藏红花瓣状体的诱导与花柱-柱头状物的定向分化

王 莉 李 毅* 董相军 徐文华 张宝琛

(中国科学院西北高原生物研究所,西宁 810001)

关键词 瓣状体,花柱-柱头状物,藏红花,花瓣 中图分类号 ()947 文献标识码 A 文章编号 1000-3061(2002)05-0638-04

藏红花(Crocus sativus L.)又名番红花、西红花 藏药中称为苟日苟木。它是鸢尾科草本植物,原产于欧洲、地中海地区。我国长期以来把它作为珍贵的中藏药。其药用部位是柱头,有效成分主要是藏红花素、藏红花酸、藏红花醛和藏红花苦素。丁葆祖等于 1979 年首次从藏红花的球茎获得完整的植株¹¹。Sano 等人 1987 年在离体条件下,诱导花柱-柱头状物再生获得成功²¹,此后国内外不断有相关报道^{13~71}。但试验大多集中在由外植体直接或由愈伤组织间接诱导柱头状物,且花柱-柱头状物的频率低和数量少。我们试图先由藏红花花瓣诱导瓣状体,再定向分化花柱-柱头状物,来提高花柱-柱头状物的诱导频率和数量。从而为以后的大规模生产奠定基础。

1 材料和方法

1.1 植物材料

在藏红花的花期 选用长约 7~8cm 的顶芽。在无菌条件下用 75%的乙醇擦洗球茎和顶芽 3 次。用无菌的解剖针 剥离芽鞘露出花苞 再分离花瓣接种到 3 种不同激素处理的培养基上。

1.2 培养基

- (1)1/2MS + NAA 4 mg/L + KT 4 mg/L;
- (2)1/2MS + NAA 4 mg/L + KT 8 mg/L;
- $(3)1/2MS + NAA 8 mg/L + KT 4 mg/L_0$

以上3种培养基均附加水解酪蛋白300mg/L、肌醇

200mg/L、3%的蔗糖。pH 调整到 5.8 琼脂粉 5g/L。121℃灭菌 20 min。

1.3 培养方式

先将花瓣接种在 3 个不同浓度激素处理的培养基上,放置在 20±1℃,完全黑暗条件下培养。待白色瓣状体大量形成后,再将成丛的白色瓣状体作为外植体分离下来,转接到处理 1 培养基上。定向分化的培养条件与瓣状体的诱导条件相同。

2 结果与分析

2.1 3 种不同激素浓度对花瓣外植体上瓣状体和花柱-柱头 状物诱导的影响

花瓣外植体被接种到不同激素组合的培养基上培养 5~6周后,花瓣先是发生卷曲,之后其基部都出现黄绿色的膨大(图版 I-A)。随后膨大的基部形成小鳞片样突起。突起长大形成白色瓣状体后,增殖快,在短期内就生长成簇(图版 I-B)。

各种处理中瓣状体的诱导频率如表 1 所示。其中以处理 2 中的诱导频率较高(30.0%)。处理 3 上形成瓣状体较迟一些 其频率较低(14.3%)。另外 ,在处理 1 中我们还发现花瓣外植体的基部能直接形成花柱-柱头状物 ,形成的频率为 10%。而处理 2、3 中的花瓣在这一阶段也有花柱-柱头状物形成 ,但频率很低 ,如表 1 中所列。总体来讲 ,这一培养阶段中花瓣直接诱导出花柱-柱头状物的频率都太低 ,不适于大规模培养。

表 1 不同激素组合中瓣状体和花柱-柱头状物诱导频率的差异

Table 1 Induction rates of petal-like structure and style-stigma-like structure in different treatments

Treatment	No. of explants	No. of explants inducing petal-like structures	Induction rate of petal-like structures /%	No. of explants inducing SSLS*	Induction rate of SSLS*/%
1	20	3	15.0	2	10.0
2	29	9	30.0	1	3.4
3	14	2	14.3	1	7.1

* SSLS: style-stigma-like structures

收稿日期 2002-02-02 修回日期 2002-05-13。

基金项目:2001年中国科学院"西部之光"人才培养计划研究项目资助。

* **通讯作者。** Tel:86-971-6101454; Fax:86-971-6143282; E-mail:1⑤i@届紐. 常院教集物研究所期刊联合编辑部 http://journals.im.ac.cn

