Research Article 研究报告

基于电子分配的化能自养细菌培养策略

何晓敏,林炜铁,罗剑飞*

华南理工大学 生物科学与工程学院, 广东 广州

何晓敏,林炜铁,罗剑飞. 基于电子分配的化能自养细菌培养策略[J]. 微生物学报, 2025, 65(2): 698-714. HE Xiaomin, LIN Weitie, LUO Jianfei. Culture strategy of chemoautotrophic bacteria based on electron distribution[J]. Acta Microbiologica Sinica, 2025, 65(2): 698-714.

要:【目的】针对化能自养细菌培养困难的问题,本研究基于电子分配理论分析它们难培养 摘 的原因,并基于纯培养探究电子分配策略对提高化能自养细菌生物量的可行性。【方法】从维持 细胞内 pH 平衡和最适能量代谢的角度,计算得出硫氧化细菌盐硫小杆菌(Halothiobacillus) DCM-3、 亚硝酸盐氧化细菌硝化杆菌(Nitrobacter) N1 及氨氧化细菌亚硝化单胞菌(Nitrosomonas) SCUT-1 氧 化相应底物产生的电子最终分配给 O2 与 CO2 的最优比例,并以相应菌株为对象,分别设置不同 的 O₂与 HCO₃-(CO₂)摩尔量比例以形成不同的电子分配比例进行纯培养验证,用离子色谱仪和紫 外分光光度计检测底物和产物浓度,用稀释涂布法测定细胞密度。【结果】DCM-3、N1和 SCUT-1 菌株的最优分配比例分别为 0.733:0.267、 0.867:0.133 和 0.6:0.4。若基于最优电子分配比例的条 件, DCM-3、N1 和 SCUT-1 菌株分别可合成 3.967 ATP/S2O32-、0.433 ATP/NO2-和 1.35 ATP/NH3。 根据计算结果,其难培养的原因主要为单位底物提供的能量合成的 ATP 数量少,且要求适当控 制低氧气浓度及补充适量的无机碳。纯培养验证中, DCM-3 菌株在最优比例下的生物量为 6.5×107 CFU/mL, 是不控制比例的对照组的 2.2 倍。N1 菌株在最优比例下的生物量为 7×106 CFU/mL, 与对照组无显著差异,但最优比例的 HCO3 浓度(0.4 mmol/L)明显低于对照组(2.5 mmol/L),该菌 株表现出倾向于较高氧气但对 CO2 需求低的生长特性,与计算得到的最优比例相符。SCUT-1 菌 株在控制 O2 和 CO2 量的实验组中的单位 NH₄+浓度生物量积累达 1.3×10⁶ CFU/(mL⋅(mmol/L))以 上,比充足 O2和 CO2量条件的高 25%-40%。【结论】基于电子分配的化能自养细菌培养策略, 通过限制 O2和 CO2摩尔量并形成一定比例从而限制电子分配的培养条件,有助于提高同一底物 条件下的生物量积累,为化能自养细菌的培养提供一定的策略参考。

关键词: 化能自养细菌; 电子分配; 能量代谢; 纯培养

资助项目: 国家自然科学基金(91951118, 41977034)

This work was supported by the National Natural Science Foundation of China (91951118, 41977034). *Corresponding author. E-mail: ljfjf2002@scut.edu.cn

Received: 2024-08-28; Accepted: 2024-11-06; Published online: 2024-11-19

Culture strategy of chemoautotrophic bacteria based on electron distribution

HE Xiaomin, LIN Weitie, LUO Jianfei^{*}

School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China

Abstract: [Objective] In view of the difficulty in the culture of chemoautotrophic bacteria, this study analyzed the reasons for the difficulty based on the theory of electron distribution and explored the feasibility of using the electron distribution strategy for increasing the biomass of chemoautotrophic bacteria based on pure culture. [Methods] From the perspective of maintaining intracellular pH balance and optimal energy metabolism, we calculated the optimal distribution ratios of electrons produced by the sulfur-oxidizing bacterial strain Halothiobacillus sp. DCM-3, nitrite-oxidizing bacterial strain Nitrobacter sp. N1, and ammonia-oxidizing bacterial strain Nitrosomonas sp. SCUT-1 to O_2 and CO_2 by oxidizing corresponding substrates. Furthermore, different molar ratios of O2 to HCO3⁻ (CO2) were set respectively to form different electron distribution ratios for pure culture verification of the strains. Substrate and product concentrations were measured by ion chromatography and ultraviolet spectrophotometry, and cell density was measured by the dilution coating method. [Results] The optimal electron distribution ratios of strains DCM-3, N1, and SCUT-1 were 0.733:0.267, 0.867:0.133, and 0.6:0.4, respectively. Based on the optimal electron distribution ratios, strains DCM-3, N1, and SCUT-1 could synthesize 3.967 ATP/S₂O₃²⁻, 0.433 ATP/NO₂⁻, and 1.35 ATP/NH₃, respectively. According to the calculation results, the main reasons for the difficulty in culture were the small amount of ATP synthesized with the energy provided by per unit substrate and the need to control a low oxygen concentration and supplement an appropriate amount of inorganic carbon. The results of pure culture verification showed that the biomass of DCM-3 under the optimal ratio was 6.5×10^7 CFU/mL, which was 2.2 times that of the control group. The biomass of N1 under the optimal ratio was 7×10^6 CFU/mL, which was not significantly different from that of the control group. However, the HCO₃ concentration (0.4 mmol/L) of the optimal ratio of strain N1 was significantly lower than that (2.5 mmol/L) of the control group, which meant that the strain showed a growth characteristic of tending to higher oxygen concentration but lower CO₂ demand, which was consistent with the calculated optimal ratio. The biomass accumulation per unit NH₄⁺ concentration of SCUT-1 strain in the group with controlled O_2 and CO_2 was more than 1.3×10^6 CFU/(mL·(mmol/L)), which was 25% – 40% higher than that obtained under sufficient O₂ and CO₂. [Conclusion] The culture strategy of chemoautotrophic bacteria based on electron distribution restricts the culture conditions of electron distribution by limiting the molar amounts and forming a certain ratio of O₂ and CO₂, which helps to improve the biomass accumulation under the same substrate condition and provides certain strategic reference for the culture of chemoautotrophic bacteria.

