应用动力学方法在线检测 Vero 细胞培养过程中的摄氧率

周亚竞 谭文松* 赵 佼 华 平 孙祥明 俞俊棠

(华东理工大学生物反应器工程国家重点实验室 上海 200237)

关键词 Vero 细胞,在线检测,摄氧率

中图分类号 Q813.1 文献标识码 A 文章编号 1000-3061(2000)04-0525-03

流加和灌注培养已被广泛应用于动物细胞培养,以获得 高活性、高密度的细胞和高的产物得率。在这些培养过程 中,一般通过离线检测关键参数(如细胞密度、营养和代谢产 物的浓度)来人为调整灌注速率和补料策略,但是,当细胞密 度较高时,由于细胞代谢旺盛使得培养的微环境变化很快, 这就需要更加频繁快速地调整操作条件,从而导致因频繁取 样和离线分析所带来的污染危险及大量人力、物力的浪费。 这在大规模细胞培养过程中是不可取的。因此,要建立大规 模、高效动物细胞培养过程,有必要研究和探索在线检测技 术,以实时掌握细胞培养过程所处的状态。

在微生物发酵过程中,摄氧率(OUR)一般采用分析进、 出口气体成分的方法来测定,而在一般动物细胞培养过程 中,由于动物细胞OUR 很小(和微生物相比),使得分析装 置复杂,误差大。Frame和 Hd¹¹提出,通过测定取出的培养 悬浮液中溶氧(DO)变化来测定OUR,但这种方法操作繁 琐,不能做到在线检测。

本文在相关研究²¹的基础上,提出一种在 1.5 L Celli-Gen 反应器中简单、经济、可靠的 Vero 细胞 OUR 的测定方 法,通过测定 OUR 来快速、准确地了解细胞的生理状态,为 在流加和灌注培养中及时调整灌注时间和速率、决定补料时 间和补料策略提供了可靠的依据。

1 材料和方法

1.1 原理

在应用动力学方法测定 Vero 细胞 OUR 过程中 反应器 内培养液的氧平衡可由下式表示:

$$\frac{\mathrm{d}c}{\mathrm{d}t} = K_L a (c_m^* - c) - OUR \qquad (1)$$

式中 $:c_m^*$:与气相氧分压平衡的液相氧浓度 :mmol/L ;c 培养 基中实际溶氧浓度 :mmol/L ;OUR 细胞摄氧率 :mmol/L/h ; K_1 (体积氧传递系数) :1/h。

在细胞培养过程中在线检测 OUR 时,为消除表面通气的影响,需要在培养液上方通以氮气,此时气相中氧分压为

* 联系人。

0 根据亨利定律 c_m^* 为 0 积分式 1 得:

$$OUR = \frac{c_o - c_f}{t_f - t_o} + \frac{\int_{t_o}^{t_f} K_L a(0 - c) dt}{t_f - t_o}$$
(2)

式中 : c_0 :开始测定时初始溶氧浓度 ,mmol/L ; c_f 测定结束时 溶氧浓度 ,mmol/L ; t_0 :开始测定之时间/h ; t_f 测定结束之时 间/h。

体积氧传递系数 K_La 的测定可在无活性细胞的培养液 进行,由于此时 OUR = 0,在培养液上方通氮气的状态下:

$$\frac{\mathrm{d}c}{\mathrm{d}t} = K_{\mathrm{L}}a(0-c) \tag{3}$$

积分得: $Ln(c_o/c_t) = K_Lat$ (4)

以 $Ln(c_0/c_t)$ 对 t 作图 ,得一直线 ,其斜率即为 K_La 。

1.2 材料

1.2.1 Verd 非洲绿猴肾)细胞由中国药物生物制品检定所 惠赠,代次为 129~131。

1.2.2 DMEM(GIBCO 美国)。使用前添加 10%新生小牛 血清(华东理工大学动物细胞与组织工程研究室)。

1.2.3 用于 Vero 细胞培养的贴壁介质为 Cytodex 3(Pharmacia Biotech ,Sweden)微载体 ,先用 PBS 浸泡 24 h ,灭菌后 再用 PBS 洗 1 次 ,并用培养基浸泡置于培养箱过夜 ,使用前 倾去培养基后再接入细胞。

