研究简报

鸡输卵管特异表达载体的优化及体内表达

高 波¹, 孙怀昌², 王永娟², 房浩霞², 宋成义¹

1 扬州大学动物科学与技术学院,扬州 225009
 2 扬州大学兽医学院,扬州 225009

摘 要:为了实现鸡输卵管特异表达载体在相应组织特异高产表达,并简化质粒 DNA 的制备过程,本研究在已经构建 的鸡输卵管特异表达载体 pOV1 基础上进行了优化改造,为进一步进行重组药物蛋白的暂态表达及转基因鸡研究奠定 基础。首先用限制性内切酶将克隆在 pOV1 载体的鸡卵清蛋白基因 5'-和 3'-调控区切出,同时克隆到切除 neo 基因及 CMV 启动子的 pcDNA3.0 载体,构建成另一输卵管特异表达载体 pOV2;将鸡卵清蛋白基因 5'-调控区单独克隆入同样 载体,获得第三个鸡输卵管特异表达载体 pOV3。为了检验三个输卵管表达载体驱动外源基因在鸡体内输卵管细胞中表 达的有效性和特异性,将 LacZ 报告基因分别克隆入 pOV1、pOV2、pOV3 中 5'-调控区的下游,获得的重组载体 pOV1LacZ、pOV2LacZ 和 pOV3LacZ 经聚乙烯亚胺包裹后,经翅静脉注射产蛋鸡。用 RT-PCR 和酶活性检测法对 LacZ 基因在载体注射鸡体内的表达进行检测,结果显示肝、脾、肾、心等组织中无 LacZ 基因的表达,而输卵管膨大部不仅 有 LacZ基因的表达,而且表达的重组酶能分泌到蛋清中,雌激素注射对报告基因的表达具有促进作用,其中 pOV3LacZ 的表达水平较高。这些试验结果表明,鸡输卵管特异表达载体 pOV3 具有结构相对简单、表达水平较高、组织特异性较 好等优点,能用于鸡输卵管生物反应器的研制。

关键词:鸡输卵管特异表达载体,LacZ基因,体内表达

Optimization and *in vivo* **Expression of Chicken Oviduct-Specific Expression Vector**

Bo Gao¹, Huaichang Sun², Yongjuan Wang², Haoxia Fang², and Chengyi Song¹

1 School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China

2 School of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China

Abstract: We modified a previously constructed vector pOV1 and compared expression difference among modified constructs. First. 5'-and 3'-regulatory regions of chicken ovalbumin gene were excised from the previously constructed vector pOV1 by endonuclease digestion and subcloned into modified pcDNA3.0, named as pOV2. Then only the 5 -regulatory region was subcloned into the same vector and this resulted in the third oviduct-specific expression vector pOV3. To compare expression property of the three constructs in hen oviduct, the *LacZ* reporter gene was subcloned at the down-stream of the 5 -regulatory region in vectors pOV1, pOV2 and pOV3, respectively. The resultant recombinant constructs pOV1LacZ, pOV2LacZ and pOV3LacZ were injected into laying hens via

Received: April 10, 2007; Accepted: June 4, 2007

Supported by: the Science and Research Industrialization Project Funding of Jiangsu Education Department (No. JH01-066).

Corresponding author: Huaichang Sun. Tel: +86-14-7979335; E- mail: sun78564@hotmail.com.

江苏省教育厅科研产业化项目基金资助项目(No. JH01-066)。

wing vein rout. RT-PCR of the vector-injected hen tissues showed that the *LacZ* gene was transcribed only in the oviduct, but not in the heart, liver, kidney and spleen tested. Similarly, β -galactosidase activity was detected only in the oviduct magnum, which was secreted into egg white of the injected hens and enhanced by injecting estrogen into the hens. Among the three vectors tested, expression of *LacZ* gene in pOV3LacZ-injected hen oviduct magnum was at a relatively higher level and thus pOV3 vector was selected for further studies.