Keywords: chemoautotrophic bacteria; electron distribution; energy metabolism; pure culture

化能自养细菌固定 CO2 进行自养生长,它 们催化的硫氧化、氨氧化、亚硝酸盐氧化等反 应在废水处理中发挥了关键的作用^[1-3]。然而, 化能自养细菌的生长缓慢、生物量较低,对环 境变化高度敏感,导致其培养难度较大。Nowka 等^[4]培养普通硝化杆菌(Nitrobacter vulgaris)、维 氏硝化杆菌(Nitrobacter winogradskyi)、莫斯科硝 化螺菌(Nitrospira moscoviensis)等亚硝酸盐氧化 细菌(nitrite-oxidizing bacteria, NOB)的研究中, 得出它们的生长代时为13-44h。化能自养硫氧 化细菌(sulfur-oxidizing bacteria, SOB), 盐硫小杆 菌属(Halothiobacillus sp.) LS2, 在 20% 氧浓度下 以1 mmol/L 硫代硫酸盐为底物时, 最大生物量 仅为 1.4×10⁷ 细胞/mL^[5]。Wu 等^[6]对分离得到的 氨氧化细菌(ammonia-oxidizing bacteria, AOB)亚 硝化单胞菌属(Nitrosomonas)菌株进行培养,在 1.5 mmol/L 底物浓度下,其最大生物量仅能达 到 10⁶ 细胞/mL。另外, 化能自养细菌对环境变 化有高敏感性,如底物浓度、光照、温度、pH 值、氧气、金属离子等^[7-8]。Wu等^[6]的研究中, 培养基顶空氧气浓度对 5 株 Nitrosomonas 的生 长有显著影响。Zhang 等研究发现, 化能自养细 菌释放的小分子有机碳(如氨基酸、有机酸)会通 过抑制卡尔文循环的关键酶核酮糖-1,5-二磷酸羧 化酶/加氧酶(ribulose-1,5-bisphosphate carboxylase/ oxygenase, RuBisCO)基因的转录效率来抑制细菌 的 CO₂ 固定, 异养细菌可帮助消耗这些有机物 解除抑制^[9]。化能自养细菌对环境变化的高敏感 性、对异养细菌解除环境因子毒害的依赖性, 极大地加强了培养的难度。关于化能自养细菌 的培养策略仍需进一步研究。

有氧条件下,化能自养细菌氧化底物产生的电子进入呼吸链后,一部分沿正向传递给终端氧化酶还原 O₂ 同时形成跨膜质子梯度(proton motive force, PMF),由 ATP 合成酶利用 PMF 合

成 ATP; 另一部分电子沿逆向传递给复合体 I 合 成 NADH 等还原力同时消耗 PMF,还原力最终 主要用于固定 CO2。可认为, 化能自养细菌氧 化底物产生的电子进入呼吸链用于 ATP 和还原 力的合成,最终按一定比例分配给 O₂和 CO₂。 从维持细胞内 pH 平衡和最适能量代谢(合成 ATP 和还原力的比例与固碳途径所需的一致)的 角度,可计算出该比例理论值。若忽略细胞内 物质代谢对 pH 的影响,理论上 $\Delta H^+_{out} = \Delta H^+_{in}$, 在电子分配给 O_2 和 CO_2 的过程中,若比例发生 变化(如固碳效率降低而底物氧化速率不变时, 绝大部分电子传递给 O₂,细胞缺乏对 ATP 和还 原力的需求),将导致 $\Delta H^+_{out} > \Delta H^+_{in}$,引起细胞 内 pH 变化,进而影响细胞生长代谢。因此,为 了维持高效的底物氧化速率和固碳速率,理论 上底物氧化生成的电子必须按一定比例分配给 O₂和CO₂₀

本研究针对化能自养细菌培养困难的问题, 从维持细胞内 pH 平衡和最适能量代谢的角度, 即 $\Delta H^+ = \Delta H^+_{out}$ (电子经复合体传递给 O₂, 质子 泵出细胞)-ΔH⁺_{in} (质子泵入细胞用于合成 ATP 和还原力)=0,以及合成的 ATP 和还原力都用于 固定 CO₂,从而计算得出 SOB 菌株 Halothiobacillus sp. DCM-3、NOB 菌株硝化杆菌 属 (Nitrobacter sp.) N1 以及 AOB 菌株 Nitrosomonas sp. SCUT-1 氧化相应底物产生的电 子,最终分配给 O2 与 CO2 的最优比例,根据最 优电子分配比例理论上分析其难培养的原因。 根据计算结果提出基于电子分配的化能自养细 菌培养策略,以相应菌株为对象,分别设置不 同的 O₂ 与 HCO₃⁻ (CO₂)摩尔量比例以形成不同 的电子分配比例进行纯培养验证,探讨最优电 子分配比例策略对提高化能自养细菌生物量积 累的可行性,为化能自养细菌的培养提供一定 的指导。

1 材料与方法

1.1 菌株和培养基

1.1.1 硫氧化细菌

化能自养硫氧化菌株 Halothiobacillus sp. DCM-3 由本课题组分离获得。

液体培养基(g/L): MgCl₂ 0.12, CaCl₂·2H₂O 0.01, NaCl 1.00, Widdel 微量元素液^[10] 1 mL/L, 121 ℃ 灭 菌 20 min 后 , 加 入 Na₂S₂O₃·5H₂O 0.248, NH₄Cl 0.027, FeCl₂·4H₂O 0.008, 磷酸缓 冲液 10 mmol/L, NaHCO₃的添加量设置与最优 电子分配比例的计算结果及底物氧化产生的电 子量有关,试剂使用 0.22 µm 孔径的聚醚砜滤膜 (天津市津腾实验设备有限公司)进行过滤除菌, 培养基 pH 6.75-7.05。

固体培养基(g/L): K₂HPO₄ 0.40, MgSO₄· 7H₂O 0.12, NH₄Cl 0.10, KNO₃ 0.40, 琼脂 15.00, 121 ℃灭菌 20 min 后,加入 Na₂S₂O₃·5H₂O 2.48, NaHCO₃ 0.20, FeSO₄·7H₂O 0.02,试剂进行过滤 除菌,培养基 pH 6.5-6.8。

1.1.2 亚硝酸盐氧化细菌

亚硝酸盐氧化菌株 Nitrobacter sp. N1 由本 课题组^[11]于珠江穗石码头水样分离获得,该菌 株与 Nitrobacter winogradskyi Nb-255 相似度最 高(99.58%)。

