基于分子生物学的微生物修复技术在石油污染环境中的应用
作者:
基金项目:

国家重点研发计划(2019YFC1806205)


The application of molecular biology-based microbial remediation technologies in petroleum polluted environments
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [75]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    日益增长的人类活动和工业生产带来的石油污染已成为严重的环境问题。微生物修复技术绿色环保,在石油污染修复中备受关注。分子生物学技术的应用使微生物修复技术发生了迅猛变革,并为高效降解菌剂的开发提供了资源,但目前还存在物种注释结果不够全面和精确、检测灵敏度有限等缺点。其他微生物修复技术在提高石油污染物的降解效率以及减少其对环境的危害等方面也具有相当大的潜力,特别是生物表面活性剂和生物刺激剂,修复周期较短,修复成本相对较低,在未来可以大规模应用。另外,分子生物学与其他微生物修复技术的结合成为降解石油污染物的有效工具。本文总结了分子生物学手段在石油污染环境中的应用,梳理了近年来微生物修复石油污染方法的研究进展,讨论了现有微生物修复技术的修复效果,并对未来微生物修复技术的发展方向进行了展望。

    Abstract:

    Owing to human activities and industrial production, petroleum pollution has become a serious environmental issue. Microbial remediation technology, characterized by its eco-friendly characteristics, has drawn significant attention in petroleum pollution remediation. The application of molecular biology technology has led to a drastic revolution in microbial remediation technology, providing resources for the development of highly efficient degrading agents. However, limitations such as the lack of precision in species annotation and the limited detection sensitivity still exist. Other microbial remediation technologies also have substantial potential in enhancing the degradation efficiency of petroleum pollutants and reducing their environmental harm, especially biosurfactants and bio-stimulants, which offer relatively shorter remediation periods and lower costs, promising large-scale application in the future. Moreover, the combination of molecular biology and other microbial remediation technologies may become an effective tool for petroleum pollutant degradation. This review summarized the application of molecular biology methods in petroleum polluted environments, reviewed the recent research progress on microbial remediation techniques for petroleum-contaminated sites, discussed the remediation effects of these microbial remediation techniques, and proposed the future development direction of microbial remediation technology.

    参考文献
    [1] IGUNNU ET, CHEN GZ. Produced water treatment technologies[J]. International Journal of Low-Carbon Technologies, 2014, 9(3):157-177.
    [2] NAEEM U, QAZI MA. Leading edges in bioremediation technologies for removal of petroleum hydrocarbons[J]. Environmental Science and Pollution Research, 2020, 27(22):27370-27382.
    [3] 李书鹏, 康绍果, 刘鹏, 王文峰, 李广贺. 石油污染含水层介质表面活性剂脱附净化效应[J]. 环境工程学报, 2019, 13(7):1662-1669. LI SP, KANG SG, LIU P, WANG WF, LI GH. Surfactant desorption and purification effect on petroleum contaminated aquifer medium[J]. Chinese Journal of Environmental Engineering, 2019, 13(7):1662-1669(in Chinese).
    [4] 魏样. 土壤石油污染的危害及现状分析[J]. 中国资源综合利用, 2020, 38(4):120-122. WEI Y. The harm and present situation of soil oil pollution[J]. China Resources Comprehensive Utilization, 2020, 38(4):120-122(in Chinese).
    [5] 张健. 微生物修复有机污染土壤的研究[J]. 皮革制作与环保科技, 2023, 4(2):86-88. ZHANG J. Study on remediation of organic contaminated soil by microorganisms[J]. Leather Manufacture and Environmental Technology, 2023, 4(2):86-88(in Chinese).
    [6] CHEN M, XU P, ZENG G, YANG C, HUANG D, ZHANG J. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting:applications, microbes and future research needs[J]. Biotechnology Advances, 2015, 33(6):745-755.
