基于微流控芯片的人工细胞研究进展
作者:
基金项目:

国家自然科学基金(21827812,81871450)


Advances in artificial cells based on microfluidic chips
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [122]
  • | | | |
  • 文章评论
    摘要:

    合成生物学的主要目标之一是自下而上地构建人工细胞。它不仅能深入理解生命的起源和细胞功能,还能在人工细胞底盘、组织模型、工程治疗递送系统和药物筛选工具等领域发挥关键作用。然而,这一目标的实现极具挑战,细胞结构的复杂性、基础模块的微型化和多样性对构建方法提出了极高要求。微流控芯片作为一种先进的分析系统,为人工细胞的构建提供了一种有效工具,能够更精确地控制其结构及局部微环境,成为当前研究的首选途径。本文综述了基于微流控芯片的人工细胞构建、操作与分析方法,强调了微环境对生命系统和人工自我维持体系的重要性,展示了人工细胞在多个关键生物医学领域的广泛应用。通过探讨不同微流控方法的优缺点及其在各种应用中的表现,帮助研究人员更深入地理解人工细胞相关研究。最后,对基于微流控技术的人工细胞研究的未来发展进行了展望,期待这一领域能够取得更大突破和进步。

    Abstract:

    One of the main goals of synthetic biology is to build artificial cells in a bottom-up manner, which not only facilitates the deep understanding of the origin of life and cell function but also plays a critical role in the research fields such as the development of artificial cell chassis, tissue models, engineering drug delivery systems, and drug screening tools. However, achieving this goal is extremely challenging. The complexity of cell structures and the miniaturization and diversity of basic modules pose high requirements for the construction methods. The microfluidic chip, as an advanced microanalysis system, serves as an effective tool for building artificial cells. It can accurately control the structure and local microenvironment of artificial cells, becoming the preferred approach for the current research on synthetic life. This article reviewed the methods of constructing, manipulating, and analyzed artificial cells based on microfluidic chips, emphasized the importance of the microenvironment for life systems and artificial self-sustaining systems. In addition, this article demonstrated the wide applications of artificial cells in multiple critical biomedical fields. Exploring the advantages, disadvantages, and application performance of different microfluidic methods can enrich our knowledge about artificial cell research. Finally, we made an outlook on the development of artificial cell research based on microfluidics, expecting that this field can achieve greater breakthroughs and progress.

    参考文献
    [1] YEWDALL NA. Life brought to artificial cells[J]. Nature, 2022, 609: 900-901.
    [2] MITCHISON TJ, FIELD CM. Toward synthetic cells[J]. Science, 2019, 366(6465): 569-570.
    [3] CHEN JY, AGRAWAL S, YI HP, VALLEJO D, AGRAWAL A, LEE AP. Cell-sized lipid vesicles as artificial antigen-presenting cells for antigen-specific T cell activation[J]. Advanced Healthcare Materials, 2023, 12: 2203163.
    [4] WANG Y, CHANG TMS. A polymer-lipid membrane artificial cell nanocarrier containing enzyme-oxygen biotherapeutic inhibits the growth of B16F10 melanoma in 3D culture and in a mouse model[J]. Artificial Cells, Nanomedicine, and Biotechnology, 2021, 49(1): 461-470.
    [5] LI J, BAXANI DK, JAMIESON WD, XU W, ROCHA VG, BARROW DA, CASTELL OK. Formation of polarized, functional artificial cells from compartmentalized droplet networks and nanomaterials, using one-step, dual-material 3D-printed microfluidics[J]. Advanced Science, 2020, 7(1): 1901719.
    [6] KORNER JL, ELVIRA KS. The role of temperature in the formation of human-mimetic artificial cell membranes using droplet interface bilayers (DIBs)[J]. Soft Matter, 2021, 17(39): 8891-8901.
    [7] STEPHENSON EB, ELVIRA KS. Biomimetic artificial cells to model the effect of membrane asymmetry on chemoresistance[J]. Chemical Communications, 2021, 57(53): 6534-6537.
    [8] XU Z, HUECKEL T, IRVINE WTM, SACANNA S. Transmembrane transport in inorganic colloidal cell-mimics[J]. Nature, 2021, 597: 220-224.
    [9] YANG JZ, LIN CY, FENG Y, WANG C, GE J, LU Y. Chemical-triggered artificial cell based on metal-organic framework[J]. Chemical Engineering Journal, 2022, 450: 138480.