液体培养基(g/L): MgSO₄·7H₂O 0.25, CaCl₂· 2H₂O 0.01, NaCl 1.00, Widdel 微量元素液^[10] 1 mL/L, 121 °C灭菌 20 min 后,加入 NaNO₂ 0.35, 磷酸缓冲液 20 mmol/L,设定量的 NaHCO₃,试 剂进行过滤除菌,培养基 pH 6.9–7.0。

固体培养基(g/L): MgSO₄·7H₂O 0.25, CaCl₂·2H₂O 0.01, NaCl 1.00, K₂HPO₄ 0.30, Widdel 微量元素液^[10] 1 mL/L, 琼脂 15.00, 121 ℃ 灭菌 20 min 后,加入 NaNO₂ 0.69, NaHCO₃ 0.20, 试剂进行过滤除菌,培养基 pH 6.6-6.9。

1.1.3 氨氧化细菌

氨氧化菌株 Nitrosomonas sp. SCUT-1 由本 课题组^[6]于生活废水分离获得,该菌株与菌种 Nitrosomonas ureae 相似度最高(95.54%)。

液体培养基(g/L): MgSO₄·7H₂O 0.05, CaCl₂·2H₂O 0.02, NaCl 0.50, 121 ℃灭菌 20 min 后,加入 NH₄Cl 0.053 5,磷酸缓冲液 6 mmol/L, 微量元素^[10] 1 mL/L,设定量的 NaHCO₃,试剂 进行过滤除菌,培养基 pH 7.50-7.65。

固体培养基(g/L): MgSO₄·7H₂O 0.05, NaCl 0.50, KH₂PO₄ 0.10, CaCO₃ 5.00, 琼脂 15.00, 121 ℃灭菌 20 min 后,加入 NH₄Cl 0.535, NaHCO₃ 0.42,微量元素^[10] 2 mL/L,试剂进行 过滤除菌,培养基 pH 7.9-8.0。AOB 固体培养 基采用血清瓶密封平板^[6],以 125 mL 血清瓶为 容器,并使用丁腈胶塞与铝盖构建密闭环境, 使用 Parafilm™封口膜包裹血清瓶口。

1.2 主要试剂和仪器

五水硫代硫酸钠、盐酸萘乙二胺,上海麦 克林生化科技股份有限公司;氯化铵、碳酸氢 钠、水杨酸钠、亚硝基铁氰化钠二水化合物、 二氯异氰尿酸钠,阿拉丁试剂(上海)有限公司; 亚硝酸钠、磺胺,天津市大茂化学试剂厂;氨 基磺酸,上海凌峰化学试剂有限公司;高氯酸, 成都市科隆化学品有限公司。

振荡培养箱,上海知楚仪器有限公司;气 相色谱仪,浙江福立分析仪器股份有限公司; 离子色谱仪,赛默飞世尔科技公司;紫外分光 光度计,尤尼柯(上海)仪器有限公司。

1.3 液体培养基顶空条件的制备及顶空 氧气量的测定

液体培养基顶空条件的制备:每个 125 mL 血清瓶分装 50 mL 液体培养基,顶空体积为 70 mL。血清瓶用丁腈胶塞和铝盖密封后沸水浴 20 min,利用循环水式真空泵抽真空 7 min,充 入 0.15 MPa 氩气 1 min, 之后抽真空 4 min 充入 Ar 1 min 循环 4 次, 最后充入 0.12-0.13 MPa Ar 2 min。顶空添加各实验条件所需的氧气量。

对装有 50 mL 液体的 125 mL 血清瓶完成顶 空去除空气的操作后,加入一定量的氧气并高 温湿热灭菌,液体溶氧使用氧电极测定,该预 实验结果表明,当不额外添加氧气时顶空氧气 的量与液体溶氧相近,添加氧气后,液体溶氧 占比随着顶空氧气添加量的提高而减小,占比 减小至约 5%(表 1)。因此液体培养基的氧含量 可以顶空氧气的量表征。

液体培养基顶空氧气的量采用气相色谱仪 测定,使用 ECD 检测器和 Porapak-Q 柱,Ar 作 载气,进样口、ECD 检测器和柱温度分别为 100、300、70 ℃,载气流速为 30 mL/min,进 样体积为1 mL。标准曲线为氧气体积分数与峰 面积的线性关系。氧气体积分数与氧气摩尔量 的换算如公式(1)所示。

$$N = v \times 0.07/24.5$$
 (1)

式中, *N* 为氧气的量(mol), *v* 为氧气体积分数, 0.07 指顶空体积为 0.07 L, 24.5 为 25 ℃下的气体摩尔常数(L/mol)。

1.4 培养液中底物和产物含量的检测

S₂O₃²⁻和 SO₄²⁻含量的检测使用离子色谱仪, Dionex IonPac AS19 IC 柱,淋洗液为 18 mmol/L KOH,流速为 1 mL/min,抑制器电流为 45 mA,

表1 液体顶空氧气含量与液体溶氧的测定

Table 1 Measurement of oxygen content in liquid headspace and dissolved oxygen

柱温 30 ℃, 背景电导 4-6 µs/cm, 进样量 25 µL。

NO₂⁻含量的检测:参照国标(HJ 634—2012), 选用盐酸萘乙二胺显色法进行检测^[12]。

NO₃⁻含量的检测参照 Cawse 的方法进行^[13]。 将 100 μL 培养液与 100 μL 质量分数为 2% 的氨 基磺酸溶液充分混匀,并于室温条件下反应 2 min,再加入 800 μL 体积分数为 5% 的高氯酸 溶液,混合均匀后于 203 nm 处读取吸光值。

NH₄⁺含量的检测参照 Hood-Nowotny 等的方 法进行^[14]。显色液 A: 8.5 g 水杨酸钠、0.6 g 氢 氧化钠、0.063 9 g 亚硝基铁氰化钠二水化合物 溶于 50 mL 去离子水中;显色液 B: 0.2 g 二氯 异氰尿酸钠溶于 50 mL 去离子水中。将 100 μL 培养液与 100 μL 显色液 A、100 μL 显色液 B 以 及 1.7 mL 水充分混合,室温条件下反应 30 min 后,于 660 nm 处读取吸光值。

