Data Paper 数据论文

黄河三角洲典型植被下真菌群落结构组成

张婷¹, 宗可金¹, 季银利², 宋宪锐², 赵聪聪¹, 纪明德¹, 孔强^{1,3}, 王倩^{1*}

1 山东师范大学 地理与环境学院,山东 济南

2 山东省黄河三角洲可持续发展研究院,山东 东营

3 山东师范大学 东营研究院, 山东 东营

张婷, 宗可金, 季银利, 宋宪锐, 赵聪聪, 纪明德, 孔强, 王倩. 黄河三角洲典型植被下真菌群落结构组成[J]. 微生物学报, 2025, 65(2): 808-827.

ZHANG Ting, ZONG Kejin, JI Yinli, SONG Xianrui, ZHAO Congcong, JI Mingde, KONG Qiang, WANG Qian. Structures of fungal communities in soil of typical plants in the Yellow River Delta[J]. Acta Microbiologica Sinica, 2025, 65(2): 808-827.

要:【目的】微生物是潮间带地球化学元素迁移转化的重要执行者。真菌在碳、氮、磷循环 摘 及有机污染物降解等方面扮演重要角色。【方法】选取黄河三角洲潮间带典型植被芦苇 (Phragmites australis)、柽柳(Tamarix chinensis)、盐地碱蓬(Suaeda salsa) (潮间带盐地碱蓬和盐碱地 盐地碱蓬)的根际和非根际土壤为研究对象,通过高通量测序技术研究不同植被下的真菌群落结 构差异。【结果】植物根际中,盐碱地盐地碱蓬的真菌丰度、丰富度及均匀度最高,与其他3种 植物的真菌群落结构相似性最低。在植物非根际中,芦苇的真菌丰度最高,盐碱地盐地碱蓬的丰 富度最高,柽柳的真菌分布最均匀;芦苇与盐碱地盐地碱蓬之间的真菌群落结构相似性最高。4 种植物根际和非根际共有优势真菌门为子囊菌门(Ascomycota)、担子菌门(Basidiomycota)。不同植 物的功能真菌存在差异,芦苇、柽柳、盐碱地盐地碱蓬的根际、非根际优势功能真菌主要为腐生 真菌,如链格孢属、曲霉属,它们能够分解有机养料产生腐殖质,从而改善土壤通气性,改良土 壤理化性质;以上3种植物根际中腐生真菌占比分别为13.60%、6.33%、20.16%,非根际土壤中 分别为 11.98%、24.25%、8.52%。在柽柳非根际中,还发现了能与植物共生且耐盐的短梗霉属 (1.51%),这种真菌可与植物协同作用,有效防治土壤盐碱化。潮间带盐地碱蓬根际土壤中的优 势功能真菌主要为篮状菌属(15.90%)、葡萄穗霉属(0.53%)等参与糖类分解的真菌,它们能够分解 纤维素为葡萄糖,产生腐殖质,进而形成稳定的土壤团粒结构,改善土壤通气性。盐碱地盐地碱 蓬根际土壤中还存在木霉属(0.13%),这种真菌可以促进土壤氮磷转化,避免土壤中无机磷含量 过高造成土壤污染。在非根际土壤中,以上功能真菌的相对丰度均小于 0.10%。此外,在植物非 根际土壤中,还发现了能够降解持久性有机污染物(persistent organic pollutants, POPs)的原毛平革 菌属(0.15%)和降解醌类物质的青霉属(1.16%),这些真菌为有机污染土壤的修复提供微生物资源;

*Corresponding author. E-mail: qianwang86@sdnu.edu.cn

资助项目: 东营市市校合作资金(SXHZ-2023-01-6)

This work was supported by the Dongying City School Cooperation Fund (SXHZ-2023-01-6).

Received: 2024-09-08; Accepted: 2024-10-22; Published online: 2024-12-12

以上真菌在植物根际中未检测到。土壤环境因子与真菌群落结构关系表明,根际真菌的多样性、 均匀度与电导率(electrical conductance, EC)、钙离子浓度、盐度呈正相关关系;非根际真菌群落的 丰富度和多样性均与总氮呈正相关关系,而均匀度则与 pH、盐度、氨氮呈正相关关系。【结论】 本研究为明确黄河三角洲潮间带真菌群落的分布结构和功能奠定了基础,为将来利用相关微生物 资源来改善土壤结构、维持生物多样性、治理有机物污染以及盐碱地生态保护与修复等提供理论 依据。

关键词:黄河三角洲;真菌群落;微生物利用;环境因子

Structures of fungal communities in soil of typical plants in the Yellow River Delta

ZHANG Ting¹, ZONG Kejin¹, JI Yinli², SONG Xianrui², ZHAO Congcong¹, JI Mingde¹, KONG Qiang^{1,3}, WANG Qian^{1*}

1 College of Geography and Environment, Shandong Normal University, Jinan, Shandong, China

2 Shandong Yellow River Delta Sustainable Development Research Institute, Dongying, Shandong, China

3 Dongying Institute, Shandong Normal University, Dongying, Shandong, China

Abstract: [Objective] Microorganisms are key executors of the migration and transformation of geochemical elements in intertidal zones. Fungi play an important role in the cycling of carbon, nitrogen, and phosphorus and the degradation of organic pollutants. [Methods] In this study, soil samples were collected from the rhizosphere and non-rhizosphere of *Phragmites australis*, *Tamarix* chinensis, and Suaeda salsa (intertidal zone and saline inland), which were the typical intertidal plants in the Yellow River Delta. The fungal community structures in different soil samples were investigated by high-throughput sequencing. [Results] In the rhizosphere, the soil sample of S. salsa in saline inland showed higher fungal abundance, richness, and evenness than other soil samples, with a distinct fungal community structure. In the non-rhizosphere, the fungal abundance, richness, and evenness were the highest in the soil samples of P. australis, S. salsa in saline inland, and T. chinensis, respectively, and the fungal community structure of P. australis was similar with that of S. salsa in saline inland. Ascomycota and Basidiomycota were the dominant fungal phyla in both the rhizosphere and non-rhizosphere. However, the functional fungi were different among plants. Saprophytic fungi such as Alternaria and Aspergillus were the dominant functional fungi in the rhizosphere and non-rhizosphere of *P. australis*, *T. chinensis*, and *S. salsa* in saline inland, with the relative abundance of 13.60%, 6.33%, and 20.16% in the rhizosphere and 11.98%, 24.25%, and 8.52% in the non-rhizosphere, respectively. Saprophytic fungi were essential for the production of humus by decomposition of organic matter and the improvement of soil aeration and physicochemical properties. Aureobasidium (1.51%) were identified in the non-rhizosphere of T. chinensis, and they were haloduric fungi and could work synergistically with plants to prevent soil salinization. The dominant functional fungi in the rhizosphere of S. salsa in intertidal zone

were mainly Talaromyces (15.90%) and Stachybotrys (0.53%), which were involved in sugar degradation. They were able to break down cellulose into glucose, produce humus, and form a stable soil aggregate structure to improve soil aeration. Trichoderma (0.13%) were identified in the rhizosphere of S. salsa in saline inland, and they could promote soil nitrogen and phosphorus conversion and prevent the soil pollution caused by excessive inorganic phosphorus. The relative abundance of functional fungi was less than 0.10% in the non-rhizosphere. In addition, Phanerochaete (0.15%) capable of degrading persistent organic pollutants and Penicillium (1.16%) capable of degrading quinones were identified in the non-rhizosphere, providing microbial resources for the remediation of organic pollution in soil. However, they were not identified in the plant rhizosphere. The fungal diversity and evenness in the rhizosphere were positively correlated with soil factors such as electrical conductance (EC), calcium concentration, and salinity. In the non-rhizosphere, the fungal richness and diversity were positively correlated with total nitrogen, while the fungal evenness was positively correlated with pH, salinity, and ammonia nitrogen. [Conclusion] This study established a framework for understanding the structures and functions of fungal communities in the intertidal zone of the Yellow River Delta. Additionally, it provides a theoretical foundation for the future application of different functional fungi in soil structure improvement, biodiversity maintenance, organic pollution treatment, ecological protection, and saline-alkali land restoration.

Keywords: Yellow River Delta; fungal community; application of microorganisms; environmental factors

黄河三角洲湿地是全球陆海相互作用最活 跃的地区之一,是陆地和水生生态系统的交错 带^[1],对水循环、气候调节、生物多样性维护以 及污染物降解等过程具有重要的生态意义。黄 河三角洲潮间带还是 CH₄ 与 N₂O 等温室气体的 汇^[2],在全球碳、氮、磷循环及其他污染物的降 解等过程中发挥着重要作用。

真菌作为地球化学元素循环的重要参与者, 在有机物分解及碳、氮、磷等元素的循环过程 中具有不可忽视的作用^[3],与植物的相互作用在 农业生产、生态修复等领域具有重要的研究价 值。菌根真菌能够将植物光合作用固定的碳输 送至土壤中,参与土壤有机质的输入与形成过 程^[4],是重要的大气碳汇途径之一。此外,真菌 菌丝附着于土壤颗粒之上,并将其紧密缠绕, 促进形成稳定的土壤聚合体,从而保护土壤有 机碳免受分解^[5]。部分真菌还能通过分泌氮代谢 相关的酶,如硝酸盐还原酶、亚硝酸盐还原酶 等,来提高植物氮代谢水平^[6-7];外生菌根真菌 则可形成根外菌丝网,从而促进植物对氮元素 的吸收和利用^[7]。不仅如此,作为腐生真菌的 一种,外生菌根真菌还能够通过释放氧化酶, 从植物凋落物中汲取氮元素,进而使腐殖质的 碳氮比得以提升^[8]。此外,地下菌根真菌通过 分泌磷酸单酯酶和磷酸二酯酶等酶类,将土壤 中的磷酸盐分解,从而增加土壤中有效磷的 含量^[9]。