2.2 不同来源的瓣状体再分化花柱-柱头状物的差异

将各种培养基中的瓣状体丛从原外植体上分离下来,转接到处理 1 培养基进行培养。3 周后瓣状体中开始有白色或黄色的花柱-柱头状物形成(图版 I-C)。在培养中,花柱-柱头状物的颜色逐渐加深,与天然柱头相似,并且伸长。在继代过程中,无论是产生花柱-柱头状物的瓣状体的数目还是形成的花柱-柱头状物的数量都有增加。瓣状体再分化的花柱-柱头状物的最高数量可以达到 30 枚 图版 I-D)。

来源不同的瓣状体再分化花柱-柱头状物的频率有着较大的差异(表2)。表现在来源于处理1的瓣状体再诱导花柱-柱头状物的频率较低(18.8%),而来源于处理2的瓣状体再分化花柱-柱头状物的频率较高(32.5%)来源于处理3的瓣状体定向分化花柱-柱头状物的频率竟高达60.0%。

来源不同的瓣状体上形成的花柱-柱头状物的数量也有差异。从每一瓣状体上花柱-柱头状物的平均数来看。来源于处理 1 的瓣状体上平均数量最低(3.5 枚);来源于处理 3 中的瓣状体上的花柱-柱头状物平均值最高(13.3 枚);来源于处理 2 中的平均数介于以上二者之间为 6.5 枚。

表 2 不同来源的瓣状体形成花柱-柱头状物的频率及平均数量
Table 2 The frequency and the average number of style-stigma-like structures from petal-like structures

Initial treatments	No. of petal-like structures			Average number of SSLS*/%
1	16	3	18.8	3.5
2	40	13	32.5	6.5
3	15	9	60.0	13.3

* PLS: petal-like structures; * SSLS: style-stigma-like structures

2.3 瓣状体的持续增殖和稳定分化

瓣状体在分化花柱.柱头状物的同时自身也能持续增殖。每次统计以前一次的数量为基础,结果如下(表3)。从所列的结果可以看出,其中以来源于处理2、3中的瓣状体增殖效果最好,增长率也稳定。这就为大量培养花柱.柱头状物提供了基础。

表 3 瓣状体的持续增殖

Table 3 The continuous proliferation of petal-like structures

	tial ments	Initial No. of PLS	The growth rate in first subculture/%	The growth rate in second subculture/%
	1	8	200.0	125.0
	2	22	181.8	272.7
:	3	6	250.0	293.3

分析表 4 中的结果 发现瓣状体在继代过程中能够稳定的分化出花柱-柱头状物。来源不同的瓣状体都保持了各自的分化频率。来源于处理 3 的瓣状体在继代过程中保持着分化花柱-柱头状物的高频性。

表 4 瓣状体分化花柱-柱头状物的稳定性

Table 4 The differentiation stability of style-stigma-like structure from the petal-like structures

Initial	Induction rate of SLS	Induction rate of SLS	Induction rate of SLS
treatments	in first subculture/ $\%$	in second subculture/ $\%$	in third subculture/%
1	18.8	22.2	26.7
2	32.5	37.5	39.2
3	60.0	68.2	66.7

3 讨论

过去的试验中无论是以花瓣还是其它花器官为外植体诱导花柱-柱头状物时都在频率或数量方面存在一些问题。我们的研究着重解决这两方面的问题。有的研究者观察到花瓣直接诱导出花柱-柱头状物的频率最高为 37.5%^[4]。而我们观察到花柱-柱头状物的最高诱导频率达到 60.0%。明显高于以往试验中的诱导频率。

从数量方面看,有人在研究中观察到花瓣为外植体时,诱导的柱头状物至多3枚,且长度不足1.0cm^[5]。我们的试验中瓣状体产生的柱头状物的最高数量为30,且长度与天然产物相似。

根据试验中瓣状体诱导花柱-柱头状物的频率和数量,我们认为瓣状体之所以能够较高频率地再分化花柱-柱头状物是因为在诱导瓣状体的培养中也诱导或是启动了花柱-柱头状物原基分化。原基虽然在此阶段大量的形成,但是要在改变条件时才能开始器官的建成。