    [7] MARGULIES M, EGHOLM M, ALTMAN WE, ATTIYA S, BADER JS, BEMBEN LA, BERKA J, BRAVERMAN MS, CHEN YJ, CHEN ZT, DEWELL SB, DU L, FIERRO JM, GOMES XV, GODWIN BC, HE W, HELGESEN S, HO CH, IRZYK GP, JANDO SC, et al. Genome sequencing in microfabricated high-density picolitre reactors[J]. Nature, 2005, 437(7057):376-380.
    [8] ATHANASOPOULOU K, BOTI MA, ADAMOPOULOS PG, SKOUROU PC, SCORILAS A. Third-generation sequencing:the spearhead towards the radical transformation of modern genomics[J]. Life (Basel, Switzerland), 2021, 12(1):30.
    [9] LAMENDELLA R, STRUTT S, BORGLIN S, CHAKRABORTY R, TAS N, MASON OU, HULTMAN J, PRESTAT E, HAZEN TC, JANSSON JK. Assessment of the deepwater horizon oil spill impact on gulf coast microbial communities[J]. Frontiers in Microbiology, 2014, 5:130.
    [10] BOUCHEZ T, BLIEUX AL, DEQUIEDT S, DOMAIZON I, DUFRESNE A, FERREIRA S, GODON JJ, HELLAL J, JOULIAN C, QUAISER A, MARTIN-LAURENT F, MAUFFRET A, MONIER JM, PEYRET P, SCHMITT-KOPLIN P, SIBOURG O, D'OIRON E, BISPO A, DEPORTES I, GRAND C, et al. Molecular microbiology methods for environmental diagnosis[J]. Environmental Chemistry Letters, 2016, 14(4):423-441.
    [11] EISENSTEIN M. Microbiology:making the best of PCR bias[J]. Nature Methods, 2018, 15(5):317-320.
    [12] DANIEL R. The metagenomics of soil[J]. Nature Reviews Microbiology, 2005, 3(6):470-478.
    [13] PRAKASH T, TAYLOR TD. Functional assignment of metagenomic data:challenges and applications[J]. Briefings in Bioinformatics, 2012, 13(6):711-727.
    [14] BILAL T, MALIK B, HAKEEM KR. Metagenomic analysis of uncultured microorganisms and their enzymatic attributes[J]. Journal of Microbiological Methods, 2018, 155:65-69.
    [15] YUNUSA YR, UMAR ZD. Effective microbial bioremediation via the multi-omics approach:an overview of trends, problems and prospects[J]. UMYU Journal of Microbiology Research (UJMR), 2021, 6(1):127-145.
    [16] MARON PA, RANJARD L, MOUGEL C, LEMANCEAU P. Metaproteomics:a new approach for studying functional microbial ecology[J]. Microbial Ecology, 2007, 53(3):486-493.
    [17] HE Z, van NOSTRAND JD, ZHOU J. Applications of functional gene microarrays for profiling microbial communities[J]. Current Opinion in Biotechnology, 2012, 23(3):460-466.
    [18] NOSTRAND JD, HE ZL, ZHOU JZ. Use of functional gene arrays for elucidating in situ biodegradation[J]. Frontiers in Microbiology, 2012, 3:339.
    [19] TIRALERDPANICH P, SONTHIPHAND P, LUEPROMCHAI E, PINYAKONG O, POKETHITIYOOK P. Potential microbial consortium involved in the biodegradation of diesel, hexadecane and phenanthrene in mangrove sediment explored by metagenomics analysis[J]. Marine Pollution Bulletin, 2018, 133:595-605.
    [20] BASTIDA F, JEHMLICH N, LIMA K, MORRIS BEL, RICHNOW HH, HERNÁNDEZ T, von BERGEN M, GARCÍA C. The ecological and physiological responses of the microbial community from a semiarid soil to hydrocarbon contamination and its bioremediation using compost amendment[J]. Journal of Proteomics, 2016, 135:162-169.