真菌和植物之间的相互作用具有重要的研究意义。丛枝菌根真菌在干旱条件下,可以通 过改变由菌丝网络进出的水流,上调或下调叶 或根中的植物水通道蛋白基因,以增加根导水 率和叶水势,并降低叶蒸腾速率,从而增强植 物对干旱环境的适应能力^[10];在高盐浓度下, 它们则可以通过调节渗透压帮助植物适应环 境^[11]。同时,植物根部释放的葡萄糖、木糖等 营养物质可以被真菌利用,或者植物凋落物可 以被一些腐生真菌作为碳源分解利用,以此促 进真菌自身的生长繁殖^[12]。

一些对氯化钠浓度有特殊适应能力,能适 应较高盐度环境的真菌被称为耐盐真菌,它们 可通过多种调节途径来适应盐胁迫的环境。例 如,土生空团菌(*Cenococcum geophilum*)可以通 过控制 Na⁺的内流和主动外流,提高 K⁺的吸收 能力,并增强超氧化物歧化酶的活性,从而适应 盐 胁 迫 环 境 。 此 外 ,季 也 蒙 毕 赤 酵 母 (*Meyerozyma guilliermondii*)在受到高盐胁迫时, 会在细胞内迅速积累甘油,盐度越高,甘油积 累量越多。*M. guilliermondii* 利用甘油的生物相 容性来适应高盐条件对其产生的胁迫^[13]。

腐生真菌是土壤中根际和非根际的重要组成成分,能够产生内切葡聚糖酶、内切多聚甲基半乳糖醛酸酶和内切木聚糖酶,这些酶将纤维素等大分子物质分解为葡萄糖等小分子物质。此外,腐生真菌还能分泌一系列胞外酶,包括纤维二糖水解酶、木糖苷酶、酸性磷酸酶,它们能够将复杂的有机大分子物质转化为 CO₂、H₂O 等无机小分子物质。同时,胞外酶的活性 对凋落物与腐殖质的分解速度具有重要影响。

除了腐生真菌,有些真菌能够通过分泌漆 酶与过氧化物酶等酶类,降解双酚A、三氯生、 日落黄和橙色G染料等有机污染物质。漆酶利 用分子氧作为电子受体,并利用有机或无机金 属化合物作为底物,催化有机污染物中的酚类、 苯环等结构发生羟基化、羧基化等反应,从而 将其转化为更易被分解的小分子化合物,这些 小分子化合物随后继续被氧化还原分解,最终 转化为 CO₂、H₂O等无机物。另一方面,木质 素过氧化物酶则使用过氧化氢作为共底物,氧 化有机化合物,将含有木质素及其木质素非酚 衍生物的化合物降解为醛或酮。此外,它还能 促进芳环裂解反应中亚甲基羟基化,并增强一 些酚类化合物(如乙酰丁香酮、儿茶酚、愈创木 酚、丁香酸和香草醇)的氧化过程。

目前,针对黄河三角洲真菌群落的研究大 多聚焦于同种植物真菌群落结构的识别,而对 于不同植被之间根际与非根际真菌功能差异的 研究相对较少。本研究选取黄河三角洲地区的 典型植被——芦苇(Phragmites australis)、柽柳 (Tamarix chinensis)、盐地碱蓬(Suaeda salsa)的根 际与非根际区域作为研究对象,运用高通量测 序技术解析不同植物下真菌群落的结构组成, 并从功能角度出发,进一步解析不同植物下功 能真菌的差异,以期为深入揭示黄河三角洲地 区典型植物与真菌的相互作用机理奠定基础, 并为利用真菌等功能微生物进行盐碱地生态保 护与修复提供理论依据。

1 材料与方法

1.1 区域介绍

研究区域位于山东省东营市黄河三角洲的 潮间带湿地内,样品采集区域为黄河入海口处 (37°26′-37°32′N,118°44′-118°55′E),该区域属 于典型的暖温带季风气候区。黄河三角洲地区的 年均气温约为12.3 ℃,年均降水量达到 542.3 mm^[14]。芦苇(*Phragmites australis*)、柽柳 (*Tamarix chinensis*)以及盐地碱蓬(*Suaeda salsa*)是 黄河三角洲区域内典型的植物种类,盐地碱蓬 根据其生长环境的不同,被进一步区分为潮间 带生境盐地碱蓬(简称"渤间带盐地碱蓬")。 其中,潮间带盐地碱蓬生长于海水经常浸没的 潮间带区域,而盐碱地盐地碱蓬则生长在潮上 带以及内陆的盐碱地环境中^[15]。

1.2 采样方法

选定芦苇、柽柳、潮间带盐地碱蓬与盐碱 地盐地碱蓬这4种植物生长区样地,根据五点 取样法,设置3个样方(20 cm×20 cm)作为重复。 使用土壤取样器,在距离地表5-10 cm 的深度 范围内采集土样。将距离根部0-0.5 cm 的土壤 作为根际土壤,根际土壤外围土壤样品作为非 根际土壤。采集到的土壤去除杂质(植系与砾石) 后,放入密封袋中并分成两部分,一部分土壤 被置于-80℃的条件下冷冻保存,另一部分则直 接用于分析土壤理化性质。

1.3 高通量测序

使用 Power Soil DNA 分离试剂盒(MoBio 公司)提取 DNA^[16]。PCR 扩增以 ITS1F (5'-CTTGG TCATTTAGAGGAAGTAA-3')和 ITS2R (5'-GCT GCGTTCTTCATCGATGC-3')为引物。PCR 反应体系(20 μ L): 2×*Pro Taq* DNA 聚合酶(20 ng/ μ L) 10 μ L,上、下游引物(5 μ mol/L)各 0.8 μ L,模板 DNA 10 ng,补足超纯水至 20 μ L。PCR 反应条件: 95 °C预变性 5 min; 94 °C变性 45 s,56 °C 退火 30 s,72 °C延伸 45 s,共35 个循环;72 °C 终延伸 10 min。PCR 扩增产物委托上海派森诺 生物科技股份有限公司,使用 MiSeq Reagent Kit v3 (600 cycles)进行 2×250 bp 的双端测序^[17]。

1.4 土壤理化性质

取过 20 目筛的干土,使用去离子水按照 5:1 的水土比例制备浸提液,使用 pH 计[梅特勒-托利多仪器(上海)有限公司]测定 pH,电导计(上 海仪电科学仪器股份有限公司)测定电导率 (electrical conductance, EC)。土壤盐分含量根据 研究区土壤盐分与电导率的关系计算,如公 式(1)^[18]所示。

S=0.271 1×*EC*_{1:5}²+4.680 4×*EC*_{1:5} (1) 式中,*S*为土壤盐分,*EC*_{1:5}为水土比 5:1 的土壤 浸提液电导率。 直接使用空气干燥的土壤样品,通过元素 分析仪(Elementar 公司)测定总氮(total nitrogen, TN)和总碳(total carbon, TC);总有机碳分析仪 (Elementar 公司)测量土壤总有机碳(total organic carbon, TOC)。连续流动离子分析仪(SEAL Analytical 公司)测量氨氮(NH4⁺-N)的含量;采用 电感耦合等离子质谱仪(ThermoFisher Scientific 公司)检测锰(Mn)和铁(Fe)的浓度。速效磷 (available phosphorous, AP)采用碳酸氢钠 (NaHCO₃)溶液-钼锑反分光光度法测定。Thermo Fisher Scientific Niton XL2800 (ThermoFisher Scientific 公司)手持式X射线荧光光谱仪测定土 壤样品中Ca的含量^[19]。

1.5 数据分析

利用 DADA2 方法去除原始双端测序数据的 嵌合体,得到操作分类单元 (operational taxonomic unit, OTU)。利用 QIIME 2 中的 ASV 表来计算 Chao1 指数、Shannon 指数、Simpson 指数以及 Pielou e 指数。其中, Chao1 指数用于 评估微生物菌群的丰度, Shannon 指数与 Simpson 指数则共同反映了微生物种类的丰富 度, Pielou_e 指数用于衡量微生物分布的均匀 度^[20-21]。此外,利用 IBM SPSS Statistics 21 等 软件计算 α 多样性指数、物种分类学组成等。 使用 SPSS 软件对 4 种植物的根际与非根际土壤 进行方差分析,设定显著性水平为 P<0.05。采 用主成分分析法(principle component analysis, PCA)对真菌组成进行β多样性分析。使用R语 言、Origin 2021 等软件对实验数据进行绘图, 用R语言绘制土壤理化性质与真菌群落丰度、 丰富度、均匀度之间的关系热图,4种植物根际 与非根际土壤的主成分分析图,以及共线网络 分析图。在共现网络分析图中,每一个节点代 表一个特定物种或类群(如 OTU 或属等),节点 大小表示物种的相对丰度, 而节点出现的频次 则体现物种的多样性。原始数据上传至 NCBI Sequence Read Archive (SRA)数据库。