1.3 实验方法

1.3.1 细胞培养:种子细胞由置于 37℃、5% CO₂ 培养箱 的扁瓶提供。当处于对数生长期的细胞达到所需密度时用 0.25%的胰酶进行消化,并以 3×10^5 cells/mL 的活细胞密度 接入 1.5 L CelliGen 生物反应器系统(New Brunswick Scientific, USA)。反应器工作体积为 1.2 L,微载体浓度 5 g/L。 用空气、氧气、氮气和二氧化碳气体积分调节控制 pH=7.2、 溶氧(DO)50% 空气饱和度;控制转速 30~45 r/min,温度 36.8℃。

1.3.2 细胞计数:每天取样1次,其中取1mL样品加入 0.1%结晶紫和 0.1 mol/L 柠檬酸溶液,混合均匀后置于

收稿日期:1999-05-31,修回日期:2000-03-15。

基金项目 部分得到上海市启明星计划的资助。

浓度采用 YSI 2700 生化分析仪(Yellow Springs Instruments, USA) 检测。

1.3.4 饱和溶氧浓度 C_m^* 的测定:在反应器中,首先以水 为介质,控制温度 36.8℃,先后通入氮气和空气校正溶氧 (DO)电极,然后控制搅拌速率 45 r/min,以 1.2 L/min 的速 度向水中通入氮气,使 DO 降至 55%以下,再用 1.5L/min 的速率向水中通入饱和空气直到 DO 为恒定,设定此值为饱 和溶氧浓度($c_m^* = 100\%$)。最后将水换成培养基(未接入细 胞)重复上述操作,记录恒定时的饱和溶氧浓度(c_m^*)。

1.3.5 K_{La} 的测定:在细胞培养开始前实验测定 K_{La} ,反应器的搅拌速率、温度、通气流量均与培养过程中测定 OUR时一致。采用表面通气方式以 1.5 L/min 的氮气赶走培养液上腔的空气,记录溶氧随时间的变化,由式(4)以 Ln(c_o/c_t)对时间 t 作图 斜率即为 K_{La} 。

1.3.6 细胞摄氧率 OUR 在线检测:细胞培养过程中在线 检测 OUR 时,首先使溶氧上升到65%以上,切断空气、氧气 和二氧化碳气体,然后用1.5 L/min 的氮气通入培养液上方 以吹去空气,记录溶氧(60%~30%)随时间的变化。由式 (2)计算 OUR。

2 结果与讨论

2.1 c^{*}_m 的实验测定

空气中氧在水和培养基中的饱和浓度测定结果如图 1 所示。由图中曲线可见,氧在培养基中的饱和浓度 c_m^* 仅为 水中饱和浓度 c_w^* 的 88%。在常压(1.01×10^5 Pa)和 36.8℃ 时 纯氧在水中溶解度为 1.0684 mmol/L,则水中溶氧与空 气平衡时的饱和浓度 c_w^* 为 0.224 mmol/L,因此 $c_m^* = 0.197$ mmol/L。 $c_m^* = c_w^*$ 之间的差别主要是由于培养基中含有大 量无机离子、蛋白质、氨基酸等物质,使得氧的溶解度降低, 其传统的校正法是用 Sechenov^{[31}公式计算,由于培养基成分 复杂,Sechenov 常数不全,故计算困难,本文通过实验方法校 正 c_m^* 所得结果与文献值基本一致^[4]。

中的饱和浓度测定结果

hts, 成良好的线性关系,其斜率 K_{La} 为 0.948 h^{-1} 。通过在培养前、后分别对 K_{La} 进行测定,结果证明在细胞培养过程中可

作为常数。

2.2 K₁ a 的实验测定

在细胞培养前实验测定 K_La 时 ,反应器的搅拌速率、温

度、通气流量均与培养过程中测定 OUR 时一致。 溶氧变化

与测定时间的关系如图 2 所示。由图可见 , $Ln(c_0/c_t)$ 与 t

2.3 OUR 与细胞密度、葡萄糖消耗和乳酸生成之间的关系 Vero 细胞以 3×10⁵ cell/mL 的密度接种到 1.5L Celli-Gen 反应器中进行批培养,定时取样测定细胞密度、葡萄糖 和乳酸浓度,同时在线检测 OUR。其细胞密度和 OUR 随 时间的变化如图 3 所示。以 OUR 对细胞密度作图得图 4,