    [21] ATASHGAHI S, HORNUNG B, van der WAALS MJ, da ROCHA UN, HUGENHOLTZ F, NIJSSE B, MOLENAAR D, van SPANNING R, STAMS AJM, GERRITSE J, SMIDT H. A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways[J]. Scientific Reports, 2018, 8:4490.
    [22] CABRAL L, PEREIRA de SOUSA ST, LACERDA JÚNIOR GV, HAWLEY E, DINI ANDREOTE F, HESS M, de OLIVEIRA VM. Microbial functional responses to long-term anthropogenic impact in mangrove soils[J]. Ecotoxicology and Environmental Safety, 2018, 160:231-239.
    [23] ZHOU Y, WANG Y, YANG L, KONG Q, ZHANG H. Microbial degradation mechanisms of surface petroleum contaminated seawater in a typical oil trading port[J]. Environmental Pollution, 2023, 324:121420.
    [24] SONG B, LI Z, LI S, ZHANG Z, FU Q, WANG S, LI L, QI S. Functional metagenomic and enrichment metatranscriptomic analysis of marine microbial activities within a marine oil spill area[J]. Environmental Pollution, 2021, 274:116555.
    [25] McFARLIN KM, PERKINS MJ, FIELD JA, LEIGH MB. Biodegradation of crude oil and corexit 9500 in Arctic seawater[J]. Frontiers in Microbiology, 2018, 9:1788.
    [26] HAZEN TC, DUBINSKY EA, DESANTIS TZ, ANDERSEN GL, PICENO YM, SINGH N, JANSSON JK, PROBST A, BORGLIN SE, FORTNEY JL, STRINGFELLOW WT, BILL M, CONRAD ME, TOM LM, CHAVARRIA KL, ALUSI TR, LAMENDELLA R, JOYNER DC, SPIER C, BAELUM J, et al. Deep-sea oil plume enriches indigenous oil-degrading bacteria[J]. Science, 2010, 330(6001):204-208.
    [27] KADRI T, ROUISSI T, KAUR BRAR S, CLEDON M, SARMA S, VERMA M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes:a review[J]. Journal of Environmental Sciences, 2017, 51:52-74.
    [28] TAŞ N, BRANDT BW, BRASTER M, van BREUKELEN BM, RÖLING WFM. Subsurface landfill leachate contamination affects microbial metabolic potential and gene expression in the Banisveld aquifer[J]. FEMS Microbiology Ecology, 2018, 94(10):fiy156.
    [29] HERBST FA, BAHR A, DUARTE M, PIEPER DH, RICHNOW HH, von BERGEN M, SEIFERT J, BOMBACH P. Elucidation of in situ polycyclic aromatic hydrocarbon degradation by functional metaproteomics (protein-SIP)[J]. Proteomics, 2013, 13(18/19):2910-2920.
    [30] CAI PP, NING Z, ZHANG NN, ZHANG M, GUO CJ, NIU ML, SHI JS. Insights into biodegradation related metabolism in an abnormally low dissolved inorganic carbon (DIC) petroleum-contaminated aquifer by metagenomics analysis[J]. Microorganisms, 2019, 7(10):412.
    [31] ZHUANG JG, ZHANG RH, ZENG YF, DAI TJ, YE ZC, GAO Q, YANG YF, GUO X, LI GH, ZHOU JZ. Petroleum pollution changes microbial diversity and network complexity of soil profile in an oil refinery[J]. Frontiers in Microbiology, 2023, 14:1193189.
    [32] WASFI A, AWWAD F, AYESH AI. Graphene-based nanopore approaches for DNA sequencing:a literature review[J]. Biosensors and Bioelectronics, 2018, 119:191-203.
    [33] BELL TH, JOLY S, PITRE FE, YERGEAU E. Increasing phytoremediation efficiency and reliability using novel omics approaches[J]. Trends in Biotechnology, 2014, 32(5):271-280.