2 结果与讨论

2.1 不同植物真菌群落多样性

原始数据已上传至 NCBI Sequence Read Archive (SRA)数据库,序列号为 SRR30550866-SRR30550889。

2.1.1 不同植物真菌群落 α 多样性与共线网络分析

如图 1A 所示, 植物根际土壤中, 真菌 Chao1 指数从高到低为盐碱地盐地碱蓬 (81.053 1±12.138 7)>柽柳(50.825 4±2.034 8)>芦苇 (46.582 5±13.255 3)>潮间带盐地碱蓬(42.161 6± 7.073 0), 其中盐碱地盐地碱蓬与其他 3 种植物 的 Chao1 指数差异显著(P<0.05)。真菌 Shannon 指数(图 1B)从高到低依次为盐碱地盐地碱蓬 (3.461 5±0.230 6)、柽柳(2.853 9±0.533 1)、潮间 带盐地碱蓬(1.714 1±0.631 8)、芦苇(1.605 3± 1.2504), 柽柳、盐碱地盐地碱蓬均与芦苇、潮 间带盐地碱蓬 Shannon 指数差异显著(P<0.05)。 真菌 Simpson 指数(图 1C)分别为盐碱地盐地碱 蓬(0.844 9±0.043 7)>柽柳(0.793 1±0.080 1)>潮间 带盐地碱蓬(0.5905±0.1415)>芦苇(0.4924±0.3370), 且 Simpson 指数表现为芦苇与柽柳、盐碱地盐 地碱蓬差异显著(P<0.05),其他植物之间差异不 显著(P>0.05)。此外,盐碱地盐地碱蓬出现的频 次较多,节点较大(图 2),表明盐碱地盐地碱蓬 的真菌丰度较高,与盐碱地盐地碱蓬真菌的 Chao1 指数、Shannon 指数、Simpson 指数相对 较高一致。芦苇在图 2 中出现的频次较少,节 点较小,说明芦苇的真菌丰度与多样性较低, 这也与芦苇真菌的多样性与丰富度较低一致。 如表1所示,4种植物根际土壤的电导率大小为 盐碱地盐地碱蓬(6.960±0.030) ms/cm> 柽柳 (6.010±0.000) ms/cm>潮间带盐地碱蓬(5.450± 0.020) ms/cm>芦苇(0.135±0.000) ms/cm, 真菌丰 富度大小与土壤电导率呈正相关关系,这与李 华军等^[22]得到的生物多样性指数与电导率基本 呈正相关关系的结果一致。Pielou_e 指数(图 1D) 大小为盐碱地盐地碱蓬(0.550 5±0.015 5)>柽柳 (0.505 9±0.093 4)>潮间带盐地碱蓬(0.326 5± 0.130 8)>芦苇(0.284 8±0.206 9), Pielou_e 指数为 芦苇与柽柳、盐碱地盐地碱蓬差异显著 (P<0.05),潮间带盐地碱蓬与盐碱地盐地碱蓬差 异显著(P<0.05)。

植物非根际土壤中, 真菌 Chao1 指数 (图 1E)从高到低为芦苇(61.629 4±22.538 3)>盐碱 地盐地碱蓬(55.917 8±12.470 5)>潮间带盐地碱蓬 (50.058 8±2.185 6)>柽柳(41.516 4±15.381 7), 4 种植物之间 Chao1 指数差异不显著(P>0.05)。 此外,图2中可以看出在同一个节点中,芦苇 的占比相对较大,即同种真菌在芦苇中的相对 丰度较高,与芦苇 Chao1 指数较高相对应。 Shannon 指数(图 1F)为盐碱地盐地碱蓬(2.571 4± 0.297 4)>芦苇(2.468 9±0.056 2)>柽柳(2.439 6± 0.342 6)>潮间带盐地碱蓬(0.835 9±0.517 1); Simpson 指数(图 1G)为盐碱地盐地碱蓬(0.729 1± 0.067 6)>柽柳(0.728 6±0.100 4)>芦苇(0.713 1± 0.045 1)>潮间带盐地碱蓬(0.239 4±0.187 5)。盐 碱地盐地碱蓬的真菌丰富度最高,潮间带盐地 碱蓬的真菌丰富度最低;盐碱地盐地碱蓬节点 出现的频次较多(图 2),表明盐碱地盐地碱蓬真 菌群落结构丰富度较高,这也与α多样性中 Shannon 指数与 Simpson 指数较高相符。如表 2 所示,4种植物土壤 NH4+-N 的含量分别为盐碱 地盐地碱蓬(44.241±2.760) mg/kg>柽柳(13.979± 1.540) mg/kg>芦苇(6.853±0.194) mg/kg>潮间带盐 地碱蓬(6.104±0.207) mg/kg, Mn、Ca的含量从 高到低分别为潮间带盐地碱蓬(0.284±0.016) mg/kg、

图1 四种植物根际与非根际土壤的Chao1指数、Shannon指数、Simpson指数、Pielou_e指数箱线图。A: 4种植物根际土壤Chao1指数; B: 4种植物根际土壤Shannon指数; C: 4种植物根际土壤Simpson指数; D: 4种植物根际土壤Pielou_e指数; E: 4种植物非根际土壤Chao1指数; F: 4种植物非根际土壤Shannon指数; G: 4种植物非根际土壤Simpson指数; H: 4种植物非根际土壤Pielou_e指数。LW: 芦苇根际; CL: 柽柳 根际; HJP: 潮间带盐地碱蓬根际; LJP: 盐碱地盐地碱蓬根际; FLW: 芦苇非根际; FCL: 柽柳非根际; FHJP: 潮间带盐地碱蓬非根际; FLJP: 盐碱地盐地碱蓬非根际。

Figure 1 Box plots of Chao1 index, Shannon index, Simpson index, and Pielou_e index for four plant species in the rhizosphere and non-rhizosphere. A: Chao1 index of the rhizosphere soils; B: Shannon index of the rhizosphere soils; C: Simpson index of the rhizosphere soils; D: Pielou_e index of the rhizosphere soils; E: Chao1 index of non-rhizosphere soils; F: Shannon index of the non-rhizosphere soils; G: Simpson index of the non-rhizosphere soils; H: Pielou_e index of the non-rhizosphere soils. LW: Rhizosphere of *P. australis*; CL: Rhizosphere of *T. chinensis*; HJP: Rhizosphere of intertidal *S. salsa*; LJP: Rhizosphere of *P. australis*; FLW: Non-rhizosphere of *P. australis*; FCL: Non-rhizosphere of *T. chinensis*; FHJP: Non-rhizosphere of intertidal *S. salsa*; FLJP: Non-rhizosphere of inland saline *S. salsa*.

图2 四种植物根际、非根际土壤的共线网络图。Similarity为相似度,数值越大表示物种之间相似度越高,数值越小,相似度越小。LW:芦苇根际; CL: 柽柳根际; HJP: 潮间带盐地碱蓬根际; LJP: 盐碱地盐地碱蓬根际; FLW:芦苇非根际; FCL: 柽柳非根际; FHJP: 潮间带盐地碱蓬非根际; FLJP: 盐碱地盐地碱蓬非根际。

Figure 2 Four plants rhizosphere and non-rhizosphere soils collinear network diagrams. Similarity is the degree of similarity. Where a higher value indicates a higher degree of similarity between species. The lower value indicates, the lower degree of similarity. LW: Rhizosphere soils of *P. australis*; CL: Rhizosphere of *T. chinensis*; HJP: Rhizosphere of intertidal *S. salsa*; LJP: Rhizosphere of inland saline *S. salsa*; FLW: Non-rhizosphere of *P. australis*; FCL: Non-rhizosphere of *T. chinensis*; FHJP: Non-rhizosphere of intertidal *S. salsa*; FLJP: Non-rhizosphere of intertidal *S. salsa*; FLJP: Non-rhizosphere of inland saline *S. salsa*; FLJP: Non-rhizosphere of inland saline *S. salsa*.

(3.381±0.157) mg/kg>芦苇(0.271±0.017) mg/kg、 (3.347±0.275) mg/kg>柽柳(0.216±0.010) mg/kg、 (2.776±0.143) mg/kg>盐碱地盐地碱蓬(0.206± 0.049) mg/kg、(2.380±0.781) mg/kg; 4 种植物非 根际土壤的 Simpson 指数与 NH4⁺-N 呈正相关关 系,与 Mn、Ca 的含量呈负相关关系,这与前 人得到的结果一致^[23-24]。Pielou_e 指数从大到小 依次为柽柳(0.471 2±0.116 5)、盐碱地盐地碱蓬 (0.449 1±0.078 9)、芦苇(0.423 0±0.029 6)、潮间 带盐地碱蓬(0.149 1±0.092 0) (图 1H)。4 种植物 中 Shannon 指数、Simpson 指数、Pielou_e 指数 均只有潮间带盐地碱蓬与其他 3 种植物之间差 异显著 (P<0.05),其他植物之间差异不显著 (P>0.05)。

四种植物的根际、非根际土壤微生物的丰 度和均匀度差异较大,植物根际土壤中,盐碱 地盐地碱蓬的真菌丰度、均匀度均高于其他植 物,潮间带盐地碱蓬的真菌丰度相对较低,芦 苇的真菌均匀度相对较低。非根际土壤中,芦 苇的真菌丰度相对较高,柽柳较低;柽柳的真

-		-	-		
Item	LW	CL	HJP	LJP	
pН	8.280±0.010	8.390±0.030	8.010±0.020	8.000±0.000	
TN (g/kg)	0.330 ± 0.005	0.310±0.006	0.410 ± 0.014	0.210 ± 0.006	
TC (g/kg)	12.900±0.918	14.020±0.331	18.990±0.033	12.300±0.497	
TOC (g/kg)	3.070±0.092	5.690±0.114	3.110±0.082	2.270 ± 0.054	
AP (mg/kg)	10.810±0.357	12.750±0.269	25.750±0.187	16.570±0.148	
Saltness (mg/kg)	0.092 ± 0.007	0.131±0.045	0.147 ± 0.008	0.143 ± 0.001	
Ca (mg/kg)	1.700 ± 0.175	1.737±0.339	2.877±0.589	2.927 ± 0.487	
Mn (g/kg)	0.158 ± 0.017	0.151±0.026	0.327±0.040	0.193±0.030	
Fe (g/kg)	10.831±0.977	10.448±1.134	17.214±0.777	11.702±1.621	
NH4 ⁺ -N (mg/kg)	5.427±0.730	1.000 ± 0.000	30.102±0.460	4.132±0.400	
EC (ms/cm)	0.135±0.000	6.010±0.000	5.450±0.020	6.960±0.030	
	1-11.1-1-1-1	starting the starting of the starting			

表1 四种植物根际土壤理化性质

Table 1 Physical and chemical properties of rhizosphere soil in four plants

LW: 芦苇根际; CL: 柽柳根际; HJP: 潮间带盐地碱蓬根际; LJP: 盐碱地盐地碱蓬根际。

LW: Rhizosphere of *P. australis*; CL: Rhizosphere of *T. chinensis*; HJP: Rhizosphere of intertidal *S. salsa*; LJP: Rhizosphere of inland saline *S. salsa*.