,

526

© 中国科学院微生物研究所期刊联合编辑部 http://journals.im.ac.cn

图 5 累积葡萄糖消耗、氧消耗、乳酸生成之关系 ■ - 累积氧消耗 ◆ - 累积乳酸生成

在对数生长期 OUR 与细胞密度成正比。计算积分 ORUdt 得出累积氧消耗,以累积氧消耗和累积乳酸生成对 累积葡萄糖消耗作图得图 5。由图 5 可知,氧消耗及乳酸生 成与葡萄糖消耗具有良好的线性关系,从直线斜率得到:每 消耗 1 mmol 葡萄糖要消耗 1.34 mmol 氧及生成 1.66 mmol 乳酸。其他实验也得到类似的结果^[5]。

在 Vero 细胞培养过程中,利用图 4 中 OUR 与细胞密 度在对数生长期呈线性关系这一特性,可方便地通过在线检 测 OUR 来及时了解细胞数,从而避免了因频繁取样而导致 污染的危险。利用图 5 中葡萄糖消耗—氧消耗—乳酸生成 之间的关系,可以通过在线检测 OUR 估计出葡萄糖的消耗 和乳酸生成,结合这些参数可确定细胞的生理状态,并通过 计算机专家系统设计最佳的加料或灌注策略,从而更加有效 地调控细胞生理状态。

- [1] Frame K K and Hu W S. Biotechnology Letters 1985 7 :147~152
- [2] 赵 佼,谭文松周亚竞等.华东理工大学学报,1997 23(5)540~544
- [3] 俞俊棠,唐孝宣,生物工艺学,上海:华东化工学院出版社,1994 43~46
- [4] Singh V. Biotech and Bioeng ,1996 52 443~448

 $\left[\begin{array}{c} 5 \end{array} \right] \,$ Kyung Y S , Peshwa M V , Gryte D M $\it{et\ al}$. Cytotechnology , 1994 , 14 :183 \sim 190

On-line Measurement of Oxygen Uptake Rate in the Cultivation of Vero Cells Using the Dynamic Method

文 献

ZHOU Ya-Jin TAN Wen-Song ZHAO Jiao HUA Ping SUN Xiang-Ming YU Jun-Tang (*The State Key Laboratory of Bioreactor Engineering ,East China University of Science and Technology ,Shanghai* 200237)

Abstract The oxygen uptake rate(*OUR*) during the cultivation of Vero cells in 1.5L CelliGen bioreactor was on-line determined using the dynamic method. The results showed that the cell growth and metabolic state during the exponential growth phase was lineally related to the *OUR*. This implies that the on-line measurement of *OUR* can be used to promptly monitor the physiological state of cultured cells and to efficiently avoid contamination because of frequent sampling in the large-scale cultivation of mammalian cells.

Key words Vero cell, on-line measurement, OUR

2.4 氧解析对 OUR 测定的影响

细胞培养过程中 DO 的变化是细胞耗氧和氧解析两个 过程的共同作用。在微生物发酵过程中,往往忽略氧解析而 不至于影响 OUR 的准确性。但在动物细胞培养过程中,由 于细胞的 OUR 很小,故氧解析对 OUR 的影响很大。

表1 氧解析对 OUR 测定的影响

t∕h	Cell density /(10 ⁶ cells/mL }	OUR_{s} / mmol·L ⁻¹ · h ⁻¹)	OUR_k / (mmol·L ⁻¹ · h ⁻¹)	$\frac{OUR_{\rm k} - OUR_{\rm s}}{OUR_{\rm k}}$
12	0.334	0.0120	0.1103	0.8910
24	0.341	0.0480	0.1450	0.6690
36	0.539	0.0635	0.1570	0.5960
48	0.872	0.1090	0.1900	0.4263
60	1.500	0.1810	0.2760	0.3442
72	2.060	0.2330	0.3251	0.2833
84	2.380	0.2410	0.3350	0.2810
96	2.560	0.2490	0.3415	0.2709
108	2.730	0.1850	0.2760	0.3297
120	2.860	0.1870	0.2890	0.3530

OUR。法实验所得的摄氧率;OURk: 忽略溶氧解析所得的摄氧率

由表中可看出,在细胞生长初期,细胞摄氧率较小,氧解 析对 OUR 影响很大,随着细胞密度的增加,摄氧率增大,氧 解析对 OUR 的影响逐步减小,但仍占有一定比例,所以,在 OUR 测定时,必需考虑氧解析的影响。

综上所述,本文在 1.5 L CelliGen 反应器中应用动力学 方法在线检测 Vero 细胞的 OUR,不但简单可靠,而且能准 确地反映细胞 OUR 的变化情况、迅速判断细胞所处的生理 状态。

527