    [34] 钟磊, 卿晋武, 陈红云, 栗高源, 陈冠益, 孙于茹, 李金磊, 宋英今, 颜蓓蓓. 微生物修复石油烃土壤污染技术研究进展[J]. 生物工程学报, 2021, 37(10):3636-3652. ZHONG L, QING JW, CHEN HY, LI GY, CHEN GY, SUN YR, LI JL, SONG YJ, YAN BB. Advances in bioremediation of hydrocarbon-contaminated soil[J]. Chinese Journal of Biotechnology, 2021, 37(10):3636-3652(in Chinese).
    [35] DECESARO A, MACHADO TS, CAPPELLARO ÂC, REINEHR CO, THOMÉ A, COLLA LM. Biosurfactants during in situ bioremediation:factors that influence the production and challenges in evalution[J]. Environmental Science and Pollution Research, 2017, 24(26):20831-20843.
    [36] 邓春萍, 肖鹏, 崔学严, 万利琼, 郑舒丽, 王林娟. 表面活性剂对石油污染土壤生物修复的影响研究[J]. 当代化工研究, 2021(24):106-108. DENG CP, XIAO P, CUI XY, WAN LQ, ZHENG SL, WANG LJ. Effect of surfactant on bioremediation of petroleum contaminated soil[J]. Modern Chemical Research, 2021(24):106-108(in Chinese).
    [37] RAM H, KUMAR SAHU A, SAID MS, BANPURKAR AG, GAJBHIYE JM, DASTAGER SG. A novel fatty alkene from marine bacteria:a thermo stable biosurfactant and its applications[J]. Journal of Hazardous Materials, 2019, 380:120868.
    [38] BALAN SS, KUMAR CG, JAYALAKSHMI S. Aneurinifactin, a new lipopeptide biosurfactant produced by a marine Aneurinibacillus aneurinilyticus SBP-11 isolated from Gulf of Mannar:purification, characterization and its biological evaluation[J]. Microbiological Research, 2017, 194:1-9.
    [39] BEZZA FA, CHIRWA EMN. Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2[J]. Biochemical Engineering Journal, 2015, 101:168-178.
    [40] ZARGAR AN, LYMPERATOU A, SKIADAS I, KUMAR M, SRIVASTAVA P. Structural and functional characterization of a novel biosurfactant from Bacillus sp. IITD106[J]. Journal of Hazardous Materials, 2022, 423:127201.
    [41] CHRISTOPHER JM, SRIDHARAN R, SOMASUNDARAM S, GANESAN S. Bioremediation of aromatic hydrocarbons contaminated soil from industrial site using surface modified amino acid enhanced biosurfactant[J]. Environmental Pollution, 2021, 289:117917.
    [42] 姚芙蓉, 李军, 张莹, 阎贺静, 朱凤妹, 周洁芳. 生物表面活性剂生产及应用研究进展[J]. 微生物学通报, 2022, 49(5):1889-1901. YAO FR, LI J, ZHANG Y, YAN HJ, ZHU FM, ZHOU JF. Recent advances in production and applications of biosurfactants[J]. Microbiology China, 2022, 49(5):1889-1901(in Chinese).
    [43] 姚丹丹, 王辉, 田坤, 王宁, 代威, 程功弼, 刘云. 土壤多环芳烃污染生物表面活性剂强化修复的研究进展[J]. 应用化工, 2023, 52(1):164-170. YAO DD, WANG H, TIAN K, WANG N, DAI W, CHENG GB, LIU Y. Research on biosurfactant-enhanced remediation in PAHs-contaminated soil[J]. Applied Chemical Industry, 2023, 52(1):164-170(in Chinese).
    [44] 钱林波, 元妙新, 陈宝梁. 固定化微生物技术修复PAHs污染土壤的研究进展[J]. 环境科学, 2012, 33(5):1767-1776. QIAN LB, YUAN MX, CHEN BL. Research progress about bioremediation of polycyclic aromatic hydrocarbons contaminated soil with immobilized microorganism technique[J]. Chinese Journal of Environmental Science, 2012, 33(5):1767-1776(in Chinese).