表2 四种植物非根际土壤理化性质

Table 2 Physical and chemical properties of non rhizosphere soil for four plant species

Item	FLW	FCL	FHJP	FLJP	
pH	8.060±0.000	8.330±0.010	8.100±0.000	8.010±0.010	
TN (g/kg)	0.310 ± 0.007	0.230 ± 0.005	0.260 ± 0.005	0.310±0.001	
TC (g/kg)	13.790±0.203	12.320±0.068	14.310±0.107	14.960±0.029	
TOC (g/kg)	2.590 ± 0.081	2.930±0.092	3.100±0.086	3.580±0.121	
AP (mg/kg)	16.350 ± 0.514	20.840±0.298	21.010±0.460	22.280±0.397	
Saltness (mg/kg)	0.105 ± 0.007	0.269±0.069	0.121±0.012	0.148 ± 0.025	
Ca (mg/kg)	3.347±0.275	2.776±0.143	3.381±0.157	2.380±0.781	
Mn (g/kg)	0.271 ± 0.017	0.216±0.010	0.284±0.016	0.206±0.049	
Fe (g/kg)	$14.494{\pm}1.281$	12.001±0.326	15.210 ± 0.808	13.223±1.582	
NH4 ⁺ -N (mg/kg)	6.853±0.194	13.979±1.540	6.104±0.207	44.241±2.760	
EC (ms/cm)	3.350±0.020	5.720±0.010	3.760±0.020	3.250±0.030	

FLW: 芦苇非根际; FCL: 柽柳非根际; FHJP: 潮间带盐地碱蓬非根际; FLJP: 盐碱地盐地碱蓬非根际。

FLW: Non-rhizosphere of *P. australis*; FCL: Non-rhizosphere of *T. chinensis*; FHJP: Non-rhizosphere of intertidal *S. salsa*; FLJP: Non-rhizosphere of inland saline *S. salsa*.

菌均匀度较高,潮间带盐地碱蓬的真菌均匀度 较低。根际、非根际土壤中盐碱地盐地碱蓬的 真菌丰富度均高于其他3种植物。

2.1.2 不同植物真菌群落 β 多样性分析

β多样性的主成分分析(PCA)可以观察4种 植物根际、非根际土壤真菌群落的相似性和差 异性。如图 3 所示,在 4 种植物根际土壤中, 主成分 1 (PC1)为第一主坐标,其代表性贡献率 为 63.8%;而在非根际土壤中,PC1 的代表性贡 献率则高达 79.9%。主成分 2 (PC2)为第二主坐 标,在根际土壤中的代表性贡献率为 24.9%,在 非根际土壤中的贡献率为 16.5%。在 PCA 图中,

图3 四种植物根际、非根际主成分分析图。A: 4种植物根际主成分分析图; B: 4种植物非根际主成分分析图。LW: 芦苇根际; CL: 柽柳根际; HJP: 潮间带盐地碱蓬根际; LJP: 盐碱地盐地碱蓬根际; FLW: 芦苇非根际; FCL: 柽柳非根际; FHJP: 潮间带盐地碱蓬非根际; FLJP: 盐碱地盐地碱蓬非根际。 Figure 3 Principal component analysis of rhizosphere and non-rhizosphere of four plant species. A: Root zone principal component analysis of four plant species; B: Non-rhizosphere of four plant species. A: Root zone principal component analysis of four plant species; B: Non-rhizosphere principal component analysis of four plant species; B: Non-rhizosphere of *T. chinensis*; HJP: Rhizosphere of intertidal *S. salsa*; LJP: Rhizosphere of inland saline *S. salsa*; FLW: Non-rhizosphere of *P. australis*; FCL: Non-rhizosphere of *T. chinensis*; FHJP: Non-rhizosphere of inland saline *S. salsa*.

芦苇、柽柳、潮间带盐地碱蓬的根际土壤真菌 群落距离较近,与盐碱地盐地碱蓬距离较远, 表明 3 种植物之间的真菌群落组成具有较高的 相似性,而与盐碱地盐地碱蓬的真菌群落组成 相似性较低(图 3A)。4 种植物根际共有的优势菌 门 为 子 囊 菌 门 (Ascomycota) 和 担 子 菌 门 (Basidiomycota)(图 4),其中子囊菌门在 4 种植 物根际中的相对丰度从高到低依次为:芦苇 (70.44%)、盐碱地盐地碱蓬(56.94%)、潮间带盐 地碱蓬(55.80%)、柽柳(47.97%),担子菌门的相 对丰度则为:柽柳(27.00%)>芦苇(16.34%)>盐碱 地盐地碱蓬(10.66%)>潮间带盐地碱蓬(1.63%)。 此外,芦苇与盐碱地盐地碱蓬的根际土壤中还 共有罗兹菌门(Rozellomycota),相对丰度分别为 1.19%和4.99%。如图 3B 所示,在非根际土壤 中, 芦苇与盐碱地盐地碱蓬之间的真菌群落组 成相似性较高, 而芦苇、盐碱地盐地碱蓬分别 与柽柳、潮间带盐地碱蓬之间的真菌群落组成 相似性较低。4种植物非根际共有的真菌为子囊 菌门和担子菌门(图 4), 在非根际土壤中,子囊 菌门的相对丰度为:盐碱地盐地碱蓬(49.62%)> 潮间带盐地碱蓬(30.11%)>柽柳(29.72%)>芦苇 (16.72%), 担子菌门相对丰度由高到低依次为: 芦苇(68.47%)、盐碱地盐地碱蓬(57.56%)、柽柳 (34.05%)、潮间带盐地碱蓬(3.39%)。柽柳非根 际土壤中存在特有的真菌罗兹菌门(6.58%), 而 潮间带盐地碱蓬非根际土壤中存在相对丰度为 1.27% 的被孢菌门(*Mortierellomycota*)。4种植物 根际、非根际土壤中共有的真菌门为子囊菌门 和担子菌门,这与已有研究结果^[25]子囊菌门与

图4 四种植物根际、非根际优势真菌门丰度。LW: 芦苇根际; CL: 柽柳根际; HJP: 潮间带盐地碱蓬 根际; LJP: 盐碱地盐地碱蓬根际; FLW: 芦苇非根际; FCL: 柽柳非根际; FHJP: 潮间带盐地碱蓬非根 际; FLJP: 盐碱地盐地碱蓬非根际。

Figure 4 Four dominant fungal phyla in the rhizosphere and non-rhizosphere of plants. LW: Rhizosphere of P. australis; CL: Rhizosphere of T. chinensis; HJP: Rhizosphere of intertidal S. salsa; LJP: Rhizosphere of inland saline S. salsa; FLW: Non-rhizosphere of P. australis; FCL: Non-rhizosphere of T. chinensis; FHJP: Nonrhizosphere of intertidal S. salsa; FLJP: Non-rhizosphere of inland saline S. salsa.

担子菌门是芦苇、柽柳、盐地碱蓬中共有优势 真菌门一致。4种植物根际(R²=0.14, P=0.66)、 非根际(R²=0.33, P=0.36)真菌群落结构差异不 显著。

2.1.3 真菌多样性与土壤理化性质的相关性

相关性分析表明,如图 5A 所示,4 种植物 根际中 Chao1 指数、Shannon 指数、Simpson 指 数、Pielou_e 指数与 EC、Ca、盐度呈正相关关 系,与TN呈负相关关系;此外,Simpson指数 与 Pielou_e 指数还与 TC 呈负相关关系。可见, EC、Ca、盐度与4种植物根际真菌群落多样性 和均匀度呈正相关性,TN则呈负相关性,这与 李华军等^[22]得到的生物多样性指数与 EC 基本呈 正相关的结论相符,并且与已有研究结果—— 黄河内蒙古段表层沉积物微生物群落多样性与

TN 呈负相关关系^[26]的结果一致。

性正相关;同时,Chao1 指数与 pH、盐度、EC 呈负相关关系。这一结果与邹春景[27]的研究结 果, Chao1 指数与盐度呈负相关关系相一致。此 外, Shannon 指数和 Simpson 指数与 TN、盐度、 NH₄⁺-N 呈正相关关系; 而 Pielou e 指数与 pH、 盐度、NH4⁺-N 呈正相关关系。这与已有的结 果^[28], NH_4^+ 与真菌群落的 Shannon 指数、 Simpson 指数、Pielou_e 指数均呈正相关一致; Shannon 指数、Simpson 指数、Pielou_e 指数均 与 Ca、Mn、Fe 呈负相关关系。总体来看,4种