1.5 最优电子分配比例的计算方法

最优电子分配比例计算根据 CO₂ 固定中 ATP 和还原力的比例,以及维持细胞内 pH 平衡 的原则,计算时只考虑与底物氧化、CO₂ 固定途 径及呼吸链相关的胞内质子浓度变化,忽略胞 内其他代谢途径导致的质子浓度变化,且只涉 及相应细菌的某一主要底物及电子受体为 O₂ 的 计算。在计算相应菌株的最优分配比例时,需 对该菌株的基因组进行分析,明确其主要底物 的代谢途径、固碳途径及呼吸链组分,从而确

Oxygen addition (mL)	Oxygen volume fraction in headspace (%)	Molar quantity of oxygen in headspace $(\times 10^{-4} \text{ mol})$	Dissolved oxygen in liquid (mg/L)	Molar quantity of oxygen in liquid $(\times 10^{-4} \text{ mol})$	Total molar quantity of oxygen $(\times 10^{-4} \text{ mol})$
0.00	0.092	0.027	1.040	0.016	0.043
0.86	1.067	0.314	1.205	0.019	0.333
1.72	2.470	0.726	1.710	0.027	0.753
2.62	3.509	1.031	1.903	0.030	1.061
5.00	7.223	2.123	3.110	0.049	2.172

🖂 actamicro@im.ac.cn, 🕾 010-64807516

定电子去向、ATP 和还原力的来源等。维持胞内 pH 平衡是指胞内增加的质子数等于胞内减少的质子数。假设胞内增加质子为"-",减少质子为"+",则胞内 $\Delta H^{+}=\Delta H^{+}_{out}+\Delta H^{+}_{hehňt}-\Delta H^{+}_{hehňt}henghing=0。$

细菌的电子传递链是分支型的,底物被氧 化产生的电子可直接传递给细胞色素c或醌 (ubiquinone, Q), 而不一定从复合物 I 开始按顺 序传递。其中,电子传递链的复合体 I、复合体 III、复合体 IV 及复合体 V (ATP 合成酶)的催化 活性都与 PMF 耦合。细菌中的典型复合体 I (NDH-I 酶)催化 NADH 和 Q 之间的电子传递, 每个电子的传递驱动 2 个质子的跨膜转移, 与 线粒体复合体 I 密切相关, 该质子泵是完全可逆 的,因此该酶也可以催化 QH2 还原 NAD⁺产生 NADH, 并消耗 PMF^[15-16]。原核生物的复合体 III 催化 QH₂和细胞色素 c 之间的电子传递, 每 传递2电子会将胞质的2H⁺转移到质膜外,且质 膜上 QH₂氧化也会释放 2H⁺到膜外,则真正涉 及胞内质子变化的是从胞质转运的 2H⁺,因此设 复合体 III 的 H⁺/e⁻比为 1^[17]。不同细菌含有的复 合体 IV 类型不同,不同培养条件下也可能表达 不同类型的复合体 IV,其中典型的细胞色素 aa, 终端氧化酶传递 1e⁻给 O₂ 跨膜转运 1H⁺,并消耗 胞内 $1H^+$ 形成 $H_2O^{[18]}$ 。此处假设复合体 IV 的 H⁺/e⁻比为1,且有氧条件下消耗胞内1H⁺形成 H₂O。复合体 V (ATP 合成酶)消耗 PMF 合成 ATP, 细菌中主要的 ATP 合成酶是 F₀F₁-ATP 合 成酶。大肠杆菌的 F₀F₁-ATP 合成酶结构中,胞 质侧的 F_1 部分起催化作用且有 3 个催化位点; 质子跨膜的途径位于 Fo 部分,转运的质子数与 c亚基数量有关,而 c亚基的数量随物种而不 同,截至目前已报道的细菌 ATP 合成酶的 c 亚 基数量为 9-15 个,一个包含 n 个 c 亚基的转子 环每转移 n 个质子产生 3 个 ATP^[19-20]。然而,

目前硫氧化细菌和硝化细菌的 ATP 合成酶具体 结构尚未被报道,此处假设其 ATP 合成酶的 c 亚基数量为 12,则合成 1 分子 ATP 需跨膜转运 4H⁺。根据底物氧化产生的电子进入呼吸链的位 置,假设需 x 电子沿传递链正向传递给氧气, y 电子沿传递链逆向传递,合成还原力,最终传 递给 CO₂,该过程合成的 ATP 与还原力正好符 合 CO₂ 固定途径中的相应比例。由于还原 1 分 子 O₂需要 4e⁻,则氧化 1 分子底物需要 x/4 分子 O₂。所需 CO₂ 的量与具体固碳途径中 CO₂ 的化 学计量数相关。

1.6 化能自养菌株纯培养验证最优分配 比例

1.6.1 实验种子液的制备

从固体培养基上挑取菌落到 50 mL 液体培养基(顶空为空气,添加 0.20 g/L NaHCO₃)中,在 30 ℃、150 r/min 的条件下摇床培养,SOB 和 NOB 菌株在底物消耗 80% 以上后以 2% 接种量传代,AOB 菌株在底物消耗 50% 以上后以 4% 接种量传代。

将上述的 SOB 和 NOB 传代培养物以 3% 接种量,接种至 2 瓶顶空为空气的 150 mL 液体培养基中,AOB 传代培养物以 6% 接种量接种至 6 瓶顶空为空气的 50 mL 液体培养基中。在 30 ℃、150 r/min 的条件下摇床培养,当 SOB 和 NOB 培养液的底物消耗 80% 以上、AOB 培养 液的底物消耗 50% 以上,用孔径 0.22 μm 的聚 醚砜滤膜抽滤收集菌体,再用 150 mL 无底物和 HCO₃ 的空白培养基重悬膜上的菌体,再次用 新的滤膜抽滤收集菌体,最终加入约 25 mL 空 白培养基重悬菌体并取出滤膜,作为实验种 子液。

1.6.2 菌株在不同 **O**₂ 与 **HCO**₃⁻ (**CO**₂)摩尔 量比例下的纯培养

假设由于物理化学平衡,顶空加入的 O2 随

着液体溶氧的消耗而不断溶于液体中,加入的 HCO₃⁻随着 CO₂的减少而不断转化为 CO₂直至 耗完。将种子液以 1% 接种量接种至不同 O₂与 HCO₃⁻ (CO₂)摩尔量比例的实验组及不控制比例 的对照组培养基(顶空为空气,添加 0.20 g/L NaHCO₃)中,各组设2个生物平行。接种后使用 Parafilm™封口膜包裹血清瓶口,30 ℃、150 r/min 摇床培养。后续定时取样检测各瓶培养液的底 物和产物浓度,各组其中一个生物平行使用稀 释涂布法监测细菌的细胞密度。待培养物生长 到对数末期时,各组的2个生物平行都进行细 胞密度测定直至衰退期。各组的生物量积累为 各组 2 个生物学重复在稳定期的生物量平均值。