    [45] 刘维涛, 李剑涛, 郑泽其, 李法云. 微生物固定化技术修复石油烃污染土壤[J]. 应用技术学报, 2021, 21(4):339-347. LIU WT, LI JT, ZHENG ZQ, LI FY. Microbial immobilization technology for bioremediation of petroleum hydrocarbon contaminated soil[J]. Journal of Technology, 2021, 21(4):339-347(in Chinese).
    [46] TAO K, ZHANG X, CHEN X, LIU X, HU X, YUAN X. Response of soil bacterial community to bioaugmentation with a plant residue-immobilized bacterial consortium for crude oil removal[J]. Chemosphere, 2019, 222:831-838.
    [47] XUE JL, LIU YX, SHI K, QIAO YL, CHENG DL, BAI Y, SHEN CC, JIANG Q. Responses of seawater bacteria in the bioremediation process of petroleum contamination by immobilized bacteria[J]. Journal of Environmental Chemical Engineering, 2022, 10(2):107133.
    [48] HAJIEGHRARI M, HEJAZI P. Enhanced biodegradation of n-hexadecane in solid-phase of soil by employing immobilized Pseudomonas Aeruginosa on size-optimized coconut fibers[J]. Journal of Hazardous Materials, 2020, 389:122134.
    [49] MARTINS VR, FREITAS CJB, CASTRO AR, SILVA RM, GUDIÑA EJ, SEQUEIRA JC, SALVADOR AF, PEREIRA MA, CAVALEIRO AJ. Corksorb enhances alkane degradation by hydrocarbonoclastic bacteria[J]. Frontiers in Microbiology, 2021, 12:618270.
    [50] 屠明明, 王秋玉. 石油污染土壤的生物刺激和生物强化修复[J]. 中国生物工程杂志, 2009, 29(8):129-134. TU MM, WANG QY. Biostmiulation and bioaugmentation repair of oil contaminated soil[J]. China Biotechnology, 2009, 29(8):129-134(in Chinese).
    [51] SARKAR P, ROY A, PAL S, MOHAPATRA B, KAZY SK, MAITI MK, SAR P. Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation[J]. Bioresource Technology, 2017, 242:15-27.
    [52] MU J, CHEN Y, SONG Z, LIU M, ZHU B, TAO H, BAO M, CHEN Q. Effect of terminal electron acceptors on the anaerobic biodegradation of PAHs in marine sediments[J]. Journal of Hazardous Materials, 2022, 438:129569.
    [53] MARZOCCHI U, PALMA E, ROSSETTI S, AULENTA F, SCOMA A. Parallel artificial and biological electric circuits power petroleum decontamination:the case of snorkel and cable bacteria[J]. Water Research, 2020, 173:115520.
    [54] BODOR A, BOUNEDJOUM N, FEIGL G, DUZS Á, LACZI K, SZILÁGYI Á, RÁKHELY G, PEREI K. Exploitation of extracellular organic matter from Micrococcus luteus to enhance ex situ bioremediation of soils polluted with used lubricants[J]. Journal of Hazardous Materials, 2021, 417:125996.
    [55] LIU XX, SELONEN V, STEFFEN K, SURAKKA M, RANTALAINEN AL, ROMANTSCHUK M, SINKKONEN A. Meat and bone meal as a novel biostimulation agent in hydrocarbon contaminated soils[J]. Chemosphere, 2019, 225:574-578.
    [56] 祁慧鹓, 朱国繁, 王鑫伟, 孙明明, 王风贺, 张胜田, 叶茂, 蒋新. 农药污染土壤生物刺激修复技术研究进展[J]. 土壤, 2021, 53(2):221-228. QI HY, ZHU GF, WANG XW, SUN MM, WANG FH, ZHANG ST, YE M, JIANG X. Biostimulation methods for remediation of pesticide-contaminated soil:a review[J]. Soils, 2021, 53(2):221-228(in Chinese).
