESFSTTTTALTEA	66
SELF1	1	MGKRKKSTR-KFTKRLVQKLDTKFNCLFCNHEKSVSCTLDKKNSIGTLSCK CGQSFQTRINSLSQP	66
PELF1	1	MGKRKKSSKPPPKKKRP-VLSKVFDCPFCDHAGSCSCELKRDAGIGKHECNVCNATFSTPINNLSEA	66
		**	
HELF1	68	VDVYSDWIDACEAANQ	83
AELF1	67	IDIYSEWIDECERVNTAEDDVVQEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE	115
SELF1	67	VDVYSDWFDAVEEVNSGRGSDTDDGDEGSDSDYESDSEQDAKTQNDGEIDSDEEEVDSDEERIGQVK	133
PELF1	67	IDVYSDWIDACERANIQAEEDVGEVG-EVGEEYAT	100

图 6 多头绒泡菌 ELF1 类似蛋白(PELF1)与人、拟南芥和酵母同源蛋白(HELF1、AELF1 和 SELF1)的序列比对结果

Fig. 6 Homologues of PELF1 were identified by standard protein BLAST analysis. Full-length homologous protein sequences from several eukaryotic organisms were then aligned using DNAssist 2.0. Conserved and semiconservative substitutions are grayed in different color. The four conserved cysteines of the zinc finger domain are noted by asterisk blow the alignment. HELF1, AELF1 and SELF1 are the homologous of PELF1 from *Homo sapiens, Arabidopsis thaliana* and *Saccharomyces cerevisiae*, respectively. A NLS (nuclear localization sequence) like motif is underlined blow PELF1 sequence.

A Under fluoroscope

B Under confocal microscope

C Stained nucleus of plasmodium

图 7 转录延伸因子 PELF1 在多头绒泡菌细胞内的表达分布

Fig. 7 Distribution of PELF1 fusion RFP expression in *Physarum polycephalum*. Fig. A and B: PELF1-RFP observed under fluoroscope (Olympus BX51, 1000×, 500 ms exposure) and confocal microscope (Leica TCS SP2, 5,000×) after plasmid pXM2-*pelf1* had been electroporated into microplasmodium (4.0 kV/cm, 1.00 A, 70 μ s) for 36 h. Fig. C: carbolfuchsin stained nucleus of plasmodium observed under Olympus BX51 microscope (400×).

Journals.im.ac.cn

绒泡菌红色荧光蛋白表达质粒 pXM2(图 2)去掉了质粒 pTB38 的 HPH 基因,增加了红色荧光蛋白(RFP) 基因和多个多克隆位点,主要用于多头绒泡菌瞬时 表达红色荧光融合蛋白。pDsRed1-N1 是哺乳动物细胞的红色荧光融合蛋白瞬时表达质粒。在构建多头 绒泡菌瞬时表达质粒 pXM1 时,用 PardC 和 TardC 分别替换了质粒 pDsRed1-N1 的 CMV IE 序列和 SV40 polyA 序列,保留了 MCS 序列和 DsRed1 序列 (图 1),以便质粒 pXM1 能在多头绒泡菌中表达红色 荧光蛋白或红色荧光融合蛋白;保留了 pUC ori 序列和 Kan/Neo 序列,以便质粒 pXM1 在大肠杆菌中 克隆;保留了 f1 噬菌体的复制起始序列 f1 ori,以便 制备质粒 pXM1 的单链 DNA,使得 pXM1 具备了表 达质粒的基本功能。