    [10] YIN YD, NIU L, ZHU XC, ZHAO MP, ZHANG ZX, MANN S, LIANG DH. Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation[J]. Nature Communications, 2016, 7: 10658.
    [11] WANG Q, LI WM, HU N, CHEN X, FAN T, WANG ZY, YANG Z, CHENEY MA, YANG J. Ion concentration effect (Na+ and Cl) on lipid vesicle formation[J]. Colloids and Surfaces B: Biointerfaces, 2017, 155: 287-293.
    [12] FAN T, WANG Q, HU N, LIAO YJ, CHEN X, WANG ZY, YANG Z, YANG J, QIAN SZ. Preparation of giant lipid vesicles with controllable sizes by a modified hydrophilic polydimethylsiloxane microarray chip[J]. Journal of Colloid and Interface Science, 2019, 536: 53-61.
    [13] WANG Q, HU N, LEI JC, QING QR, HUANG J, TAO K, ZHAO SX, SUN K, YANG J. Formation of giant lipid vesicles in the presence of nonelectrolytes: glucose, sucrose, sorbitol and ethanol[J]. Processes, 2021, 9(6): 945.
    [14] DESHPANDE S, DEKKER C. On-chip microfluidic production of cell-sized liposomes[J]. Nature Protocols, 2018, 13(5): 856-874.
    [15] LI WM, WANG Q, YANG Z, WANG WG, CAO Y, HU N, LUO HY, LIAO YJ, YANG J. Impacts of electrical parameters on the electroformation of giant vesicles on ITO glass chips[J]. Colloids and Surfaces B: Biointerfaces, 2016, 140: 560-566.
    [16] WANG Q, ZHANG XL, FAN T, YANG Z, CHEN X, WANG ZY, XU J, LI YY, HU N, YANG J. Frequency-dependent electroformation of giant unilamellar vesicles in 3D and 2D microelectrode systems[J]. Micromachines, 2017, 8(1): 24.
    [17] JIANG LH, WANG Q, LEI JC, TAO K, HUANG J, ZHAO SX, HU N, YANG J. Mechanism study of how lipid vesicle electroformation is suppressed by the presence of sodium chloride[J]. Colloids and Surfaces B: Biointerfaces, 2021, 206: 111951.
    [18] GOTANDA M, KAMIYA K, OSAKI T, MIKI N, TAKEUCHI S. Automatic generation system of cell-sized liposomes[J]. Sensors and Actuators B: Chemical, 2019, 292: 57-63.
    [19] IP T, LI QE, BROOKS N, ELANI Y. Manufacture of multilayered artificial cell membranes through sequential bilayer deposition on emulsion templates[J]. Chembiochem, 2021, 22(13): 2275-2281.
    [20] ZILBERZWIGE-TAL S, LEVIN A, TOPRAKCIOGLU Z, KNOWLES TPJ, GAZIT E, ELBAZ J. Programmable on-chip artificial cell producing post-translationally modified ubiquitinated protein[J]. Small, 2019, 15(31): 1901780.
    [21] DENG NN, YELLESWARAPU M, HUCK WTS. Monodisperse uni- and multicompartment liposomes[J]. Journal of the American Chemical Society, 2016, 138(24): 7584-7591.
    [22] GÖPFRICH K, HALLER B, STAUFER O, DREHER Y, MERSDORF U, PLATZMAN I, SPATZ JP. One-pot assembly of complex giant unilamellar vesicle-based synthetic cells[J]. ACS Synthetic Biology, 2019, 8(5): 937-947.
    [23] WANG ZY, WU CX, FAN T, HAN XW, WANG Q, LEI JC, YANG J. Electroformation and collection of giant liposomes on an integrated microchip[J]. Chinese Chemical Letters, 2019, 30(2): 353-358.
    [24] MOU QY, XU ML, DENG JN, HU N, YANG J. Studying the roles of salt ions in the pore initiation and closure stages in the biomembrane electroporation[J]. APL Bioengineering, 2023, 7(2): 026103.
    [25] MOU QY, BAI YQ, XU ML, LV D, DENG JN, HU N, YANG J. Microarray chip and method for simultaneous and highly consistent electroporation of multiple cells of different sizes[J]. Analytical Chemistry, 2023, 95(22): 8533-8540.