    [57] LIU L, BILAL M, DUAN X, IQBAL HMN. Mitigation of environmental pollution by genetically engineered bacteria-current challenges and future perspectives[J]. Science of the Total Environment, 2019, 667:444-454.
    [58] CHONG G, KIMYON O, RICE SA, KJELLEBERG S, MANEFIELD M. The presence and role of bacterial quorum sensing in activated sludge[J]. Microbial Biotechnology, 2012, 5(5):621-633.
    [59] MANGWANI N, KUMARI S, DAS S. Involvement of quorum sensing genes in biofilm development and degradation of polycyclic aromatic hydrocarbons by a marine bacterium Pseudomonas aeruginosa N6P6[J]. Applied Microbiology and Biotechnology, 2015, 99(23):10283-10297.
    [60] MUNEESWARI R, IYAPPAN S, SWATHI KV, VINU R, RAMANI K, SEKARAN G. Biocatalytic lipoprotein bioamphiphile induced treatment of recalcitrant hydrocarbons in petroleum refinery oil sludge through transposon technology[J]. Journal of Hazardous Materials, 2022, 431:128520.
    [61] JI L, FU XW, WANG MT, XU C, CHEN GH, SONG FY, GUO SH, ZHANG Q. Enzyme cocktail containing NADH regeneration system for efficient bioremediation of oil sludge contamination[J]. Chemosphere, 2019, 233:132-139.
    [62] LEHTINEN T, SANTALA V, SANTALA S. Twin-layer biosensor for real-time monitoring of alkane metabolism[J]. FEMS Microbiology Letters, 2017, 364(6):fnx053.
    [63] PATEL R, ZAVERI P, MUKHERJEE A, AGARWAL PK, MORE P, MUNSHI NS. Development of fluorescent protein-based biosensing strains:a new tool for the detection of aromatic hydrocarbon pollutants in the environment[J]. Ecotoxicology and Environmental Safety, 2019, 182:109450.
    [64] 宫兆波, 郭瑛瑛, 张燕萍, 杨永霞, 赵增义, 刘艳伟, 史斌, 毕磊, 阴永光, 宋茂勇. 基因工程菌在石油污染修复中的研究进展与前景[J]. 环境化学, 2024, 43(1):1-13. GONG ZB, GUO YY, ZHANG YP, YANG YX, ZHAO ZY, LIU YW, SHI B, BI L, YIN YG, SONG MY. The application of genetically engineered bacteria in petroleum hydrocarbon pollution remediation:progress and challenges[J]. Environmental Chemistry, 2024, 43(1):1-13(in Chinese).
    [65] 申春妮, 曹小方, 李腾, 方祥位, 张伟, 余咏平. 植物-微生物联合修复柴油污染土试验研究[J]. 土木与环境工程学报(中英文), 2023, 45(3):145-153. SHEN CN, CAO XF, LI T, FANG XW, ZHANG W, YU YP. Experimental study on remediation of diesel contaminated soil by plant-microorganism combination[J]. Journal of Civil and Environmental Engineering, 2023, 45(3):145-153(in Chinese).
    [66] 康凯璇, 兰秀茹, 付娜, 赵静. 生物技术在石油污染修复领域的最新进展[J]. 石油化工安全环保技术, 2015, 31(5):71-75, 4. KANG KX, LAN XR, FU N, ZHAO J. The latest progress of biotechnology in the field of oil pollution remediation[J]. Petrochemical Safety and Environmental Protection Technology, 2015, 31(5):71-75, 4(in Chinese).
    [67] EZE MO, THIEL V, HOSE GC, GEORGE SC, DANIEL R. Enhancing rhizoremediation of petroleum hydrocarbons through bioaugmentation with a plant growth-promoting bacterial consortium[J]. Chemosphere, 2022, 289:133143.