Keywords: Chicken oviduct-specific expression vector, LacZ gene, in vivo expression

转基因动物生物反应器是目前国际生物技术领 域研究的热点和前沿。与哺乳动物相比,家禽具有 繁殖周期短、产蛋力高、试验成本低等优点、其输 卵管又是生产蛋白质的天然的"发酵罐"、更加适 合作为生产重组蛋白的生物反应器。转基因鸡输卵 管生物反应器是一种极具吸引力的生产重组蛋白质 的新技术,但特殊的繁殖生物学特性使转基因鸡的 研究相对滞后、仅有数篇文献报道了用反转录病毒 介导法制作了转基因鸡、并在蛋清中表达了 -半乳 -内酰胺酶和人 -2b干扰素,但表达水平 糖苷酶、 较低^[1-3]。最近英国罗斯林研究所用慢病毒载体制作 了输卵管特异表达人源抗甲型肝炎(甲肝)病毒抗体 和人 -1a干扰素的转基因鸡, 且表达水平较高, 这 一成果使转基因鸡定位表达外源基因的研究有了较 大突破^[4]。

至于鸡输卵管暂态表达研究,由于鸡输卵管在 鸡体内,较哺乳动物的乳腺不容易接近,因此研究 更加困难。目前仅见 1 篇报道用电子穿孔法在产蛋 鸡输卵管表达了人碱性磷酸酶(SEAP),但表达水平 仅达ng级,表达持续时间低于 4 d^[5],而且需要对试 验鸡实施麻醉和外科手术,不仅严重影响鸡的产蛋, 而且实验鸡不能重复使用。

转基因家禽输卵管生物反应器研制的首要关键是 构建组织特异表达载体,这也是决定其产业化价值的 主要瓶颈之一。此前,我们将鸡卵清蛋白基因的 5'-和 3'-调控区克隆入粘粒载体pHC20,构建成鸡输卵管特 异表达载体pOV1^[6]。此载体具有装载容量大等优点, 但载体长达 12 kb,可能给质粒DNA的制备和目的基 因的插入带来不便。另外,pOV1载体中的 3'-调控区对 指导外源基因在鸡输卵管细胞中的特异表达是否必要 也有待研究。因此,本研究用限制酶切法将鸡卵清蛋 白基因的 5'-和 3'-调控区从pOV1 载体中切出,同时或 单独克隆入切除neo基因的pcDNA3.0 载体,获得鸡输 卵管特异表达载体pOV2 和pOV3。为了比较三种载体 指导外源基因在鸡输卵管中表达的有效性和特异性, 将*LacZ*报告基因分别克隆入pOV1、pOV2 和pOV3 中, 用获得的重组载体注射到产蛋鸡,用RT-PCR和β-半乳 糖苷酶活性检测法测定报告基因在鸡组织中的表达, 结果显示三种重组载体仅能在鸡输卵管的膨大部表达, 表达产物能被分泌到蛋清中,其中以pOV3 表达水平 较高。

1 材料与方法

1.1 菌种及试剂

DH5 大肠杆菌和含*LacZ*报告基因的真核表达 质粒pSV-β-galactosidase为本室保存; pOV5 和pOV1 载体为本室构建^[6]; 各种工具酶、克隆载体、试剂盒 分别购于大连宝生物工程公司、德国QIAGEN公司、 Promega公司; 其余试剂均为上海生物工程公司进 口分析纯级。

1.2 实验动物

扬州鸡(蛋肉兼用型)由扬州大学动物科学与技 术学院实验鸡场提供。

1.3 pcDNA3.0 的改造

根据酶切图谱分析结果,用限制酶 Pvu II 消化 pcDNA3.0 载体,切除其中的 neo 基因及其表达调控 序列,消化产物用琼脂糖凝胶电泳分离,用 DNA 凝 胶回收试剂盒回收 3.2 kb 片段,自体连接后转化 DH5 感受态大肠杆菌,从阳性转化菌种获得不含 neo 基因的改造质粒。