    [26] DERVAUX J, NOIREAUX V, LIBCHABER AJ. Growth and instability of a phospholipid vesicle in a bath of fatty acids[J]. The European Physical Journal Plus, 2017, 132(6): 284.
    [27] KAMIYA K, ARISAKA C, SUZUKI M. Investigation of fusion between nanosized lipid vesicles and a lipid monolayer toward formation of giant lipid vesicles with various kinds of biomolecules[J]. Micromachines, 2021, 12(2): 133.
    [28] ZHAO JJ, ZHANG Y, ZHANG XX, LI C, DU H, SØNDERSKOV SM, MU W, DONG MD, HAN XJ. Mimicking cellular metabolism in artificial cells: universal molecule transport across the membrane through vesicle fusion[J]. Analytical Chemistry, 2022, 94(9): 3811-3818.
    [29] SU ZW, ZHANG XX, WANG WC, DONG MD, HAN XJ. Light-harvesting artificial cells for the generation of ATP and NADPH[J]. Chinese Journal of Chemistry, 2023, 41(1): 57-63.
    [30] LI SB, WANG XJ, MU W, HAN XJ. Chemical signal communication between two protoorganelles in a lipid-based artificial cell[J]. Analytical Chemistry, 2019, 91(10): 6859-6864.
    [31] LLOPIS-LORENTE A, BUDDINGH’ BC, MARTÍNEZ- MÁÑEZ R, van HEST JCM, ABDELMOHSEN LKE. Quorum sensing communication between lipid-based artificial cells[J]. Chemical Communications, 2023, 59(5): 579-582.
    [32] CANS AS, WITTENBERG N, KARLSSON R, SOMBERS L, KARLSSON M, ORWAR O, EWING A. Artificial cells: unique insights into exocytosis using liposomes and lipid nanotubes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(2): 400-404.
    [33] NOIREAUX V, LIBCHABER A. A vesicle bioreactor as a step toward an artificial cell assembly[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(51): 17669-17674.
    [34] ELANI Y, LAW RV, CES O. Vesicle-based artificial cells as chemical microreactors with spatially segregated reaction pathways[J]. Nature Communications, 2014, 5: 5305.
    [35] SINCARI V, JÄGER E, LOUREIRO KC, VRAGOVIC M, HOFMANN E, SCHLENK M, FILIPOVÁ M, RYDVALOVÁ E, ŠTĚPÁNEK P, HRUBÝ M, FÖRSTER S, JÄGER A. pH-dependent disruption of giant polymer vesicles: a step towards biomimetic membranes[J]. Polymer Chemistry, 2023, 14(4): 443-451.
    [36] SEO H, LEE H. Spatiotemporal control of signal-driven enzymatic reaction in artificial cell-like polymersomes[J]. Nature Communications, 2022, 13: 5179.
    [37] OH J, KIM B, LEE SM, KIM SH, SEO M. Semipermeable microcapsules with a block-polymer- templated nanoporous membrane[J]. Chemistry of Materials, 2018, 30(1): 273-279.
    [38] DENG NN, YELLESWARAPU M, ZHENG LF, HUCK WTS. Microfluidic assembly of monodisperse vesosomes as artificial cell models[J]. Journal of the American Chemical Society, 2017, 139(2): 587-590.
    [39] SUN M, LI ZD, WANG SY, MARYU G, YANG Q. Building dynamic cellular machineries in droplet-based artificial cells with single-droplet tracking and analysis[J]. Analytical Chemistry, 2019, 91(15): 9813-9818.
    [40] CLEMENTE I, TORBENSEN K, Di COLA E, ROSSI F, RISTORI S, ABOU-HASSAN A. Exploring the water/oil/water interface of phospholipid stabilized double emulsions by micro-focusing synchrotron SAXS[J]. RSC Advances, 2019, 9(57): 33429-33435.
    [41] SHIMANE Y, KURUMA Y. Rapid and facile preparation of giant vesicles by the droplet transfer method for artificial cell construction[J]. Frontiers in Bioengineering and Biotechnology, 2022, 10: 873854.
    [42] ARRIAGA LR, HUANG YT, KIM SH, ARAGONES JL, ZIBLAT R, KOEHLER SA, WEITZ DA. Single-step assembly of asymmetric vesicles[J]. Lab on a Chip, 2019, 19(5): 749-756.
    [43] BAYOUMI M, BAYLEY H, MAGLIA G, SAPRA KT. Multi-compartment encapsulation of communicating droplets and droplet networks in hydrogel as a model for artificial cells[J]. Scientific Reports, 2017, 7: 45167.