1.7 数据统计分析

利用 Origin 2019 软件进行统计分析,各组 生物量积累使用方差分析,当 P<0.05 时,认为 存在显著差异。

2 结果与分析

2.1 最优电子分配比例的计算

2.1.1 硫氧化细菌 *Halothiobacillus* sp. DCM-3 的最优分配比例计算

对 *Halothiobacillus* sp. DCM-3 的基因组序 列分析发现,其可通过周质中的硫氧化酶(Sox) 系统将 $S_2O_3^{2-}$ 氧化为 SO_4^{2-} ,完整的 Sox 系统由 SoxXA、SoxYZ、SoxB、Sox(CD)₂4 部分组成, 其中 SoxXA 含有 c 型血红素^[21-23]。该菌株氧化 $S_2O_3^{2-}$ 产生的电子由细胞色素 c (cyt c)传递进入呼 吸链,其氧化 $S_2O_3^{2-}$ 产生电子的主要传递路径见图 S1 [图 S1、图 S2 和图 S3 数据已提交国家微生物 科 学 数 据 中 心 (http://nmdc. cn), 编 号 为 NMDCX0001727]。

另外,对该菌株的基因组分析表明,其呼 吸链由典型的复合体组成,其CO₂固定途径为 卡尔文循环,起始酶为I型RuBisCO,另外还 有编码羧酶体结构的基因。卡尔文循环的总反 应式如式(2)所示。

 $CO_2+2NADPH+2H^++3ATP \rightarrow (CH_2O)+2NADP^++$

3ADP+3Pi+H₂O (2) 式中,(CH₂O)为糖的简式,可得固定1分子 CO₂形成1分子(CH₂O),需要3分子ATP和 2分子NADPH^[24]。细菌通常以NADPH为还原 力固定CO₂,而在真核细胞线粒体和一些细菌 中广泛存在着一种膜结合的转氢酶 (transhydrogenase, TH),消耗PMF催化NAD(H) 与NADP(H)之间转氢——1分子NADH形成1 分子NADPH并转运1H⁺进入胞内^[25]。本次计 算假设细菌用于固碳的NADPH来源于消耗 PMF的转氢酶催化NADH转氢,计算如式(3) 所示。

 $x(O_2$ 为电子受体)+ $y(CO_2$ 为电子受体)=8 胞内 $\Delta H^+ = \Delta H^+_{out} + \Delta H^+_{notat} - \Delta H^+_{in} =$ $x(复合体IV, 泵出1H^+/e^-) + x(0.5O_2 + 2H^+ + 2e^- \rightarrow H_2O) + 0.5y(NAD^+ + 2e^- + H^+ \rightarrow NADH) +$ 0.5y(固定CO₂需要消耗的H⁺)- $y(复合体III, 泵 \land 1H^+/e^-) - 2y(复合体I, 泵 \land 2H^+/e^-) -$ 0.5y(NADP⁺ + NADH + H⁺_{out} → NADPH + NAD⁺ + H⁺_{in})-0.75y(ATP/NADPH = 3/2)× 4(复合体V, 泵 \land 4H^+/ATP) = 2x-5.5y = 0

(3)

计算得出 1 mol $S_2O_3^{2-}$ 氧化产生的 8 mol e⁻需 有 88/15 mol e⁻传递给 O₂, 32/15 mol e⁻逆向传递 形成还原力最终传递给 CO₂,即最优电子分配 比 例 为 0.733: 0.267。根 据 计 算 结 果, *Halothiobacillus* sp. DCM-3 氧化 1 mmol/L $S_2O_3^{2-}$ 需 1.467 mmol/L O₂ (即 3.59%)和 0.533 mmol/L CO₂ (即 1.31%)。若基于最优电子分配比例的条 件,由于 DCM-3 在周质侧氧化 1 分子 $S_2O_3^{2-}$ 产 生 10H⁺,则 8e⁻按比例传递给 O₂,可产生 3.967 ATP/S₂O₃²⁻。

2.1.2 亚硝酸盐氧化细菌 *Nitrobacter* sp. N1 的最优分配比例计算

NOB 利用亚硝酸盐氧化还原酶 (nitrite oxidoreductase, NXR)将 NO₂⁻氧化为 NO₃⁻。NXR 结合在细胞质膜上,可能由 NxrA (α)、NxrB (β) 和 NxrC (γ) 3 个亚基组成,含底物结合位点的 NxrA 亚基位于 *Nitrobacter* 的胞质侧^[26]。NxrC 是一个双血红素的细胞色素 c,可能作为终端氧 化酶的电子供体^[27]。

对 Nitrobacter winogradskyi Nb-255 的基因 组序列分析^[28]表明,该菌株的 nxrA、nxrB 与细 胞色素 c 及 NO₂⁻/NO₃⁻转运体 narK 在同一基因 簇上,推测 NO₂⁻氧化产生的电子经细胞色素 c 介导进入呼吸链。其呼吸链由典型的复合体组 成,其 CO₂ 固定途径为卡尔文循环,起始酶为 I 型 RuBisCO,另外还有编码羧酶体结构的基因 与 RuBisCO 基因相邻。该菌株氧化 NO₂⁻产生电 子的主要传递路径如附图 S2 所示。计算假设细 菌用于固碳的 NADPH 由转氢酶催化产生。计算 列式如公式(4)所示。

 $x(O_2$ 为电子受体)+ $y(CO_2$ 为电子受体)=2 胞内 $\Delta H^+ = \Delta H^+_{out} + \Delta H^+_{nbhate} - \Delta H^+_{nbhate} - \Delta H^+_{nbhate} - \Delta H^+_{nbhate} - \Delta H^+_{nbhate} = x(复合体IV, 泵出1H^+/e^-) + x(0.5O_2 + 2H^+ + 2e^- \rightarrow H_2O) + 0.5y(NAD^+ + 2e^- + H^+ \rightarrow NADH) + 0.5y(固定CO_2 需要消耗的H^+) - 2(胞质侧NXR氧化NO_2^-产生的H^+) - y(复合体III, 泵入1H^+/e^-) - 2y(复合体I, 泵入2H^+/e^-) - 0.5y(NADP^+ + NADH + H^+_{out} \rightarrow NADPH + NAD^+ + H^+_{in}) - 0.75y(ATP/NADPH = 3/2) × 4(复合体V, 泵入4H^+/ATP) = -2 + 2x - 5.5y = 0$