图 5B 表示的是 4 种植物非根际中 Chao1 指

数、Shannon 指数、Simpson 指数、Pielou e 指

数与土壤理化因子之间的关系。Chao1 指数与 TN、TC、Fe 呈正相关关系,并且与 TN 呈显著

图5 土壤理化性质与真菌群落丰度、丰富度、均匀度关系图。A: 植物根际土壤理化性质与真菌群落丰度、丰富度、均匀度关系; B: 植物非根际土壤理化性质与真菌群落丰度、丰富度、均匀度关系。LW: 芦苇根际; CL: 柽柳根际; HJP: 潮间带盐地碱蓬根际; LJP: 盐碱地盐地碱蓬根际; FLW: 芦苇非根际; FCL: 柽柳非根际; FHJP: 潮间带盐地碱蓬非根际; FLJP: 盐碱地盐地碱蓬非根际。

Figure 5 Relationship diagram between soil physicochemical properties and fungal community abundance, richness, and evenness. A: The relationship between the physical and chemical properties of plant rhizosphere soil and the abundance, richness, and evenness of fungal communities; B: The relationship between the physicochemical properties of non-rhizosphere soil of plants and the abundance, richness, and evenness of fungal communities; LW: Rhizosphere of *P. australis*; CL: Rhizosphere of *T. chinensis*; HJP: Rhizosphere of intertidal *S. salsa*; LJP: Rhizosphere of inland saline *S. salsa*; FLW: Non-rhizosphere of *P. australis*; FCL: Non-rhizosphere of *T. chinensis*; FHJP: Non-rhizosphere of inland saline *S. salsa*; FLJP: Non-rhizosphere of inland saline *S. salsa*.

植物非根际真菌群落多样性和均匀度受到 pH、 TN、TC、Fe、盐度、EC、Ca、Mn 等多种因子 的影响。

2.2 不同植物碳、氮、磷循环真菌群落 特征

表 3 和表 4 分别显示了 4 植物根际与非根际参与碳循环过程中糖类分解的真菌相对丰度。 本研究检测到了葡萄穗霉属(*Stachybotrys*)、篮状菌属(*Talaromyces*)、 莫氏黑粉菌属 (Moesziomyces)、嗜热杆菌属(Mycothermus)、囊 担菌属(Cystofilobasidium)和木霉属(Trichoderma) 等能参与碳循环的真菌,这些真菌通过产生分 解酶,能够将含碳有机物分解为小分子糖类(如 葡萄糖),随后被植物根际吸收转化为 CO₂^[29]。

四种植物根际的真菌相对丰度如表 3 所示, 芦苇中参与糖类分解的真菌为篮状菌属(3.48%)。 篮状菌属可以产生内切葡聚糖酶和纤维素酶^[30]。 内切葡聚糖酶分解纤维素链分子内 β-1,4-葡萄糖

表3 四种植物根际功能真菌相对丰度

Table 3	Relative	abundance	of four	plant	rhizosphere	functional	fungi (%)
---------	----------	-----------	---------	-------	-------------	------------	---------	----

			~		
Fungal species		LW	CL	HJP	LJP
Carbon cycle	Trichoderma	-	-	-	0.13
	Cystofilobasidium	-	-	-	-
	Stachybotrys	-	-	0.53	1.87
	Talaromyces	3.48	-	15.90	2.73
	Mycothermus	-	0.16	-	-
	Moesziomyces	-	3.55	-	-
Nitrogen, phosphorus cycle	Trichoderma	-	-	-	0.13
Symbiosis with plants	Trichoderma	-	-	-	0.13
	Aureobasidium	-	-	-	-
	Botryotrichum	-	-	-	0.58
Salt tolerant fungi	Wallemia	-	-	-	0.16
	Monosporascus	-	4.59	-	-
	Hortaea	-	0.95	_	-
	Neocamarosporium	-	-	0.29	1.63
	Aureobasidium	-	-	_	-
Saprophytic fungi	Alternaria	6.07	2.81	15.05	14.87
	Aspergillus	7.53	2.54	-	4.91
	Nectria	-	-	-	-
	Coprinellus	-	_	_	0.22
	Macrophoma	-	_	_	-
	Kernia	-	0.98	_	-
	Wallemia	-	-	_	0.16
Degradation of organic pollutants	Phanerochaete	-	-	_	-
	Penicillium	-	-	-	-

-表示相对丰度小于0.10%的真菌。LW: 芦苇根际; CL: 柽柳根际; HJP: 潮间带盐地碱蓬根际; LJP: 盐碱地盐地碱蓬 根际。

- represents the abundance of fungi less than 0.10%. LW: Rhizosphere of *P. australis*; CL: Rhizosphere of *T. chinensis*; HJP: Rhizosphere of intertidal *S. salsa*; LJP: Rhizosphere of inland saline *S. salsa*.

表4 四种植物非根际功能真菌相对丰度

Table 4 Relative abundance of non-rhizosphere functional fungi in four plant species (%)

Fungal species		FLW	FCL	FHJP	FLJP
Carbon cycle	Trichoderma	_	_	_	-
	Cystofilobasidium	-	_	_	0.32
	Stachybotrys	-	_	_	6.56
	Talaromyces	0.94	_	_	-
	Mycothermus	-	_	_	-
	Moesziomyces	-	_	_	-
Nitrogen, phosphorus cycle	Trichoderma	-	_	_	-
Symbiosis with plants	Trichoderma	-	_	_	-
	Aureobasidium	-	1.51	_	-
	Botryotrichum	-	_	_	_
Salt tolerant fungi	Wallemia	_	9.68	_	_
	Monosporascus	-	_	_	-
	Hortaea	-	2.78	-	-
	Neocamarosporium	-	_	_	-
	Aureobasidium	-	1.51	_	-
Saprophytic fungi	Alternaria	0.17	6.19	_	4.01
	Aspergillus	11.51	4.61	-	0.27
	Nectria	0.30	3.77	_	-
	Coprinellus	-	_	_	2.87
	Macrophoma	-	_	_	1.37
	Kernia	-	_	_	-
	Wallemia	-	9.68	_	-
Degradation of organic pollutants	Phanerochaete	0.15	-	_	-
	Penicillium	_	_	_	1.16

-表示相对丰度小于0.10%的真菌。FLW:芦苇根际;FCL:柽柳根际;FHJP:潮间带盐地碱蓬根际;FLJP:盐碱地盐地碱 蓬根际。

- represents the abundance of fungi less than 0.1%. FLW: Non-rhizosphere of *P. australis*; FCL: Non-rhizosphere of *T. chinensis*; FHJP: Non-rhizosphere of intertidal *S. salsa*; FLJP: Non-rhizosphere of inland saline *S. salsa*.

苷键产生新的链端,进而将纤维素分解为葡萄糖;而纤维素酶同样具有分解纤维素的能力, 将其转化为葡萄糖,参与碳循环过程。在柽柳 根际中,参与碳循环的真菌为莫氏黑粉菌属 (3.55%)和嗜热杆菌属(0.16%)。莫氏黑粉菌属能 够分泌产生水解乳糖的酶^[31],将乳糖水解为葡 萄糖;同时,它还能分泌β-半乳糖苷酶^[31],该 酶将乳糖分解为半乳糖和葡萄糖。嗜热杆菌属 则能分泌内切葡聚糖酶、β-葡萄糖苷酶和木聚糖 酶^[32],其中木聚糖酶将木聚糖分解为葡萄糖。 在潮间带盐地碱蓬中,检测到的主要真菌为篮 状菌属(15.90%)和葡萄穗霉属(0.53%),其中葡 萄穗霉属能分泌β-葡萄糖苷酶^[33],将纤维生物 糖和纤维寡糖分解为葡萄糖。在盐碱地盐地碱 蓬中,参与碳循环的真菌有葡萄穗霉属(1.87%)、 篮状菌属(2.73%)和木霉属(0.13%),木霉属分泌 蔗糖酶,将植物产生的蔗糖分解为葡萄糖^[34]。 上述篮状菌属等分解糖类的真菌,能够将土壤 中的纤维素等有机物质分解为葡萄糖等物质, 从而增加土壤中的葡萄糖含量,这些葡萄糖不 仅可以作为微生物生长的碳源和能量来源,还 能刺激微生物的代谢和繁殖,进而增加生物量。 同时,微生物活动的增加有助于将有机物质转 化为土壤有机质的重要组成成分——腐殖质。 腐殖质通过其胶结作用,能够形成稳定的土壤 团粒结构,对提高土壤的保水保肥能力、改善 土壤的通气性和排水性具有积极作用。

四种植物非根际(表 4)中,芦苇中参与糖类 分解的真菌为篮状菌属(0.94%)。盐碱地盐地碱 蓬中为囊担菌属(0.32%)、葡萄穗霉属(6.56%), 囊担菌属分泌冷活性淀粉酶^[35],将淀粉水解为 葡萄糖。柽柳和潮间带盐地碱蓬中能够分解多 糖的真菌的相对丰度均小于 0.10%。

此外,盐碱地盐地碱蓬根际中的木霉属不 仅能够参与碳循环,还可以参与氮循环和磷循 环,其相对丰度为0.13%,木霉属在其他植物根 际、非根际土壤中的相对丰度则小于0.10%。在 氮循环方面,木霉属能够提升土壤脲酶的活性, 从而加快酰胺化合物分解为氨的速率。同时, 木霉属也能够增强碱性磷酸酶的活性,促进有 机磷向无机磷的转化,进而参与磷循环^[34],并 改善土壤的理化性质。土壤脲酶和碱性磷酸酶 活性的增强,加速了土壤氮、磷成分的转化, 这既有助于减少因有机磷含量过高而引发的土 壤污染问题,又使得植物能够吸收利用土壤中 的无机磷,促进自身生长。因此,木霉属对于 优化土壤养分状况和促进植物生长具有重要 意义。