    [44] STAUFER O, SCHRÖTER M, PLATZMAN I, SPATZ JP. Bottom-up assembly of functional intracellular synthetic organelles by droplet-based microfluidics[J]. Small, 2020, 16(27): 1906424.
    [45] MICHIELIN G, MAERKL SJ. Direct encapsulation of biomolecules in semi-permeable microcapsules produced with double-emulsions[J]. Scientific Reports, 2022, 12: 21391.
    [46] TRANTIDOU T, REGOUTZ A, VOON XN, PAYNE DJ, CES O. A “cleanroom-free” and scalable manufacturing technology for the microfluidic generation of lipid-stabilized droplets and cell-sized multisomes[J]. Sensors and Actuators B: Chemical, 2018, 267: 34-41.
    [47] KRAFFT D, CASTELLANOS SL, LIRA RB, DIMOVA R, IVANOV I, SUNDMACHER K. Compartments for synthetic cells: osmotically assisted separation of oil from double emulsions in a microfluidic chip[J]. Chembiochem, 2019, 20(20): 2604-2608.
    [48] YUAN H, PAN Y, TIAN JX, CHAO YC, LI JM, CHEUNG SHUM H. Electricity-free picoinjection assisted droplet microfluidics[J]. Sensors and Actuators B: Chemical, 2019, 298: 126766.
    [49] LIU J, GUO ZY, LI Y, LIANG JY, XUE JY, XU JT, WHITELOCK JM, XIE L, KONG B, LIANG K. pH-gated activation of gene transcription and translation in biocatalytic metal-organic framework artificial cells[J]. Advanced NanoBiomed Research, 2021, 1(1): 2000034.
    [50] SHI L, LI AL, ZHANG WW, WU HS, CHI YW. Endowing chloroplasts with artificial “cell walls” using metal-organic frameworks[J]. Nanoscale, 2020, 12(21): 11582-11592.
    [51] MASHIMA T, van STEVENDAAL MHME, CORNELISSENS FRA, MASON AF, ROSIER BJHM, ALTENBURG WJ, OOHORA K, HIRAYAMA S, HAYASHI T, van HEST JCM, BRUNSVELD L. DNA-mediated protein shuttling between coacervate-based artificial cells[J]. Angewandte Chemie (International Ed in English), 2022, 61(17): e202115041.
    [52] LONG MS, JONES CD, HELFRICH MR, MANGENEY-SLAVIN LK, KEATING CD. Dynamic microcompartmentation in synthetic cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(17): 5920-5925.
    [53] ZUBAITE G, HINDLEY JW, CES O, ELANI Y. Dynamic reconfiguration of subcompartment architectures in artificial cells[J]. ACS Nano, 2022, 16(6): 9389-9400.
    [54] LI J, JAMIESON WD, DIMITRIOU P, XU W, ROHDE P, MARTINAC B, BAKER M, DRINKWATER BW, CASTELL OK, BARROW DA. Building programmable multicompartment artificial cells incorporating remotely activated protein channels using microfluidics and acoustic levitation[J]. Nature Communications, 2022, 13: 4125.
    [55] HALLER B, GÖPFRICH K, SCHRÖTER M, JANIESCH JW, PLATZMAN I, SPATZ JP. Charge-controlled microfluidic formation of lipid-based single- and multicompartment systems[J]. Lab on a Chip, 2018, 18(17): 2665-2674.
    [56] NOBA K, ISHIKAWA M, UYEDA A, WATANABE T, HOHSAKA T, YOSHIMOTO S, MATSUURA T, HORI K. Bottom-up creation of an artificial cell covered with the adhesive bacterionanofiber protein AtaA[J]. Journal of the American Chemical Society, 2019, 141(48): 19058-19066.
    [57] HO KKY, LEE JW, DURAND G, MAJUMDER S, LIU AP. Protein aggregation with poly(vinyl) alcohol surfactant reduces double emulsion-encapsulated mammalian cell-free expression[J]. PLoS One, 2017, 12(3): e0174689.
    [58] van RAAD D, HUBER T. In vitro protein synthesis in semipermeable artificial cells[J]. ACS Synthetic Biology, 2021, 10(5): 1237-1244.
    [59] FUKUMOTO M, TONOOKA T. Construction of an artificial cell capable of protein expression at low temperatures using a cell extract derived from Pseudomonas fluorescens[J]. Processes, 2021, 9(2): 212.