(4)

计算得出 1 mol NO₂⁻氧化产生的 2 mol e⁻需 有 26/15 mol e⁻传递给 O₂, 4/15 mol e⁻逆向传递 形成还原力最终传递给 CO₂,即最优电子分配比 例为 0.867:0.133。根据计算结果,*Nitrobacter* sp. N1 氧化 1 mmol/L NO₂⁻需 0.433 mmol/L O₂ (即 1.06%)和 0.067 mmol/L CO₂ (即 0.164%)。若基 于最优电子分配比例的条件, 1 分子 NO₂⁻产生 2e⁻按比例传递给 O₂, 可产生 0.433 ATP/NO₂⁻。

2.1.3 氨氧化细菌 *Nitrosomonas* sp. SCUT-1 的最优分配比例计算

AOB 利用膜结合的氨单加氧酶(ammonia monooxygenase, AMO)将周质中的 NH₃氧化为羟 胺, 再由周质中的羟胺氧化还原酶 (hydroxylamine oxidoreductase, HAO)将羟胺氧化 为 NO, 但氧化 NO 形成 NO₂-的酶尚未明 确^[29-30]。AMO 将氨氧化为羟胺的过程需要 2e⁻, 羟胺氧化为 NO2⁻产生 4e⁻,其中 HAO 氧化羟胺 产生的 3e⁻经过 cyt c₅₅₄ 传递给膜上的 cyt c_{m552}, 假设 NO 氧化产生的 1e⁻也传递给 cyt c_{m552}, 而 cyt cm552 有醌还原酶活性,则羟胺氧化产生的 4e⁻通过 cyt c_{m552} 传递给 Q, 并假设其中 2e⁻由 QH2 回补给 AMO 反应^[31-32]。对 Nitrosomonas sp. SCUT-1 的基因组并结合 Nitrosomonas europaea 的基因组^[33]分析表明,其CO2 固定途 径为卡尔文循环,存在典型的呼吸链复合体 I、 II、III、IV、V,以及依赖 PMF 的膜结合转氢 酶。Nitrosomonas sp. SCUT-1 将氨氧化为 NO₂-过程中的主要电子传递路径见图 S3, 计算列式 如公式(5)所示。

 $x(O_2$ 为电子受体)+ $y(CO_2$ 为电子受体)=2 胞内ΔH⁺=ΔH⁺_{out}+ΔH⁺_{胞内消耗}-ΔH⁺_{in}= x(复合体III, 泵出1H⁺/e⁻)+x(复合体IV,泵出1H⁺/e⁻)+ $x(0.5O_2+2H^++2e^-\rightarrow H_2O)+$ 0.5 $y(NAD^++2e^-+H^+\rightarrow NADH)+0.5y$ (固定CO₂需要消耗的H⁺)-2y(复合体I,泵入2H⁺/e⁻)-0.5 $y(NADP^++NADH+H^+_{out}\rightarrow$ NADPH+NAD⁺+H⁺_{in})-0.75y(ATP/NADPH=3/2)×4(复合体V, 泵入4H⁺/ATP)=3x-4.5y=0

(5)

假设固碳途径所需的 NADPH 由转氢酶催化 产生,1分子 NH₃氧化产生的 4e⁻最终有 2e⁻通 过 Q 进入呼吸链。计算得出,进入呼吸链的 2 mol e⁻需有 1.2 mol e⁻传递给 O₂,0.8 mol e⁻逆 向传递形成还原力最终传递给 CO₂,即最优电 子 分 配 比 例 为 0.6:0.4。根 据 计 算 结 果, *Nitrosomonas* sp. SCUT-1 氧化 1 mmol/L NH₃ 需 0.3 mmol/L O₂ (即 0.735%)和 0.2 mmol/L CO₂ (即 0.49%)。若基于最优电子分配比例的条件,由于 SCUT-1 在周质侧氧化 1 分子 NH₃产生 3H⁺,则 进入呼吸链的 2e⁻按比例传递给 O₂ 可产生 1.35 ATP/NH₃。

2.2 化能自养菌株纯培养验证最优分配 比例

2.2.1 硫氧化细菌 *Halothiobacillus* sp. DCM-3 的纯培养验证

在 50 mL 液体培养基中,添加的 1 mmol/L $S_2O_3^{2-}$ 被氧化后产生的电子量为 4×10⁻⁴ mol,由 于还原 O_2 和 CO_2 分别需 4 个电子,则所需 O_2 和 CO_2 的总量为 1×10⁻⁴ mol。根据最优比例计算 结果,设置不同 O_2 与 HCO_3^- (CO_2)摩尔量比例 分组,以及实际的 O_2 与 HCO_3^- (CO_2)摩尔量比例 例如表 2 所示,表 2 中平均氧气摩尔量的数据 以平均值±误差的形式呈现,为各组测得的 2 个 生物平行的氧气摩尔量平均值。其中比例④ (0.75:0.25)与 *Halothiobacillus* sp. DCM-3 的最优 比例计算结果相近。

在培养过程中,随着 $S_2O_3^{2-}$ 氧化产生 SO_4^{2-} , 各组培养液的 pH 均出现小幅度下降, 但都保持 在 6.0 以上。如图 1 所示, $S_2O_3^{2-}$ 与产生的 SO_4^{2-} 的化学计量数大概呈 1:2 的关系,且底物消耗及 产物产生的速率表现为与氧气的量呈正相关。 各组生长到达稳定期的时间与底物耗完的时间 邻近,但生物量积累与氧气的量不呈正相关。 对各组的生物量积累进行方差分析, ⑤的生物 量积累显著低于不控制比例的空白对照 (Control), ①与空白对照不存在显著差异, ②③ ④显著高于空白对照,表明在相同底物条件下, 适当控制 O₂和 HCO₃⁻ (CO₂)的摩尔量比例有利 于提高该菌株的生物量积累。其中,最优比例 ④的生物量积累显著高于②③,达到 6.5×107 CFU/mL, 是对照组的 2.2 倍, 表明在 相同底物条件下,通过控制 O_2 和 HCO₃⁻(CO₂) 的摩尔量比例形成相应的最优电子分配比例, 确实有助于得到该硫氧化菌株的最优生物量 积累。