多头绒泡菌变形体是由孢子萌发产生的单倍体 细胞,没有细胞壁,没有固定形状,但能伸出假足 捕食细菌或其他颗粒状食物,因此被 Burland 等选 作质粒转化的感受态细胞^[9,10]。单倍体变形体需要结 合成双倍体合子后才能聚集成原质团,以变形体作 为质粒的宿主细胞、适合观察多头绒泡菌的发育及 分化,不适合研究多头绒泡菌的细胞周期变化。多 头绒泡菌原质团是观察细胞周期变化和蛋白分布的 👩 最佳生命形态,因此本研究选择小于 500 µm 的微原 质团作为质粒转化的宿主细胞,研究了质粒 pXM2 电转化多头绒泡菌微原质团的条件。通过荧光显微 镜和激光扫描共聚焦显微镜观察红色荧光蛋白在原 质团内的表达发现,在电转参数为 4.0 kV/cm、 1.00 A、60 µs, 4.0 kV/cm、1.00 A、70 µs 和 5.0 kV/cm、 1.25 A、60 µs 的多头绒泡菌原质团中, 能观察到质 粒 pXM2 表达的 RFP(图 5); 其中, 电转参数为 4.0 kV/cm、1.00 A、70 μs 的多头绒泡菌原质团中 RFP 的荧光强度最大; 说明在合适的条件下, 可以 将质粒电转化到多头绒泡菌微原质团内表达。在电 转参数为 4 kV/cm、1.00 A、70 µs 时,将质粒 pXM1 转化到多头绒泡菌微原质团内, 也能观察到 RFP 的 表达(图 4), 说明质粒 pXM1 与质粒 pXM2 一样, 都 能在多头绒泡菌原质团内表达外源基因。除了上述 研究外, 还观察了线性 pXM2 在多头绒泡菌原质团 的表达、没有在荧光显微镜和激光扫描共聚焦显微 镜下观察到 RFP 的表达, 说明线性质粒不能像在变 形体细胞一样在原质团内表达外源基因。在实验中

还发现, 质粒 pXM2 转化多头绒泡菌的前 24 h, 只

能观察到微弱的 RFP 荧光;之后, RFP 荧光逐渐增强; 36 h 左右, RFP 荧光强度达到最大;48 h 后,荧光强 度明显降低;72 h 后,基本观察不到荧光;说明观测 外源基因在多头绒泡菌原质团表达的最佳时间为质 粒电转化后的 24~48 h。

PELF1 是从多头绒泡菌中分离出的 1 个 ELF1 类似蛋白,该蛋白与其他物种 ELF1 高度同源,与酵 母 ELF1 的高级结构类似,N-端存在一个经典核定位 信号类似序列,适合于观察蛋白在多头绒泡菌细胞 内的表达。为了进一步验证本表达系统的可信性,将 PELF1 基因重组到质粒 pXM2 的多克隆位点上,将 重组质粒 pXM2-*pelf1* 电转化到多头绒泡菌微原质团 内,观察了 PELF1-RFP 的表达分布,发现核内外都 有 PELF1-RFP 荧光,但荧光主要聚集在核内(图 7), 说明通过荧光显微镜和激光扫描共聚焦显微镜观察 到的荧光是重组质粒 pXM2 表达的红色荧光蛋白, 也证明本试验的研究结果是可信的。

进化保守的 ELF1 蛋白是一类与 DNA 结合的转 录延伸因子。研究显示,哺乳动物 ELF1 主要结合在 基因转录区内以 GGAA 为核心的嘌呤富含区序列 上^[17,18];酵母 ELF1 在基因转录延伸过程中主要结 合在基因转录区^[19],并通过 Paf1 复合物以及转录延 伸因子 TFIIS、Spt4、Spt5 和 Spt6 等调节基因的转 录延伸^[20,21]。与 TFIIS、Spt4 等转录延伸因子一样, ELF1 也含有具有 C4 锌指结构和 4 个保守的半胱氨 酸;C4 锌指结构可能在保持基因活性转录区的染色 质的合适结构上扮演着重要角色^[22]。结构分析^[12–15] 结果显示,PELF1 不仅含有 C4 锌指结构,其 N-端的 3~18 aa 肽段内还存在一个经典的核定位信号序列。 图 7 还显示,重组 PELF1-RFP 主要聚集在细胞核内, 印证了 PELF1 核定位的推测。

REFERENCES

- Gawlitta W, Wolf kV, Hoffmann HU, et al. Studies on microplasmodia of *Physarum polycephalum*. I. classification and locomotion behavior. *Cell Tissue Res*, 1980, **209**: 71–86.
- [2] Kessler D. Nucleic acid synthesis during and after mitosis in the slime mold, *Physarum polycephalum. Exp Cell Res*, 1967, **45**(3): 676–680.
- [3] Bailey J. Plasmodium development in the myxomycete

Physarum polycephalum: Genetic control and cellular events. *Microbiology*, 1995, **141**: 2355–2365.