    [60] JIAO Y, LIU Y, LUO D, HUCK WTS, YANG DY. Microfluidic-assisted fabrication of clay microgels for cell-free protein synthesis[J]. ACS Applied Materials & Interfaces, 2018, 10(35): 29308-29313.
    [61] HEIDA T, KÖHLER T, KAUFMANN A, MÄNNEL MJ, THIELE J. Cell-free protein synthesis in bifunctional hyaluronan microgels: a strategy for in situ immobilization and purification of his-tagged proteins[J]. ChemSystemsChem, 2020, 2(3): e1900058.
    [62] ZHOU XY, WU H, CUI M, LAI SN, ZHENG B. Long-lived protein expression in hydrogel particles: towards artificial cells[J]. Chemical Science, 2018, 9(18): 4275-4279.
    [63] LAI SN, ZHOU XY, OUYANG XF, ZHOU H, LIANG YJ, XIA J, ZHENG B. Artificial cells capable of long-lived protein synthesis by using aptamer grafted polymer hydrogel[J]. ACS Synthetic Biology, 2020, 9(1): 76-83.
    [64] OUYANG XF, ZHOU XY, LAI SN, LIU Q, ZHENG B. Immobilization of proteins of cell extract to hydrogel networks enhances the longevity of cell-free protein synthesis and supports gene networks[J]. ACS Synthetic Biology, 2021, 10(4): 749-755.
    [65] SAKAMOTO R, MAEDA YT. Unveiling the physics underlying symmetry breaking of the actin cytoskeleton: an artificial cell-based approach[J]. Biophysics and Physicobiology, 2023, 20(3): e200032.
    [66] KUROKAWA C, FUJIWARA K, MORITA M, KAWAMATA I, KAWAGISHI Y, SAKAI A, MURAYAMA Y, NOMURA SI M, MURATA S, TAKINOUE M, YANAGISAWA M. DNA cytoskeleton for stabilizing artificial cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(28): 7228-7233.
    [67] AHMAD R, KLEINEBERG C, NASIRIMAREKANI V, SU YJ, GOLI POZVEH S, BAE A, SUNDMACHER K, BODENSCHATZ E, GUIDO I, VIDAKOVIĆ-KOCH T, GHOLAMI A. Light-powered reactivation of flagella and contraction of microtubule networks: toward building an artificial cell[J]. ACS Synthetic Biology, 2021, 10(6): 1490-1504.
    [68] LI DY, ZHOU ZH, YU YL, DENG NN. Microfluidic construction of cytoskeleton-like hydrogel matrix for stabilizing artificial cells[J]. Chemical Engineering Science, 2022, 264: 118186.
    [69] GARENNE D, LIBCHABER A, NOIREAUX V. Membrane molecular crowding enhances MreB polymerization to shape synthetic cells from spheres to rods[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(4): 1902-1909.
    [70] SAUTER D, SCHRÖTER M, FREY C, WEBER C, MERSDORF U, JANIESCH JW, PLATZMAN I, SPATZ JP. Artificial cytoskeleton assembly for synthetic cell motility[J]. Macromolecular Bioscience, 2023, 23: 2200437.
    [71] DEIANA L, RAFI AA, NAIDU VR, TAI CW, BÄCKVALL JE, CÓRDOVA A. Artificial plant cell walls as multi-catalyst systems for enzymatic cooperative asymmetric catalysis in non-aqueous media[J]. Chemical Communications, 2021, 57(70): 8814-8817.
    [72] PAULRAJ T, WENNMALM S, WIELAND DCF, RIAZANOVA AV, DĖDINAITĖ A, GÜNTHER POMORSKI T, CÁRDENAS M, SVAGAN AJ. Primary cell wall inspired micro containers as a step towards a synthetic plant cell[J]. Nature Communications, 2020, 11: 958.
    [73] NOTOVA S, CANNAC N, RABAGLIATI L, TOUZARD M, MANTE J, NAVON Y, COCHE-GUÉRENTE L, LEROUXEL O, HEUX L, IMBERTY A. Building an artificial plant cell wall on a lipid bilayer by assembling polysaccharides and engineered proteins[J]. ACS Synthetic Biology, 2022, 11(10): 3516-3528.