    [68] SAEED M, ILYAS N, ARSHAD M, SHEERAZ M, AHMED I, BHATTACHARYA A. Development of a plant microbiome bioremediation system for crude oil contamination[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105401.
    [69] ZHANG X, LI R, WANG J, LIAO C, ZHOU L, AN J, LI T, WANG X, ZHOU Q. Construction of conductive network using magnetite to enhance microflora interaction and petroleum hydrocarbons removal in plant-rhizosphere microbial electrochemical system[J]. Chemical Engineering Journal, 2022, 433:133600.
    [70] RYZHIK I, PUGOVKIN D, MAKAROV M, ROLEDA MY, BASOVA L, VOSKOBOYNIKOV G. Tolerance of Fucus vesiculosus exposed to diesel water-accommodated fraction (WAF) and degradation of hydrocarbons by the associated bacteria[J]. Environmental Pollution, 2019, 254:113072.
    [71] SUBASHCHANDRABOSE SR, VENKATESWARLU K, VENKIDUSAMY K, PALANISAMI T, NAIDU R, MEGHARAJ M. Bioremediation of soil long-term contaminated with PAHs by algal-bacterial synergy of Chlorella sp. MM3 and Rhodococcus wratislaviensis strain 9 in slurry phase[J]. Science of the Total Environment, 2019, 659:724-731.
    [72] 樊鑫, 刘璐. 生物修复技术在石油污染治理中的应用研究进展[J]. 现代化工, 2021, 41(12):64-68. FAN X, LU L. Research progress on application of bioremediation technology in petroleum pollution control[J]. Modern Chemical Industry, 2021, 41(12):64-68(in Chinese).
    [73] 郑瑾, 付雅丽, 宋权威, 谢加才, 林双君, 梁如冰. 微生物强化修复石油污染土壤的研究进展[J]. 生物工程学报, 2021, 37(10):3622-3635. ZHENG J, FU YL, SONG QW, XIE JC, LIN SJ, LIANG RB. Advances in the bioaugmentation-assisted remediation of petroleum contaminated soil[J]. Chinese Journal of Biotechnology, 2021, 37(10):3622-3635(in Chinese).
    [74] 王秀璞, 张慧, 王语萱, 李彦, 杜道林. 水生植物-微生物联合去除水体有机污染物的研究进展[J]. 微生物学通报, 2021, 48(12):4918-4931. WANG XP, ZHANG H, WANG YX, LI Y, DU DL. Application of aquatic plant-microbe association in removal of organic pollutants in water bodies:a review[J]. Microbiology China, 2021, 48(12):4918-4931(in Chinese).
    [75] 顾信娜, 陈辉, 李珊珊, 成卓韦, 陈建孟, 蒋轶锋. 生物表面活性剂的产生及其在环境污染治理中的应用[J]. 环境科学与技术, 2012, 35(61):155-162. GU XN, CHEN H, LI SS, CHENG ZW, CHEN JM, JIANG YF. Biosurfactant production and its application in the environmental pollution control[J]. Environmental Science and Technology, 2012, 35(61):155-162(in Chinese).
    引证文献
引用本文

叶振城,苏亦凡,杨云锋. 基于分子生物学的微生物修复技术在石油污染环境中的应用[J]. 生物工程学报, 2024, 40(3): 739-757

复制
分享
文章指标
  • 点击次数:293
  • 下载次数: 1133
  • HTML阅读次数: 708
  • 引用次数: 0
历史
  • 收稿日期:2023-06-12
  • 最后修改日期:2023-09-18
  • 在线发布日期: 2024-03-25
  • 出版日期: 2024-03-25
文章二维码
您是第6009874位访问者
生物工程学报 ® 2025 版权所有

通信地址:中国科学院微生物研究所    邮编:100101

电话:010-64807509   E-mail:cjb@im.ac.cn

技术支持:北京勤云科技发展有限公司