2.3 不同植物与真菌共生形成的真菌群 落特征

表 3 和表 4 展示了植物共生真菌的相对丰度。结果显示,在 4 种植物根际土壤以及盐碱地盐地碱蓬中,主要植物共生真菌为毛葡孢属

(Botryotrichum) (0.58%) 和木霉属 (0.13%), 这 2 种真菌在其他植物中的相对丰度低于 0.10%。毛 葡孢属具备分解木质素的能力,并且能够分泌 脂肪分解酶^[36],该酶可将植物产生的脂肪分解 为醇和脂肪酸,供植物吸收利用。木霉属则能 分泌生长素和嗜铁素(siderophore)^[34],生长素能 够刺激植物细胞伸长和分裂[34];木霉属能够通 过分泌的嗜铁素转运、吸收土壤中的铁,这些 铁可以被植物吸收利用,从而改善植物的铁营 养状况^[37];嗜铁素还能螯合土壤中的 Fe³⁺,导 致病原菌缺铁,进而抑制其生长,对植物起到 生物防治的效果。通过测定不同植物土壤中铁 的含量(表 1),发现盐碱地盐地碱蓬土壤中铁的 含量相对较低,为(11.702±1.621) mg/kg,因此 可能需要依赖嗜铁素来转运 Fe³⁺, 以促进盐碱 地盐地碱蓬对铁的吸收。

四种植物非根际土壤中, 仅在柽柳中检测 到了植物共生真菌短梗霉属(Aureobasidium),其 相对丰度为1.51%,而在其他植物中未检测到该 真菌。短梗霉属具有产生淀粉酶与脂肪酶的能 力^[38],能够分解淀粉和脂肪为葡萄糖与醇、脂 肪酸,这些分解产物可供植物吸收利用;该真 菌在其他植物中的相对丰度均低于0.10%。以上 3种真菌(毛葡孢属、木霉属以及短梗霉属)均能 利用植物产生的葡萄糖等物质作为自身生长的 碳源,从而促进自身生长。在盐碱地盐地碱蓬 根际中,毛葡孢属和木霉属与植物形成了共生 关系;同样,在柽柳非根际中,短梗霉属也与 植物建立了共生的关系。这些共生关系有助于 促进植物与微生物之间的和谐共存,进而促进 植物的生长。通过利用真菌与植物之间的共生 的关系,可以形成微生物修复模式,在维持植 物多样性方面展现出潜在的应用价值。

2.4 不同植物耐盐真菌群落特征

如表3和表4所示,在4种植物根际中,柽

柳根际检测到的耐盐真菌为单孢囊菌属 (Monosporascus) (4.59%) 和何德霉属 (Hortaea) (0.95%), 其中何德霉属的生长速度与盐度呈正 相关关系^[39]。潮间带盐地碱蓬根际中的耐盐真 菌为新壳格孢霉属(Neocamarosporium),其相对 丰度为 0.29%; 盐碱地盐地碱蓬根际的耐盐真菌 则包括新壳格孢霉属(1.63%)和节担菌属 (Wallemia) (0.16%); 节担菌属是一种严格的嗜盐 真菌,其菌落生长速度随着培养基中盐度的增 加而加快,显示出对高盐环境的良好适应^[40]。 以上的耐盐真菌在芦苇、潮间带盐地碱蓬、盐 碱地盐地碱蓬中的相对丰度均低于 0.10%。在 4种植物非根际中,柽柳的耐盐真菌有节担菌 属、何德霉属和短梗霉属,其相对丰度分别为 9.68%、2.78%和1.51%。在芦苇、潮间带盐地 碱蓬以及盐碱地盐地碱蓬的非根际土壤中,这 些耐盐真菌的相对丰度低于 0.10%。综上所述, 4种植物中均含有耐盐真菌。因此,可以根据土 壤的盐碱程度选择种植相适应的耐盐植物,从 而形成植物-微生物联合修复模式,这为土壤盐 碱化的防治提供了科学的理论基础。

2.5 不同植物腐生真菌群落特征

在本次检测中,4种植物的根际及非根际土壤中均检测到了链格孢属(Alternaria)、曲霉属(Aspergillus)、丛赤壳属(Nectria)、小鬼伞属(Coprinellus)、大茎点菌属(Macrophoma)、丝壳属(Kernia)、节担菌属等腐生真菌(表1、表2)。腐生真菌作为森林凋落物的最活跃分解者之一^[40],对生物地球化学循环和土壤条件具有重要影响,包括调节土壤的矿化和腐殖质化过程。此外,腐生真菌还是细菌-真菌共生网络中的主要功能真菌^[41]。

四种植物的根际土壤中,芦苇中的腐生真 菌为曲霉属(7.53%)和链格孢属(6.07%);柽柳中 的腐生真菌为链格孢属(2.81%)、曲霉属(2.54%) 和丝壳属(0.98%); 潮间带盐地碱蓬中腐生真菌 为链格孢属(15.05%)。盐碱地盐地碱蓬中腐生真 菌为链格孢属(14.87%)、曲霉属(4.91%)、小鬼 伞属(0.22%)、节担菌属(0.16%)。

四种植物的非根际土壤中,芦苇中的腐生 真菌为链格孢属(0.17%)、曲霉属(11.51%)和丛 赤壳属(0.30%)。柽柳中的腐生真菌为链格孢属 (6.19%)、曲霉属(4.61%)、丛赤壳属(3.77%)和节 担菌属(9.68%)。丛赤壳属在柽柳非根际(3.77%) 中的相对丰度大约是芦苇非根际(0.30%)的 13 倍。盐碱地盐地碱蓬中的腐生真菌有链格孢 属(4.01%)、曲霉属(0.27%)、小鬼伞属(2.87%)和 大茎点菌属(1.37%);以上腐生真菌在潮间带盐 地碱蓬非根际中的相对丰度均低于 0.10%。腐生 真菌分解土壤中的有机养料(糖类、蛋白质、脂 类、核酸等),并在此过程中产生腐殖质,从而 改善土壤的通气性和排水性,为改善土壤理化 性质提供了科学依据。

2.6 不同植物有机污染物降解真菌群落 特征

表 3 和表 4 分别展示了 4 种植物根际、非 根际降解有机污染物真菌的相对丰度。在 4 种 植物的根际中,研究区域存在的有机污染物降 解真菌主要为原毛平革菌属(*Phanerochaete*)和青 霉属(*Penicillium*),原毛平革菌属在芦苇非根际 中的相对丰度为 0.15%。原毛平革菌属具有降解 持久性有机污染物(persistent organic pollutants, POPs)的能力,这些污染物包括氯化芳香族化合 物、弹药、杀虫剂和染料等^[42]。此外,原毛平 革菌属还能通过分泌过氧化物酶,并以 H₂O₂作 为电子受体,催化氧化酚类或者胺类物质,将 其分解为醌类物质^[43]。然而,在盐碱地盐地碱 蓬非根际中,能降解有机污染物的真菌为青霉 属,其相对丰度为 1.16%。青霉属具有合成漆酶 的能力^[44],漆酶能够催化有机污染物中的酚类、 苯环等结构发生羟基化、羧基化等反应,最终 将其分解为水和二氧化碳等无机物。在原毛平 革菌属和青霉属分布于其他植物根际、非根际 的环境中时,它们的相对丰度通常小于 0.10%。 芦苇非根际中的原毛平革菌属为修复 POPs 等有 机污染物质提供了潜在的微生物资源;同样, 盐碱地盐地碱蓬非根际中的青霉属也为修复酚 类、胺类等有机污染物质污染的土壤提供了更 多的微生物资源。

3 结论

通过对4种植物根际、非根际真菌α多样 性与共线网络分析,在4种植物根际中,盐碱 地盐地碱蓬展现出更高的真菌丰度、丰富度和 均匀度;在植物非根际中,芦苇的真菌丰度较 高,而盐碱地盐地碱蓬中真菌丰富度较高,柽 柳真菌则分布更为均匀。β多样性分析结果显 示, 芦苇、柽柳、潮间带盐地碱蓬之间的根际 真菌群落结构相似性较高,而盐碱地盐地碱蓬 与其他3种植物的真菌群落结构相似性则相对 较低;在非根际中,芦苇与盐碱地盐地碱蓬之 间的真菌群落结构相似性较高, 而芦苇、盐碱 地盐地碱蓬分别与柽柳、潮间带盐地碱蓬之间 的真菌群落相似性较低;这4种植物根际与非 根际真菌群落结构差异并不显著。此外,4种植 物根际与非根际均共有子囊菌门与担子菌门, 而芦苇、盐碱地盐地碱蓬的根际以及柽柳的非 根际中还发现了罗兹菌门的存在,潮间带盐地 碱蓬的非根际则特有被孢菌门。

通过分析土壤环境因子与真菌群落多样性 之间的关系,发现 EC、Ca、盐度、TN 是影响 根际真菌群落结构多样性与均匀度的主要环境 因子;土壤环境因子与非根际真菌之间也存在 密切关系,其中 TN、TC、Fe 与 Chao1 指数呈 正相关,盐度、NH4⁺-N 含量均与真菌多样性和 均匀度呈正相关,而 Ca、Mn、Fe 的含量与之 呈负相关。

在四种植物根际中,均发现了能够分解糖 类物质的篮状菌属等能功能真菌,以及具有腐 生功能的链格孢属、曲霉属等真菌。此外,相 较于芦苇,柽柳、潮间带盐地碱蓬、盐碱地盐 地碱蓬的根际中还分布着更为丰富的耐盐真菌, 如单孢囊霉属等。盐碱地盐地碱蓬的根际中还 存在既能参与N、P循环又能与植物共生的木霉 属真菌,而在其他植物中,木霉属的相对丰度 均小于0.10%。