    [74] ZHANG SZ, HU XH, LI M, BOZUYUK U, ZHANG RJ, SUADIYE E, HAN J, WANG F, ONCK P, SITTI M. 3D-printed micrometer-scale wireless magnetic cilia with metachronal programmability[J]. Science Advances, 2023, 9(12): eadf9462.
    [75] LEATHERS A, WALCZAK M, BRADY RA, AL SAMAD A, KOTAR J, BOOTH MJ, CICUTA P, Di MICHELE L. Reaction-diffusion patterning of DNA-based artificial cells[J]. Journal of the American Chemical Society, 2022, 144: 17468-17476.
    [76] FROHNMAYER JP, BRÜGGEMANN D, EBERHARD C, NEUBAUER S, MOLLENHAUER C, BOEHM H, KESSLER H, GEIGER B, SPATZ JP. Minimal synthetic cells to study integrin-mediated adhesion[J]. Angewandte Chemie (International Ed in English), 2015, 54(42): 12472-12478.
    [77] YANDRAPALLI N, SEEMANN T, ROBINSON T. On-chip inverted emulsion method for fast giant vesicle production, handling, and analysis[J]. Micromachines, 2020, 11(3): 285.
    [78] VIVEK A, BOLOGNESI G, ELANI Y. Fusing artificial cell compartments and lipid domains using optical traps: a tool to modulate membrane composition and phase behaviour[J]. Micromachines, 2020, 11(4): 388.
    [79] DOLS-PEREZ A, MARIN V, AMADOR GJ, KIEFFER R, TAM D, AUBIN-TAM ME. Artificial cell membranes interfaced with optical tweezers: a versatile microfluidics platform for nanomanipulation and mechanical characterization[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33620-33627.
    [80] FANALISTA F, BIRNIE A, MAAN RN, BURLA F, CHARLES K, PAWLIK G, DESHPANDE S, KOENDERINK GH, DOGTEROM M, DEKKER C. Shape and size control of artificial cells for bottom-up biology[J]. ACS Nano, 2019, 13(5): 5439-5450.
    [81] KAZAYAMA Y, TESHIMA T, OSAKI T, TAKEUCHI S, TOYOTA T. Integrated microfluidic system for size-based selection and trapping of giant vesicles[J]. Analytical Chemistry, 2016, 88(2): 1111-1116.
    [82] TIVONY R, FLETCHER M, AL NAHAS K, KEYSER UF. A microfluidic platform for sequential assembly and separation of synthetic cell models[J]. ACS Synthetic Biology, 2021, 10(11): 3105-3116.
    [83] SPENCER AC, TORRE P, MANSY SS. The encapsulation of cell-free transcription and translation machinery in vesicles for the construction of cellular mimics[J]. Journal of Visualized Experiments: JoVE, 2013(80): e51304.
    [84] ADAMS KL, ENGELBREKTSSON J, VOINOVA M, ZHANG B, EVES DJ, KARLSSON R, HEIEN ML, CANS AS, EWING AG. Steady-state electrochemical determination of lipidic nanotube diameter utilizing an artificial cell model[J]. Analytical Chemistry, 2010, 82(3): 1020-1026.
    [85] ROBINSON T, DITTRICH PS. Observations of membrane domain reorganization in mechanically compressed artificial cells[J]. Chembiochem, 2019, 20(20): 2666-2673.
    [86] LAVICKOVA B, LAOHAKUNAKORN N, MAERKL SJ. A partially self-regenerating synthetic cell[J]. Nature Communications, 2020, 11: 6340.
    [87] DEYAMA T, MATSUI Y, CHADANI Y, SEKINE Y, DOI N, FUJIWARA K. Transcription-translation of the Escherichia coli genome within artificial cells[J]. Chemical Communications, 2021, 57(80): 10367-10370.
    [88] ZONG W, MA SH, ZHANG XN, WANG XJ, LI QC, HAN XJ. A fissionable artificial eukaryote-like cell model[J]. Journal of the American Chemical Society, 2017, 139(29): 9955-9960.
    [89] WU LJ, LEE S, PARK S, ELAND LE, WIPAT A, HOLDEN S, ERRINGTON J. Geometric principles underlying the proliferation of a model cell system[J]. Nature Communications, 2020, 11: 4149.
    [90] SHETTY SC, YANDRAPALLI N, PINKWART K, KRAFFT D, VIDAKOVIC-KOCH T, IVANOV I, ROBINSON T. Directed signaling cascades in monodisperse artificial eukaryotic cells[J]. ACS Nano, 2021, 15(10): 15656-15666.