- [4] Burland TG, Solnica-Krezel L, Bailey J, et al. Patterns of inheritance, development and the mitotic cycle in the protist *Physarum polycephalum*. Adv Microb Physiol, 1993, 35: 1–69.
- [5] Bénard M, Lagnel C, Pallotta D, et al. Mapping of a replication origin within the promoter region of two unlinked, abundantly transcribed actin genes of *Physarum* polycephalum. Mol Cell Biol, 1996, 16: 968–976.
- [6] Pierron G, Pallotta D, Bénard M. The one-kilobase DNA fragment upstream of the *ardC* actin gene of *Physarum polycephalum* is both a replicator and a promoter. *Mol Cell Biol*, 1999, **19**(5): 3506–3514.
- [7] Ouyang QL, Liu SD, Zhang JH, et al. Screening of the psrpk-related protein genes with yeast two-hybrid method. J Shenzhen Univ Sci Eng, 2006, 23(3): 38-45.
 欧阳秋玲,刘士德,张建华,等.采用酵母双杂交法筛选 PSRPK 相关蛋白基因. 深圳大学学报(理工版), 2006, 23(3): 38-45.
- [8] Daniel JW, Baldwin HH. Methods of culture of plasmodial myxomycetes. In: Prescott DM (Ed), Methods in Cell Physiology. New York: Academic Press, 1964: 9–41.
- [9] Burland TG, Bailey J, Adam L, et al. Transient expression in *Physarum* of a chloramphenicol acetyltransferase gene under the control of actin gene promoters. *Curr Genet*, 1992, 21: 393–398.
- Burland TG, Bailey J, Pallotta D, et al. Stable, selectable,
 integrative DNA transformation in *Physarum. Gene*, 1993,
 132: 207–212.
- [11] Bailey J, Benard M, Burland TG. A luciferase expression system for *Physarum* that facilitates analysis of regulatory elements. *Curr Genet*, 1994, 26: 126–131.
- [12] Guex N. Peitsch MC. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. *Electrophoresis*, 1997, 18: 2714–2723.
- [13] Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: An

automated protein homology- modeling server. *Nucl Acids Res*, 2003, **31**: 3381–3385.

[14] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. *Bioinformatics*, 2006, 22: 195–201.

Chin J Biotech

- [15] Bairoch A, Bucher P, Hofmann K. The PROSITE database, its status in 1997. Nucl Acids Res, 1997, 25(1): 217–221.
- [16] Pierron G, Durica DS, Sauer HW. Invariant temporal order of replication of the four actin gene loci during the naturally synchronous mitotic cycles of *Physarum polycephalum*. *Proc Natl Acad Sci USA*, 1984, **81**: 6393–6397.
- [17] Wang CY, Petryniak B, Ho IC, *et al.* Evolutionarily conserved Ets family members display distinct DNA binding specificities. *J Exp Med*, 1992, **175**(5): 1391–1399.
- [18] Bosselut R, Levin J, Adjadj E, et al. A single amino-acid substitution in the Ets domain alters core DNA binding specificity of Ets1 to that of the related transcription factors Elf1 and E74. Nucleic Acids Res, 1993, 21(22): 5184–5191.
- [19] Prather D, Krogan NJ, Emili A, et al. Identification and characterization of Elf1, a conserved transcription elongation factor in Saccharomyces cerevisiae. Mol Cell Biol, 2005, 25(22): 10122–10135.
- [20] Hartzog GA, Wada T, Handa H, et al. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev, 1998, 12(3): 357–369.
- [21] Squazzo SL, Costa PJ, Lindstrom DL, et al. The Pafl complex physically and functionally associates with transcription elongation factors in vivo. EMBO J, 2002, 21(7): 1764–1774.
- [22] Krishna SS, Majumdar I, Grishin NV. Structural classification of zinc fingers: Survey and summary. *Nucl Acids Res*, 2003, **31**(2): 532–550.