1.4 pOV2 的构建

用限制酶 Sal I 和 Not I 消化经上述改造的 pcDNA3.0 质粒, 切除其中的 CMV 启动子, 经琼脂 糖凝胶电泳分离后, 用 DNA 凝胶回收试剂盒回收约 2.2 kb 片段。用 Sal I 和 Not I 双酶切法将鸡卵清蛋白 基因的 5 -和 3 -调控区从 pOV1 载体中切出, 与上述 2.2 kb 片段连接, 获得的鸡输卵管特异表达载体命 名为 pOV2(图 1)。

鸡输卵管特异表达载体的结构示意图 图 1

Fig. 1 The schematic structure of oviduct-specific expression vector

5'flanking regulatory region of chicken ovalbumin gene is marked by 'ov5', 3'-flanking regulatory region of chicken ovalbumin gene by 'ov3' the polyadenylation signal from the bovine growth hormone gene by 'BGH pA', Xho I is the clone site.

1.5 pOV3 的构建

用 Sal I 和 BamH I 双酶切将鸡卵清蛋白基因的 5-调控区从 pOV5载体中切出, 用同样的酶消化不 含 neo 基因的 pcDNA3.0 载体, 切除其中的 CMV 启 动子、将获得的 2 个 DNA 片段连接、构建的鸡输卵 管特异表达载体命名为 pOV3(图 1)。

1.6 pOV1LacZ 的构建

用限制酶 Xho I 消化法将 pOV1 载体切开, 两端 用 Klenow 片段补平。用 Hind III 和 BamH I 消化 pSV-β-galactosidase 质粒,消化产物经琼脂糖凝胶电 泳分离后、用 DNA 凝胶回收试剂盒回收 LacZ 基因、 用上述方法将其两端补平后、与线性化切末端补平 的 pOV1 载体连接, 连接产物转化 DH5α 感受态大肠 杆菌、筛选获得重组质粒、用 PCR 鉴定 LacZ 基因的插 入方向, 正向插入的重组载体命名为 pOV1LacZ。

1.7 pOV2LacZ 的构建

用限制酶 Sal I 和 Not I 消化 pOV1LacZ, 将鸡卵 清蛋白基因 5 调控区-LacZ-3 调控区同时切出、与 同样酶线性化的不含 neo 基因的 pcDNA3.0 载体连 接,获得重组载体命名为 pOV2LacZ。

1.8 pOV3LacZ 的构建

用限制酶 Xho I 消化法将 pOV3 载体切开、两端 用 Klenow 片段补平。用 Hind III 和 BamH I 消化 pSV-β-galactosidase 质粒,消化产物经琼脂糖凝胶电 泳分离后,用 DNA 凝胶回收试剂盒回收 LacZ 基因, 两端补平后与线性化切末端补平的 pOV3 载体连接, 连接产物转化 DH5 感受态大肠杆菌,筛选获得重 组质粒,用 PCR 鉴定 LacZ 基因的插入方向,正向插 入的重组载体命名为 pOV3LacZ。

1.9 质粒 DNA 的制备

将上述重组菌在LB培养液中扩大培养,用标准 的碱裂解法^[7]提取质粒DNA、经PEG沉淀法^[7]纯化 后溶于5%葡萄糖溶液,用紫外分光光度计测定浓度 和纯度, A260/A280比值为1.85左右, 用5%葡萄糖溶液 调整其浓度为 10 mg/ml, -20 保存备用。