    [91] KIM JW, LEE SS, PARK J, KU M, YANG J, KIM SH. Smart microcapsules with molecular polarity- and temperature-dependent permeability[J]. Small, 2019, 15(21): 1900434.
    [92] ZHANG XL, XU ML, YANG J, HU N. Ion transport in pH-regulated double-barreled nanopores[J]. Analytical Chemistry, 2022, 94(14): 5642-5650.
    [93] INUI M, HAMADA Y, SEJIMA N, UEDA N, KATAYAMA T, ONO K, NAGAHAMA K. Exportin-inspired artificial cell nuclear-exporting nanosystems[J]. Nanoscale Advances, 2022, 4(12): 2637-2641.
    [94] BENEYTON T, KRAFFT D, BEDNARZ C, KLEINEBERG C, WOELFER C, IVANOV I, VIDAKOVIĆ-KOCH T, SUNDMACHER K, BARET JC. Out-of-equilibrium microcompartments for the bottom-up integration of metabolic functions[J]. Nature Communications, 2018, 9: 2391.
    [95] ALTAMURA E, ALBANESE P, MAROTTA R, MILANO F, FIORE M, TROTTA M, STANO P, MAVELLI F. Chromatophores efficiently promote light-driven ATP synthesis and DNA transcription inside hybrid multicompartment artificial cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(7): e2012170118.
    [96] YANG BY, LI SB, MU W, WANG Z, HAN XJ. Light-harvesting artificial cells containing cyanobacteria for CO2 fixation and further metabolism mimicking[J]. Small, 2022, 19(13): 2201305.
    [97] WESTENSEE IN, BRODSZKIJ E, QIAN XM, MARCELINO TF, LEFKIMMIATIS K, STÄDLER B. Mitochondria encapsulation in hydrogel-based artificial cells as ATP producing subunits[J]. Small, 2021, 17(24): 2007959.
    [98] ZHAO QH, CAO FH, LUO ZH, HUCK WTS, DENG NN. Photoswitchable molecular communication between programmable DNA-based artificial membraneless organelles[J]. Angewandte Chemie (International Ed in English), 2022, 61(14): e202117500.
    [99] BUDDINGH’ BC, LLOPIS-LORENTE A, ABDELMOHSEN LKEA, van HEST JCM. Dynamic spatial and structural organization in artificial cells regulates signal processing by protein scaffolding[J]. Chemical Science, 2020, 11(47): 12829-12834.
    [100] TOPARLAK ÖD, ZASSO J, BRIDI S, SERRA MD, MACCHI P, CONTI L, BAUDET ML, MANSY SS. Artificial cells drive neural differentiation[J]. Science Advances, 2020, 6(38): eabb4920.
    [101] QIU HM, LI FR, DU YC, LI RX, HYUN JY, LEE SY, CHOI JH. Programmable aggregation of artificial cells with DNA signals[J]. ACS Synthetic Biology, 2021, 10(6): 1268-1276.
    [102] YANG S, PIETERS PA, JOESAAR A, BÖGELS BWA, BROUWERS R, MYRGORODSKA I, MANN S, de GREEF TFA. Light-activated signaling in DNA-encoded sender-receiver architectures[J]. ACS Nano, 2020, 14(11): 15992-16002.
    [103] ZHU CX, ZHOU ZX, GAO XJ, TAO YH, CAO XW, XU Y, SHEN YF, LIU SQ, ZHANG YJ. Cascade nanozymatic network mimicking cells with selective and linear perception of H2O2[J]. Chemical Science, 2023, 14(24): 6780-6791.
    [104] CHAKRABORTY T, WEGNER SV. Cell to cell signaling through light in artificial cell communities: glowing predator lures prey[J]. ACS Nano, 2021, 15(6): 9434-9444.
    [105] QIAN XM, WESTENSEE IN, FERNANDES CC, STÄDLER B. Enzyme mimic facilitated artificial cell to mammalian cell signal transfer[J]. Angewandte Chemie (International Ed in English), 2021, 60(34): 18704-18711.
    [106] RAMSAY K, LEVY J, GOBBO P, ELVIRA KS. Programmed assembly of bespoke prototissues on a microfluidic platform[J]. Lab on a Chip, 2021, 21(23): 4574-4585.