在四种植物的非根际土壤中,未检测到共 有的优势功能真菌。具体而言,芦苇、柽柳、 盐碱地盐地碱蓬的非根际中均存在腐生功能真 菌,如链格孢属、曲霉属。芦苇和盐碱地盐地 碱蓬的非根际中还存在分解糖类物质的功能真 菌,如葡萄穗霉属、篮状菌属;同时,这2种 植物的非根际中还发现了降解有机污染物的真 菌,如存在于芦苇中具有降解 POPs 功能的原毛 平革菌属和存在于盐碱地盐地碱蓬中降解醌类 物质的青霉属,上述2种功能真菌在柽柳、潮 间带盐地碱蓬的非根际中相对丰度均小于 0.10%。相比之下,柽柳的非根际中则拥有相对 其他植物更高丰度的与植物共生的真菌短梗霉 属,以及耐盐真菌节担菌属。

黄河三角洲潮间带存在的篮状菌属能够改 善土壤结构,而木霉属则能促进氮、磷转化, 减少有机磷污染,并增强植物对营养元素的吸 收。毛葡孢属、木霉属及短梗霉属与盐碱地盐 地碱蓬及柽柳形成了共生关系,这种共生关系 有助于促进植物生长并维护生物多样性。相比 之下,耐盐真菌与植物协同作用,在有效防治 土壤盐碱化方面展现出了显著效果。此外,芦 苇非根际中的原毛平革菌属和盐碱地盐地碱蓬 非根际中的青霉属,具备修复有机污染物的能 力。合理利用这些真菌微生物资源,将为改善 土壤结构、维持生物多样性、治理有机物污染 以及盐碱地生态保护与修复治理等提供新的思 路和途径。本研究为明确黄河三角洲潮间带真 菌群落分布结构和功能奠定了基础,为将来利 用不同功能真菌微生物资源进行流域污染治理、 盐碱地生态修复及保护提供了理论依据。

作者贡献声明

张婷:数据处理、研究撰写和修改; 宗可 金:协助实验操作,参与论文讨论;季银利: 提供技术支持,参与论文讨论;宋宪锐:提供 技术支持,参与论文讨论;赵聪聪:研究方法 指导,参与论文讨论;纪明德:研究方法指导, 参与论文讨论;孔强:研究构思和研究方法指导,参与论文讨论;王倩:研究构思和设计, 参与论文讨论。

作者利益冲突公开声明

作者声明不存在任何可能会影响本文所报 告工作的已知经济利益或个人关系。

参考文献

- [1] WANG ZH, LI K, SHEN XY, YAN FF, ZHAO XK, XIN Y, JI LH, XIANG QY, XU XY, LI DJ, RAN JH, XU XY, CHEN QF. Soil nitrogen substances and denitrifying communities regulate the anaerobic oxidation of methane in wetlands of Yellow River Delta, China[J]. Science of the Total Environment, 2023, 857: 159439.
- [2] ZHU CM, ZHANG X, HUANG QH. Four decades of estuarine wetland changes in the Yellow River Delta based on landsat observations between 1973 and 2013[J]. Water, 2018, 10(7): 933.
- [3] WANG MJ, QI SZ, ZHANG XX. Wetland loss and degradation in the Yellow River Delta, Shandong Province of China[J]. Environmental Earth Sciences, 2012, 67(1): 185-188.
- [4] 白浩楠, 牛香, 王兵, 宋庆丰, 龙文兴. 菌根真菌对森林 碳氮磷循环影响的研究进展[J]. 温带林业研究, 2020, 3(2): 22-26.

BAI HN, NIU X, WANG B, SONG QF, LONG WX. Research progress on progress of the function of mycorrhizal fungi in the cycle of carbon, nitrogen and phosphorus[J]. Journal of Temperate Forestry Research, 2020, 3(2): 22-26 (in Chinese).

- [5] FREY SD. Mycorrhizal fungi as mediators of soil organic matter dynamics[J]. Annual Review of Ecology, Evolution, and Systematics, 2019, 50: 237-259.
- [6] 刘春雨,杨智宇,李丽丽,杨洪一.菌根真菌对植物氮素利用影响研究进展[J]. 华北农学报, 2023, 38(S1): 348-353.
 LIU CY, YANG ZY, LI LL, YANG HY. Effects of mycorrhizal fungi on plant nitrogen utilization[J]. Acta Agriculturae Boreali-Sinica, 2023, 38(S1): 348-353 (in Chinese).
- [7] 郭良栋,田春杰.菌根真菌的碳氮循环功能研究进展[J]. 微生物学通报, 2013, 40(1): 158-171.
 GUO LD, TIAN CJ. Progress of the function of mycorrhizal fungi in the cycle of carbon and nitrogen[J]. Microbiology China, 2013, 40(1): 158-171 (in Chinese).
- [8] SOUDZILOVSKAIA NA, van der HEIJDEN MG, CORNELISSEN JH, MAKAROV MI, ONIPCHENKO VG, MASLOV MN, AKHMETZHANOVA AA, van BODEGOM PM. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling[J]. New Phytologist, 2015, 208(1): 280-293.
- [9] 张晗烁,郑勇,贺纪正.土壤真菌生物地理学研究进展
 [J].生态学杂志,2024. https://kns.cnki.net/kcms2/detail/21.1148.Q.20230712.1812.024.html
 ZHANG HS, ZHENG Y, HE JZ. Research progress on the biogeography of soil fungi[J]. Chinese Journal of Ecology, 2024. https://kns.cnki.net/kcms2/detail/21.1148.
 Q.20230712.1812.024.html (in Chinese).
- [10] LI T, HU YJ, HAO ZP, LI H, WANG YS, CHEN BD. First cloning and characterization of two functional aquaporin genes from an arbuscular mycorrhizal fungus *Glomus intraradices*[J]. New Phytologist, 2013, 197(2): 617-630.
- [11] 屈璐璐, 郭秀芳, 贾振宇, 张跃华, 杨占坤, 马怀林, 刘亚 玲. 丛枝菌根真菌提高植物非生物逆境胁迫适应性研 究进展[J]. 草学, 2024(1): 4-9. QU LL, GUO XF, JIA ZY, ZHANG YH, YANG ZK, MA HL, LIU YL. Review on the progress of adaptability to abiotic stress adversity by arbuscular mycorrhizal fungi in plants[J]. Journal of Grassland and Forage Science, 2024(1): 4-9 (in Chinese).
- [12] 段海霞,师茜,康生萍,苟海青,罗崇亮,熊友才.丛枝菌 根真菌和根瘤菌与植物共生研究进展[J]. 草业学报, 2024, 33(5): 166-182.
 DUAN HX, SHI Q, KANG SP, GOU HQ, LUO CL, XIONG YC. Advances in research on the interactions among arbuscular mycorrhizal fungi, rhizobia, and plants[J]. Acta Prataculturae Sinica, 2024, 33(5): 166-182 (in Chinese).
- [13] YANG HL, LIAO YY, ZHANG J, WANG XL. Comparative transcriptome analysis of salt tolerance mechanism of *Meyerozyma guilliermondii* W2 under NaCl stress[J]. 3 Biotech, 2019, 9(7): 286.
- [14] 侯冠群,来剑斌,李静,刘振,公华锐,王兵,孙志刚,欧阳竹,侯瑞星.成土时间对黄河三角洲植物及微生物演替的影响[J]. 生态学报, 2022, 42(21): 8839-8859. HOU GQ, LAI JB, LI J, LIU Z, GONG HR, WANG B,

SUN ZG, OUYANG Z, HOU RX. Driving force of soil age on vegetation and microbial succession in the Yellow River Delta[J]. Acta Ecologica Sinica, 2022, 42(21): 8839-8859 (in Chinese).

[15] 刘冉冉.盐地碱蓬高亲和硝酸盐转运蛋白基因SsNRT2.1 和SsNRT2.5的功能研究[D].济南:山东师范大学博士 学位论文,2022.

LIU RR. Functional study on high-affinity nitrate transporter genes *SsNRT2.1* and *SsNRT2.5* of *Suaeda salsa*[D]. Jinan: Doctoral Dissertation of Shandong Normal University, 2022 (in Chinese).

- [16] XIANG ZZ, CHEN X, BAI J, LI BH, LI H, HUANG X. Salt-tolerant heterotrophic nitrification and aerobic denitrification (HNAD) bacterium enhancing a pilot-scale moving bed biofilm reactor (MBBR) treating mariculture wastewater treatment with different COD/TN ratios[J]. Journal of Water Process Engineering, 2022, 50: 103278.
- [17] 胡此海,杨絮,郭全友,郑尧,李保国,范逸文.四川泡菜 母水的微生物群落与理化特性分析[J].中国食品学报, 2024, 24(2): 281-291.
 HU CH, YANG X, GUO QY, ZHENG Y, LI BG, FAN YW. Analysis of microbial community and physicochemical characteristicsin Sichuan pickle brine[J]. Journal of Chinese Institute of Food Science and Technology, 2024, 24(2): 281-291 (in Chinese).
- [18] 陈炳铭, 冯文婷, 王玉刚, 陈园园, 李彦. 脱硫石膏在碱 土改良中的无机固碳作用[J]. 土壤学报, 2024, 61(1): 247-257.
 CHEN BM, FENG WT, WANG YG, CHEN YY, LI Y. Inorganic carbon sequestration effect of desulfurized

gypsum in alkaline soil improvement[J]. Acta Pedologica Sinica, 2024, 61(1): 247-257 (in Chinese).