1.10 产蛋鸡的重组载体注射

以1 µg /2 µL 的比例, 将质粒 DNA 与 10 mmol/L 分子量为 25 kD 的聚乙烯亚胺溶液混合、室温孵育 15 min 备用。将 26 只处于产蛋高峰期的母鸡分成 3 组, 第 一组(12 只)为空载体对照组、分别注射 pOV1(4 只)、 pOV2(4 只)和 pOV3(4 只), 第二组(12 只)为重组载体 注射组, 分别注射 pOV1LacZ(4 只)、pOV2LacZ(4 只) 和 pOV3LacZ(4 只), 第三组(2 只)为正常鸡对照组, 注 射 5%葡萄糖溶液或不注射。每只鸡每天经翅静脉注1 mg 质粒 DNA, 共注射 2 次。从注射质粒的前两天开 始、每组 1/2 鸡每天 1 次胸肌注射 0.3 mg 雌激素。

1.11 RT-PCR 检测

从最后一次质粒注射的次日起收集鸡蛋、每鸡 收集1个蛋后宰杀, 取其心、肝、脾、肾和输卵管(膨 大部)等组织,保存于液氮中备用。采用一步法^[1]从 上述组织中提取总RNA、用 1.5%甲醛变性琼脂糖凝 胶电泳检测其质量。质量合格的RNA样品用DNase I 处理(37 /15 min)、用LacZ基因序列特异引物进行 PCR检测, 以确认无质粒DNA污染。然后参照Access Quic[™] RT-PCR试剂盒说明书进行RT-PCR反应,反 应体积为 50 μL, RT程序为 48 /45 min, 40 个循环的 PCR程序为 94 /30 s(第一次循环为 94 /2 min)、55

/30 s、72 /2 min(最后一次循环为 72 /7 min)。反应产物用 0.8%脂糖凝胶电泳分析。

β-半乳糖苷酶活性检测

取上述鸡组织和蛋清, 用组织研磨器将组织磨 碎后溶于 1×RLB(报告基因裂解缓冲液)溶液中、高 速离心后取上清液,测其蛋白质浓度,并用1×RLB 缓冲液将浓度均调整为 4.0 µg/mL。然后参照试剂盒 说明书检测样品中的 -半乳糖苷酶活性。

结果 2

2.1 pOV2 和 pOV3 的构建与鉴定 将从 pOV1 中切出的卵清蛋白基因 5 -和 3 -调

控区克隆入经改造的 pcDNA3 载体,获得输卵管特 异表达载体 pOV2,两调控区之间为供外源基因插 入的 *Xho* I 位点。此载体用 *Sal* I 酶切线性化为约 8.2 kb 的单一条带,与预计结果相符(图略)。

将从 pOV5 中切出的卵清蛋白基因 5 -调控区 克隆入经 pcDNA3 改造的质粒载体,获得输卵管特 异表达载体 pOV3,5 -调控区和 BGH pA 之间为供外 源基因插入的多克隆位点。此载体用 *Xho* I 酶切线性 化为约 5.2 kb 的单一条带,与预计结果相符(图略)。 2.2 表达 LacZ 基因重组载体的构建与鉴定

用内切酶 *Sal* I 对 pOV1LacZ、pOV2LacZ 和 pOV3LacZ 进行酶切鉴定,结果分别切出约 15.7 kb、 11.9 kb 和 8.7 kb 的片段,与预计结果相符。再用鸡 卵清蛋白基因 5 -调控区的正向引物和根据 *LacZ* 基因 900 bp 左右处序列设计的反向引物,对重组载体 pOV1LacZ、pOV2LacZ 和 pOV3LacZ 进行 PCR 鉴定, 结果扩增出大小约为 4 kb 的特异片段,与预计结果 相符,说明插入的 *LacZ* 基因方向正确(图略)。

2.3 表达 LacZ 基因重组载体在鸡体内的转录

分别从注射空载体和重组载体质粒的鸡组织提 取总RNA,并进行RT-PCR检测,试验结果显示,仅 在重组载体 pOV1LacZ、pOV2LacZ和 pOV3LacZ注 射鸡的输卵管膨大部扩增出预计大小的目的条带, 而在其心、肝、脾等组织和空载体注射鸡的所有组 织均无此目的条带(图 2)。