2.2.2 亚硝酸盐氧化细菌 *Nitrobacter* sp. N1 的纯培养验证

在 50 mL 液体培养基中,添加的 5 mmol/L NO_2^- 被氧化后产生的电子量为 5×10⁻⁴ mol,所需

表2 DCM-3菌株培养实验的分组及各组的实际O2与HCO3⁻(CO2)的摩尔量比例

Table 2 The groups of DCM-3 strain culture experiment and the actual molar ratio of O_2 to HCO_3^- (CO₂) in each group

Groups	Oxygen addition (mL)	Average oxygen volume fraction (%)	Average molar quantity of oxygen $(\times 10^{-4} \text{ mol})$	Molar quantity of bicarbonate $(\times 10^{-4} \text{ mol})$	Actual molar ratio of oxygen to bicarbonate
① (0.15:0.85)	0.36	0.658	0.202±0.002	0.85	0.192:0.808
2 (0.35:0.65)	0.84	1.291	0.395 ± 0.019	0.65	0.378:0.622
③ (0.55:0.45)	1.31	1.732	0.530 ± 0.020	0.45	0.541:0.459
④ (0.75:0.25)	1.92	2.553	0.782 ± 0.021	0.25	0.758:0.242
⑤ (0.95:0.05)	2.60	3.171	0.971±0.035	0.05	0.951:0.049

🖂 actamicro@im.ac.cn, 🕾 010-64807516

何晓敏 等 | 微生物学报, 2025, 65(2)

图1 DCM-3菌株纯培养的 $S_2O_3^{2-}$ 和SO₄²⁻浓度变化、生物量变化和生物量积累。A:硫代硫酸盐; B:硫酸盐; C: 生物量变化; D: 生物量积累。

Figure 1 Changes of thiosulfate and sulfate concentrations, biomass change and biomass accumulation in pure culture of DCM-3 strain. A: Thiosulfate; B: Sulfate; C: Biomass change; D: Biomass accumulation.

 O_2 和 CO₂的总量为 1.25×10^{-4} mol。根据最优比 例计算结果设置的不同 O_2 与 HCO₃⁻ (CO₂)摩尔 量比例分组,以及实际的 O_2 与 HCO₃⁻ (CO₂)摩 尔量比例如表 3 所示,表 3 中平均氧气摩尔量 的数据以平均值±误差的形式呈现,为各组测得 的 2 个生物平行的氧气摩尔量平均值。其中比例③(0.85:0.15)与 *Nitrobacter* sp. N1 的最优比例 计算结果相近。培养实验的初始 pH 都接近中 性,为 6.9-7.0。

如图2所示,在培养过程中,各组底物消

表3 N1菌株培养实验的分组及各组的实际
$$O_2$$
与HCO₃⁻ (CO₂)的摩尔量比例

Table 3 The groups of N1 strain culture experiment and the actual molar ratio of O_2 to HCO_3^- (CO₂) in each group

Groups	Oxygen addition (mL)	Average oxygen volume fraction (%)	Average molar quantity of oxygen $(\times 10^{-4} \text{ mol})$	Molar quantity of bicarbonate $(\times 10^{-4} \text{ mol})$	Actual molar ratio of oxygen to bicarbonate
① (0.25:0.75)	0.74	1.143	0.327±0.041	0.95	0.256:0.744
2 (0.55:0.45)	1.72	2.832	0.809 ± 0.012	0.55	0.595:0.405
③ (0.85:0.15)	2.57	4.031	1.152±0.013	0.20	0.852:0.148

http://journals.im.ac.cn/actamicrocn

耗及产物产生的速率表现为与氧气的量呈正相 关。当氧气的量高于最优分配比例所需的量时 (即③和对照组),生长的稳定期与底物消耗完的 时间相邻,在底物耗完后的48h内进入衰亡期。 当氧气的量低于最优分配比例所需的量时(即① ②),生物量最大的稳定期与底物消耗完的时间 不相关,稳定期在底物消耗速率下降时出现, 且在底物消耗完之前已出现衰亡期。推测该 *Nitrobacter*菌株在5 mmol/L NO₂⁻条件下生长 时,若长期处于低于最优比例氧含量的环境中, 生长增殖受一定的抑制,表明在该底物条件下 其对氧的依赖性较高。对各组的生物量积累进 行方差分析,①②③组之间的生物量积累存在 显著差异,①②的生物量积累显著低于③和对 照组,表明在该底物条件下,高于最优比例的 氧含量有利于其生物量的积累。相比之下,③ 与对照组的生物量积累不存在显著差异,能达 到 7×10⁶ CFU/mL,其中③培养基的 HCO₃⁻浓度 为 0.4 mmol/L,显著低于对照组的 2.5 mmol/L HCO₃⁻浓度,但仍能达到与对照组相近的生物 量,表明该菌株对 CO₂的需求量较低。在 5 mmol/L NO₂⁻条件下,该*Nitrobacter*菌株表现 出倾向于较高氧气但对 CO₂需求低的生长特性, 与计算得到的最优分配比例相符。

图2 N1菌株纯培养的NO₂⁻和NO₃⁻浓度变化、生物量变化和生物量积累。A:亚硝酸盐;B:硝酸盐;C: 生物量变化;D:生物量积累。

Figure 2 Changes of nitrite and nitrate concentrations, biomass change and biomass accumulation in pure culture of N1 strain. A: Nitrite; B: Nitrate; C: Biomass change; D: Biomass accumulation.