- [19] 邢华.亚热带森林真菌群落的驱动机制及与稀有树种 百山祖冷杉关系的研究[D].上海:华东师范大学博士 学位论文, 2024.
 XING H. Driving mechanisms of fungal community and their relationships with the rare tree species *Abies beshanzuensisin* in a subtropical forest[D]. Shanghai: Doctoral Dissertation of East China Normal University, 2024 (in Chinese).
- [20] 李铁,齐梦迪,张克英,王建萍,白世平,曾秋凤,彭焕伟, 玄月,吕莉,丁雪梅,育雏期饲粮中添加益生菌对蛋鸡 育雏育成期生长发育、免疫功能和肠道微生物的影 响[J].中国畜牧杂志,2024,60(5):299-305.
 LI T, QI MD, ZHANG KY, WANG JP, BAI SP, ZENG QF, PENG HW, XUAN Y, LÜ L, DING XM. Effects of probiotics on growth, immune function and intestinal microorganisms of laying hens during brooding period[J]. Chinese Journal of Animal Science, 2024, 60(5): 299-305
- (in Chinese).
 [21] 刘璐佳,杨阳,景伟超,王有鹏,基于16S核糖体DNA基因测序技术探讨分消走泄法对支气管哮喘大鼠肠道菌群的影响[J].环球中医药,2024,17(2):223-231.
 LIU LJ, YANG Y, JING WC, WANG YP. Study on the effect of dissipation and discharge method on intestinal microflora in bronchial asthmatic rats based on 16S rDNA gene sequencing technology[J]. Global Traditional Chinese Medicine, 2024, 17(2): 223-231 (in Chinese).
- [22] 李华军,林杨,王润哲,王佑安,汪晓亚.土地利用对东

洞庭湖湿地植物多样性及土壤性状的影响[J]. 南方农机, 2024, 55(6): 20-23.

LI HJ, LIN Y, WANG RZ, WANG YA, WANG XY. Effects of land use on plant diversity and soil properties in East Dongting Lake wetland[J]. China Southern Agricultural Machinery, 2024, 55(6): 20-23 (in Chinese).

- [23] 王艳红, 郝兆, 薛文凯, 孟华旦尚, 德吉, 郭小芳. 纳木措 不同水文期水体酵母菌影响因素分析[J]. 中国环境科 学, 2023. 43(4): 2028-2038.
 WANG YH, HAO Z, XUE WK, MENG HDS, DE J, GUO XF. Environmental factors affecting yeast community structure during different hydrological periods in Nam Co Lake[J]. China Environmental Science, 2023, 43(4): 2028-2038 (in Chinese).
- [24] 李浩宇.明永冰川及其退却地区垂直气候带的细菌群 落多样性研究[D].昆明:昆明理工大学博士学位论文, 2016.

LI HY. Bacterial community diversity in the vertical climatic zones of Mingyong Glacier and retreat region[D]. Kunming: Doctoral Dissertation of Kunming University of Science and Technology, 2016 (in Chinese).

- [25] LIU Z, LI J, HOU RX, ZHANG YT, GONG HR, SUN YF, OUYANG Z, SUN ZG. Plant rhizospheres harbour specific fungal groups and form a stable co-occurrence pattern in the saline-alkali soil[J]. Agronomy, 2023, 13(4): 1036.
- [26] 王晓丽, 其勒格尔. 黄河内蒙古段表层沉积物细菌多样 性及群落结构类型[J]. 生态学报, 2020, 40(2): 578-589.
 WANG XL, QI LGE. Bacterial diversity and community structure in surface sediments of Yellow River from Inner Mongolia section[J]. Acta Ecologica Sinica, 2020, 40(2): 578-589 (in Chinese).
- [27] 邹春景. 碱蓬对盐渍土壤中微生物降解 PAHs 的促进作用 及机制研究[D]. 济南: 齐鲁工业大学硕士学位论文, 2024. ZOU CJ. Study on the promoting and mechanism of microbial degradation of PAHs by *Suaeda glauca* in saline soils[D]. Jinan: Master's Thesis of Qilu University of Technology, 2024 (in Chinese).
- [28] 王明涛, 赵玉红, 苗彦军, 马素洁, 包赛很那, 徐雅梅, 雷 变霞. 不同土地利用方式对藏东南典型草原土壤真菌 群落的影响[J]. 草地学报, 2023, 31(4): 992-1000.
 WANG MT, ZHAO YH, MIAO YJ, MA SJ, BAO S, XU YM, LEI BX. Effects of different land use patterns on soil fungal community in typical steppe of southeastern Xizang[J]. Acta Agrestia Sinica, 2023, 31(4): 992-1000 (in Chinese).
- [29] KUZYAKOV Y, JONES DL. Glucose uptake by maize roots and its transformation in the rhizosphere[J]. Soil Biology and Biochemistry, 2006, 38(5): 851-860.
- [30] SUN XR, XU MY, KONG WL, WU F, ZHANG Y, XIE XL, LI DW, WU XQ. Fine identification and classification of a novel beneficial *Talaromyces* fungal species from Masson pine rhizosphere soil[J]. J Fungi (Basel), 2022, 8(2): 155.
- [31] NASCIMENTO MF, BARREIROS R, OLIVEIRA AC, FERREIRA FC, FARIA NT. *Moesziomyces* spp. cultivation using cheese whey: new yeast extract-free media, β-galactosidase biosynthesis and mannosylerythritol lipids production[J]. Biomass Conversion and

Biorefinery, 2024, 14(5): 6783-6796.

- [32] BASOTRA N, KAUR B, di FALCO M, TSANG A, CHADHA BS. Mycothermus thermophilus (syn. Scytalidium thermophilum): repertoire of a diverse array of efficient cellulases and hemicellulases in the secretome revealed[J]. Bioresour Technol, 2016, 222: 413-421.
- [33] SAIBI W, AMOURI B, GARGOURI A. Purification and biochemical characterization of a transglucosilating β-glucosidase of *Stachybotrys* strain[J]. Applied Microbiology and Biotechnology, 2007, 77(2): 293-300.
- [34] 赵欣, 王怡霏, 王嘉嘉, 王佩瑶, 王桂端, 朱利霞, 李俐 俐. 木霉菌对作物及土壤生态环境的影响[J]. 中国农业 科技导报, 2023, 25(11): 166-172.
 ZHAO X, WANG YF, WANG JJ, WANG PY, WANG GD, ZHU LX, LI LL. *Trichoderma* affects crop growth and soil ecological environment[J]. Journal of Agricultural Science and Technology, 2023, 25(11): 166-172 (in Chinese).
- [35] DASKAYA-DIKMEN C, KARBANCIOGLU-GULER F, OZCELIK B. Cold active pectinase, amylase and protease production by yeast isolates obtained from environmental samples[J]. Extremophiles, 2018, 22(4): 599-606.
- [36] MOHARRAM AM, ABDEL-GALIL FA, HAFEZ WMM. On the enzymes' actions of entomopathogenic fungi against certain indigenous and invasive insect pests[J]. Egyptian Journal of Biological Pest Control, 2021, 31(1): 51.
- [37] 刘邮洲, 沈佳慧, 乔俊卿, 左杨, 刘永锋. 芽孢杆菌嗜铁 素研究进展[J]. 江苏农业学报, 2023, 39(1): 266-276. LIU YZ, SHEN JH, QIAO JQ, ZUO Y, LIU YF. Research progress of siderophore produced by *Bacillus* spp. [J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(1): 266-276 (in Chinese).
- [38] di FRANCESCO A, ZAJC J, STENBERG JA. *Aureobasidium* spp.: diversity, versatility, and agricultural

utility[J]. Horticulturae, 2023, 9(1): 59.

- [39] 马艺源,张守梅,冯春辉,李伟.菲律宾海盆沉积物可培养真菌及其温度、盐度适应性初步研究[J]. 菌物学报,2020,39(7):1291-1300.
 MA YY, ZHANG SM, FENG CH, LI W. Fungi isolated from deep-sea sediments of the Philippine Sea Basin and their adaptation to temperature and salinity[J]. Mycosystema, 2020, 39(7): 1291-1300 (in Chinese).
- [40] REVERCHON F, MARÍA del ORTEGA-LARROCEA P, PÉREZ-MORENO J. Saprophytic fungal communities change in diversity and species composition across a volcanic soil chronosequence at Sierra del Chichinautzin, Mexico[J]. Annals of Microbiology, 2010, 60(2): 217-226.
- [41] KANG P, PAN YQ, RAN YC, LI WN, SHAO MX, ZHANG YQ, JI QB, DING XD. Soil saprophytic fungi could be used as an important ecological indicator for land management in desert steppe[J]. Ecological Indicators, 2023, 150: 110224.
- [42] MacDONALD J, SUZUKI H, MASTER ER. Expression and regulation of genes encoding lignocellulosedegrading activity in the genus *Phanerochaete*[J]. Applied Microbiology and Biotechnology, 2012, 94(2): 339-351.
- [43] CAMERON MD, TIMOFEEVSKI S, AUST SD. Enzymology of *Phanerochaete chrysosporium* with respect to the degradation of recalcitrant compounds and xenobiotics[J]. Applied Microbiology and Biotechnology, 2000, 54(6): 751-758.
- [44] 赵玉鑫,张铁,赵玉晓,华栋梁,于合龙.青霉菌对秸秆 复合菌系好氧发酵的影响[J].可再生能源,2022,40(3): 285-291.
 ZHAO YX, ZHANG T, ZHAO YX, HUA DL, YU HL. Effect of *Penicillium* on the degradation of straw by compound bacterium agent[J]. Renewable Energy Resources, 2022, 40(3): 285-291 (in Chinese).