1: negative control; $2\sim5$: the heart, liver, spleen, oviduct of pOV-injected hens; $6\sim9$: the heart, liver, spleen, oviduct of pOV-LacZ-injected hens; M: DL2000 marker

2.4 β-半乳糖苷酶的活性检测

分别收集空载体和重组载体注射鸡的心、肝、 脾、肾、输卵管组织和鸡蛋蛋清,用商品化试剂盒 分别测定各组织中的 -半乳糖苷酶活性,结果仅在 重组载体注射鸡的输卵管膨大部组织中测出特异的 酶活性,且每组 2 只鸡的活性值变异小(表 1),其中 pOV3LacZ 注射鸡的活性最高(平均为 155.1 mu/mL), pOV2LacZ 的活性次之(平均为 125.3 mu/mL), pOV1LacZ 的活性最低(116.7 mu/mL)。注射 雌激素可以促进 *LacZ* 基因的表达, 其它组织的酶活 性与正常对照鸡组织无差异(图 3)。此外, 在重组载 体注射鸡所产蛋的蛋清中, 也能测出 -半乳糖苷酶 活性(图 4), 每组 2 只鸡蛋清中酶活性值差异不显著 (表 2)。

图 3 重组载体注射鸡组织中 -半乳糖苷酶活性检测 Fig. 3 Detection of β-galactosidase activity in different tissues of laying hens injected with pOV and pOVLacZ

3 讨论

转基因载体的设计需要考虑多种因素,包括启动子及其它调控序列的选择、载体的大小、内含子和外显子的使用、基因组序列的使用。为了保证较大的基因构件在大肠杆菌中进行有效的复制并保持稳定,一般采用粘粒载体。载体构件中的内含子等表达增强序列不必来自目的基因本身^[8,9]。因此,本

表 1 重组载体注射鸡输卵管膨大部组织 -半乳糖苷酶 活性(mu/mL)

Table 1 β-galactosidase activity in the oviduct magnum of laying hens injected with pOVLacZ(mu/mL)

Vector	pOV1LacZ		pOV2LacZ		pOV3LacZ	
Hormone	Hen 1	Hen 2	Hen 1	Hen 2	Hen 1	Hen 2
No induction	116.2	117.2	125.1	125.5	154.0	156.2
Induction	153.0	153.6	160.1	160.9	196.2	198.4

表 2 重组载体注射鸡蛋清中 -半乳糖苷酶活性 (mu/mL)

 Table 2
 β-galactosidase activity in the egg white of laying hens injected with pOVLacZ(mu/mL)

Vector	pOV1LacZ		pOV2LacZ		pOV3LacZ	
Hormone	Hen 1	Hen 2	Hen 1	Hen 2	Hen 1	Hen 2
No induction	17.63	17.03	16.50	16.70	27.50	27.90
Induction	19.79	19.81	19.30	19.70	31.10	32.10

研究最初采用粘粒载体作为构建鸡输卵管特异表达 载体 pOV1 的骨架,并采用包括启动子和第一内含 子在内的鸡卵清蛋白基因 5 -和 3 -侧翼序列来指导 外源基因在鸡输卵管表达。

前期的试验结果表明,本研究用 pOV1 建立鸡 输卵管暂态表达的水平较高,具有开发利用价值, 这就需要大规模制备重组质粒,而用于 pOV1 构建 的粘粒 pHC20 属于低拷贝质粒,从其重组菌制备的 质粒 DNA 的产量不高。因此,本试验用限制性内切 酶将鸡卵清蛋白基因 5 -和 3 -调控区从 pOV1 中切 出,插入属于中等拷贝且切除 neo 基因及 CMV 启动 子的 pcDNA3.0 质粒中,不仅使 pOV2 的复制拷贝数 有所增加,而且较 pOV1 小得多。以 LacZ 为报告基 因进行的鸡输卵管暂态表达试验结果表明, pOV2 质 粒不仅产量高,而且驱动报告基因表达的水平也优 于 pOV1。