    [107] YANG QX, GUO ZZ, LIU H, PENG RZ, XU LJ, BI C, HE YQ, LIU QL, TAN WH. A cascade signaling network between artificial cells switching activity of synthetic transmembrane channels[J]. Journal of the American Chemical Society, 2021, 143(1): 232-240.
    [108] BUDDINGH’ BC, ELZINGA J, van HEST JCM. Intercellular communication between artificial cells by allosteric amplification of a molecular signal[J]. Nature Communications, 2020, 11: 1652.
    [109] MATSUO M, HIRATA Y, KURIHARA K, TOYOTA T, MIURA T, SUZUKI K, SUGAWARA T. Environment-sensitive intelligent self-reproducing artificial cell with a modification-active lipo- deoxyribozyme[J]. Micromachines, 2020, 11(6): 606.
    [110] PAN J, DU YC, QIU HM, UPTON LR, LI FR, CHOI JH. Mimicking chemotactic cell migration with DNA programmable synthetic vesicles[J]. Nano Letters, 2019, 19(12): 9138-9144.
    [111] HO KKY, LEE LM, LIU AP. Mechanically activated artificial cell by using microfluidics[J]. Scientific Reports, 2016, 6: 32912.
    [112] LI Z, TANG YY, ZHANG L, WU JM. Label-free study of the function of ion channel protein on a microfluidic optical sensor integrated with artificial cell membrane[J]. Lab on a Chip, 2014, 14(2): 333-341.
    [113] KORNER JL, STEPHENSON EB, ELVIRA KS. A bespoke microfluidic pharmacokinetic compartment model for drug absorption using artificial cell membranes[J]. Lab on a Chip, 2020, 20(11): 1898-1906.
    [114] KI SH, PARK JK, SUNG C, LEE CB, UHM H, CHOI EH, BAIK KY. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma[J]. Journal of Physics D: Applied Physics, 2016, 49(8): 085401.
    [115] FENG YP, ZHANG YJ, LIU GG, LIU XT, GAO SX. Interaction of graphene oxide with artificial cell membranes: role of anionic phospholipid and cholesterol in nanoparticle attachment and membrane disruption[J]. Colloids and Surfaces B: Biointerfaces, 2021, 202: 111685.
    [116] YOSHIDA K, FUJIWARA N. Numerical estimation of acetonitrile adsorption into simple artificial cell membranes[J]. ChemistrySelect, 2021, 6(48): 14013-14018.
    [117] QUALLS ML, SAGAR R, LOU JC, BEST MD. Demolish and rebuild: controlling lipid self-assembly toward triggered release and artificial cells[J]. The Journal of Physical Chemistry B, 2021, 125(47): 12918-12933.
    [118] KARAMDAD K, HINDLEY JW, BOLOGNESI G, FRIDDIN MS, LAW RV, BROOKS NJ, CES O, ELANI Y. Engineering thermoresponsive phase separated vesicles formed via emulsion phase transfer as a content-release platform[J]. Chemical Science, 2018, 9(21): 4851-4858.
    [119] TRANTIDOU T, DEKKER L, POLIZZI K, CES O, ELANI Y. Functionalizing cell-mimetic giant vesicles with encapsulated bacterial biosensors[J]. Interface Focus, 2018, 8(5): 20180024.
    [120] ZHOU XX, ZHANG YJ, KANG K, ZHU NH, CHENG J, YI QY, WU Y. Artificial cell membrane camouflaged immunomagnetic nanoparticles for enhanced circulating tumor cell isolation[J]. Journal of Materials Chemistry B, 2022, 10(16): 3119-3125.
    [121] ZHAO X, TANG DY, WU Y, CHEN SQ, WANG C. An artificial cell system for biocompatible gene delivery in cancer therapy[J]. Nanoscale, 2020, 12(18): 10189-10195.
    [122] KRINSKY N, KADURI M, ZINGER A, SHAINSKY-ROITMAN J, GOLDFEDER M, BENHAR I, HERSHKOVITZ D, SCHROEDER A. Synthetic cells synthesize therapeutic proteins inside tumors[J]. Advanced Healthcare Materials, 2018, 7(9): 1701163.
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨雁婷,邓吉楠,杨军. 基于微流控芯片的人工细胞研究进展[J]. 生物工程学报, 2024, 40(7): 2100-2119

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-01-30
  • 在线发布日期: 2024-07-08
  • 出版日期: 2024-07-25
文章二维码
您是第6009804位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司