另外,来源不同的瓣状体分化花柱-柱头状物的频率有较大的差异。虽然处理 3 中瓣状体的诱导频率低,但此瓣状体分化花柱-柱头状物的频率却是最高的。因而我们还认为高浓度的 NAA(8 mg/L)可以有效地诱导或是启动花柱-柱头状物原基的形成,却不能有效地使花柱-柱头状物分化和生长,只有在降低其浓度(4 mg/L)的条件下被启动的原基才开始形态的建成,从而有效地分化花柱-柱头状物。瓣状体是原基被启动的形态标志。禾本科植物体细胞胚胎发生中也有类似的情况,胚状体诱导和早期发育较高浓度的 2 A-D 是必须的,而完整胚状体的形成只能在没有或很低浓度的生长素存在下产生[8]。

综合各方面的分析 ,我们认为藏红花花柱柱头状物的分化分为两个阶段。一是原基的分化阶段 ;二是原基发育阶段。两个阶段所要求的条件不同 :原基分化要求较高的 NAA 浓度 ,而进一步的发育则要在较低浓度下进行。

REFERENCES(参考文献)

- [1] DING B Z 丁葆祖), BAI S H 柏淑华), WU Y (吴逸), WANG B K 王保康). Preliminary Report on Tissue Culture of Corm of *Crocus sativus* L. *Acta Botanica Sinica* (植物学报), 1979, 21(4): 389
- [2] Sano K, Himeno H. *In vitro* proliferatuon of saffron (Crocus sativus L) stigma. *Plant Cell*, *Tissue and Organ Culture*, 1987, **11**:159~
 ©中国和66院微生物研究所期刊联合编辑部 http://journals.im.ac.cn

- [3] ZHAO (赵军), CHEN F(陈放), TANG F(颜钫), TANG I(唐琳), XU Y(徐莹). The Regeneration of stigma-like Structures from the Stamens of *Crocus stativus* L. *Acta Botanica Sinica* (植物学报), 2001, 43(5) 475~479
- [4] LUWL(陆文梁), DONGYR(佟曦然), ZHANG ((张萁), GAOWW(高微微). Study on *in vitro* regeneration of style-stigmalike structure in *Crocus sativus* L. *Acta Botanica Sinica* (植物学
- [5] Fakhrai F , Evans P K. Morphogenic potential of cultured floral explants of *Crocus sativus* L. for the *in vitro* production of saffron. *Journal*

of Experimental Botany , 1990 , **41** (222): 47 ~ 52

报),1992,34:251~256

- [6] Loskutov A V , Beninger C W , Ball , T M Hosfield et al. Optimization of in vitro conditions for stigmas-like-structure production from Half-ovary explants of Crocus sativus L. in vitro cell. Dev Biol-Plant , 1999 , 35: 200 ~ 205
- [7] Sarma K S , Maesato K , Hara T et al . In vitro production of stigmalike structures from stigma explant of Crocus sativus L. Journal of Experimental Botany , 1990 , 41(227): 745 ~ 748
- [8] ZHANG S I(张树录) The somatic embryogenesis in the tissue culture of grass. *Plant Physiol Commun* (植物生理学通讯), 1985, (6):15~20

Induction of Petal-like Structures from Petals of *Crocus sativus* L. and the Differentiation of Style-Stigma-like Structures *in vitro*

WANG Li LI Yi * DONG Xiang-Jun XU Wen-Hua ZHANG Bao-Chen (Northwest Plateau Institution of Biology , Chinese Academy of Sciences , Xining 810001 , China)

Abstract Firstly the petal of *Crocus sativus* L was cultured on the medium that supplemented with different combinations of hormones. The petal-like structures (PLS) were induced on medium, but the induction rates were different in various medium. The highest induction rate of petal-like structures was obtained on the media that was supplemented with NAA (4 mg/L) and KT (8 mg/L). The petal-like structures were subcultured on another media when the structure was produced on the explants and proliferate groups. The later media was used for inducing style-stigma-like structures (SSLS). The induction rate of style-stigma-like structures in the petal-like structures group is much higher than the rate in the preceding work, and the maximum of style-stigma-like structures produced per explant was 30. The best result of style-stigma-like structures was observed on the petal-like structure groups which came from the third treatment. The differentiation rate of style-stigma-like structures is stable in the subcultures of petal-like structures. The result revealed that the induction frequency of style-stigma-like structures formed on the petal-like structures is higher than that form on the petals of *C. sativus* L.

Key words Crocus sativus L, petal, petal-like structure, style-stigma-like structure

Received: 02-02-2002

This work was supported by Grant from the personal training project-the light of western-of Chinese Academy of Sciences.

[©]中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn * Corresponding author. Tel 86-971-6101454; Fax:86-971-6101282; E-mail:liyi@mail.nwpb.ac.cn