本研究用重组载体pOV1LacZ、pOV2LacZ和 pOV3LacZ注射产蛋鸡,蛋清中的酶活性检测结果 表明,LacZ不仅能在鸡输卵管细胞中表达,而且表 达的LacZ能被分泌到蛋清中。三个载体表达水平的 差异可能与重组载体的实际拷贝数有关,因为 pOV1LacZ、pOV2LacZ和pOV3LacZ的大小分别为 15.7 kb、11.9 kb和 8.7 kb,在相同注射剂量的情况下 拷贝数必然存在差异。本研究pOV1和pOV2两个载 体中的鸡卵清蛋白基因基因 3 -非转译区包括第7内 含子和第 7、8 外显子,不仅具有转译中止信号和 mRNA多聚腺苷酸化信号,而且具有增强目的基因 表达的作用^[8,9],但两者的表达水平却低于 pOV3LacZ,其原因也可能与前者的实际拷贝数少 于后者有关。

本研究的重组载体注射途径为鸡的翅静脉,注 射的载体为全身分布,仅少量能被鸡输卵管上皮细 胞吸收,但在蛋清中却能表达较高水平的重组酶, 不仅提示本实验室构建的鸡输卵管特异表达载体驱 动外源基因表达的高度有效性,而且表明鸡输卵管 上皮细胞合成和分泌蛋白质的强大能力。在适当的 剂量范围内,静脉注射的重组载体并未引起产蛋鸡 体温、产蛋率等生理指标的明显改变,不仅说明产 蛋鸡对重组载体具有的良好耐受性,而且进一步提 示本实验室构建的鸡输卵管特异表达载体驱动外源 基因表达的良好组织特异性。

REFERENCES

- Harvey AJ, Speksnijder G, Baugh LR, *et al.* Expression of exogenous protein in the egg white of transgenic chickens. *Nat Biotechnol*, 2002, **20**: 396–399.
- [2] Rapp JC, Harvey AJ, Speksnijder GL, et al. Biologically active human interferon a-2b produced in the egg white of transgenic hens. *Transgenic Res*, 2003, 12: 569–575.
- [3] Mozdziak PE, Borwornpinyo S, McCoy DW, *et al.* Development of transgenic chickens expressing bacterial betagalactosidase. *Dev Dyn*, 2003, 226: 439–445.
- [4] Lillico SG, Sherman A, McGrew MJ, et al. Oviductspecific expression of two therapeutic proteins in transgenic hens. *Proc Natl Acad Sci USA*, 2007, **104**(6): 1771–1776.
- [5] Hiroshi T, Hisako W, Yasushige O, et al. Human alkaline phosphatase expression and secretion into chicken eggs after in vivo gene electroporation in the oviduct of Laying Hens. Biochem Biophys Res Commun, 2002, 292: 88–93.
- [6] Gao B, Song HQ, Chen Q, et al. Construction and in vivo expression of chicken oviduct-specific expression vector. China Biotechnology, 2003, 23(8): 83-86.
 高波,宋红芹,陈芹,等.鸡输卵管特异表达载体的构建及其体内表达.中国生物工程杂志, 2003, 23(8): 83-86.
- [7] Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning: A Laboratory Manual. 2nd ed, New York: Cold Spring Harbor Laboratory Press, 1989.
- [8] Choi T, Huang M, Gorman C, et al. A generic intron increases gene expression in transgenic mice. Mol Celll Boil, 1991, 11: 3070–3074.
- [9] Palmiter RD, Sandgren EP, Avarbock MR, et al. Heterologous introns can enhance expression of transgenes in mice. Proc Natl acad Sci USA, 1991, 88: 478–482.