2.2.3 氨氧化细菌 *Nitrosomonas* sp. SCUT-1 的纯培养验证

在 50 mL 液体培养基中,所添加的 1 mmol/L NH4⁺被氧化后进入呼吸链的电子量为 1×10⁻⁴ mol, 所需 O₂和 CO₂的总量为 0.25×10⁻⁴ mol。根据最 优比例计算结果设置的不同 O₂与 HCO₃⁻ (CO₂) 摩尔量比例分组,以及实际的 O₂与 HCO₃⁻ (CO₂) 摩尔量比例如表 4 所示,表中平均氧气摩尔量 的数据以平均值±误差的形式呈现,为各组测得 的 2 个生物平行的氧气摩尔量平均值。其中比 例②(0.55:0.45)与 *Nitrosomonas* sp. SCUT-1 的最 优比例计算结果相近。

如图 3 所示,在培养过程中,实验组培养 液的 pH 在 7.0-7.5 之间,而对照组 pH 上升到 8.0,可能是导致对照组氨氧化和细胞增殖停止 的主要原因,则对照组的生长量被显著低估。 实验组均在 600 h 后消耗完底物,但在培养前期 消耗不同浓度底物后进入稳定期并快速进入衰 亡期,为了更严谨地比较,利用单位 NH4+浓度 生物量积累来校正。在该底物条件下,比例③ 有最高生物量积累,达 6.5×10⁵ CFU/mL,比例 ①有最优的单位 NH4+浓度生物量积累,达 1.5×10⁶ CFU/(mL·(mmol/L))。方差分析表明, ①②③的单位 NH4+浓度生物量积累之间不存在 显著差异,均达到 1.3×10⁶ CFU/(mL·(mmol/L)) 以上。在 P<0.1 下可认为实验组的单位 NH4+浓 度生物量积累都显著高于对照组。由于本研究 的对照组生物量被显著低估,则与 Wu 等^[6]研究中 同一菌株在 O₂和 HCO₃⁻充足条件下的单位 NH₄⁺ 浓度生物量积累[1.07×10⁶ CFU/(mL·(mmol/L))]相 比,本研究实验组的单位 NH₄⁺浓度生物量积累 高 25%-40%。该结果表明,控制 O₂和 CO₂的 摩尔量比例有助于提高该 AOB 菌株对底物氨的 利用效率,从而提高单位 NH₄⁺浓度的生物量积 累,与最优电子分配比例的计算原则部分相符。 然而,当 O₂和 CO₂的量都较低时,可能不利于 该菌株固碳的正常进行,只能维持细胞的代谢, 导致后期的细胞增殖终止。

3 讨论与结论

化能自养细菌在废水处理中起重要作用, 但其生长缓慢、生物量较低、对环境变化高度 敏感,导致培养难度较大。有氧条件下,化能 自养细菌氧化底物产生的电子进入呼吸链用于 ATP 和还原力的合成,最终按一定比例分配给 O₂和 CO₂。本研究针对化能自养细菌培养困难 的问题,从维持细胞内 pH 平衡和最适能量代谢 的角度,计算得出了 SOB 菌株 *Halothiobacillus* sp. DCM-3、NOB 菌株 *Nitrobacter* sp. N1 以及 AOB 菌株 *Nitrosomonas* sp. SCUT-1 氧化相应底 物产生的电子最终分配给 O₂ 与 CO₂ 的最优比 例。根据计算结果,以上化能自养细菌氧化 1 mmol/L 的底物时,对 O₂的需求低于空气的氧 气浓度(21%),而所需 CO₂浓度高于空气的 CO₂

表4 SCUT-1菌株培养实验的分组及各组的实际O2与HCO3⁻(CO2)的摩尔量比例

Table 4 The groups of SCUT-1 strain culture experiment and the actual molar ratio of O_2 to HCO_3^- (CO₂) in each group

Groups	Oxygen addition (mL)	Average oxygen volume fraction (%)	Average molar quantity of oxygen $(\times 10^{-4} \text{ mol})$	Molar quantity of bicarbonate $(\times 10^{-4} \text{ mol})$	Actual molar ratio of oxygen to bicarbonate
① (0.25:0.75)	0.00	0.125	0.036±0.001	0.19	0.158:0.842
2 (0.55:0.45)	0.16	0.499	0.143±0.026	0.11	0.565:0.435
③ (0.85:0.15)	0.35	0.674	0.193±0.018	0.04	0.828:0.172

http://journals.im.ac.cn/actamicrocn

图3 SCUT-1菌株纯培养的pH、NH₄⁺和NO₂⁻浓度变化、生物量变化、生物量积累和单位NH₄⁺浓度生物量 积累。A: pH; B: 铵盐; C: 亚硝酸盐; D: 生物量变化; E: 生物量积累; F: 单位NH₄⁺浓度生物量 积累。

Figure 3 Changes of pH, ammonium and nitrite concentrations, biomass change, biomass accumulation and biomass accumulation per unit NH_4^+ concentration in pure culture of SCUT-1 strain. A: pH; B: Ammonium; C: Nitrite; D: Biomass change; E: Biomass accumulation; F: Biomass accumulation per unit NH_4^+ concentration.

浓度(0.04%),因此其难培养的可能原因之一是 培养过程中需适当控制低氧气浓度及补充适量 的无机碳。另外,即使是基于最优电子分配比 例的条件,以上化能自养细菌的能量合成效率 仍低于异养细菌。异养细菌氧化 1 分子葡萄糖 经过糖酵解和 TCA 循环形成 CO₂,即可产生 4 分子 ATP、10 分子 NADH、2 分子 FADH₂, 最终可形成 26 ATP/葡萄糖(假设 1 分子 NADH 氧化形成 2 分子 ATP, 1 分子 FADH₂氧化形成 1 分子 ATP)。相较于异养细菌,化能自养细菌的单位底物浓度能量合成效率较低,且底物氧化产生的电子还需用于合成还原力,因此单位底物浓度积累的生物量比较低。

经计算,NOB另一类群 Nitrospira 的最优 电子分配比例约为 0.6:0.4, 氨氧化古菌的最优 电子分配比例为 0.586:0.414 (或 0.524:0.476), 计算过程在附图[数据已提交国家微生物科学数据 中心(http://nmdc.cn), 编号: NMDCX0001727]。 中。以上计算结果有助于解释化能自养硝化微 生物在低氧浓度下的表现。Hink 等^[34]的研究表 明,在相同底物浓度下,AOA 可能表现出比 AOB 略高的氧气亲和力,与 AOA 和 AOB 的最 优比例计算结果相符。根据计算结果, AOB 和 Nitrospira 对氧的需求均低于 Nitrobacter, 而 AOB 与 Nitrospira 的相近。Sliekers 等^[35]的研究 表明,在 AOB 与 NOB 共培养过程中,当溶氧浓 度维持在 2.3 µmol/L (0.005 6%)时, AOB、 Nitrospira 和 Nitrobacter 分别约占真细菌细胞群 的 65%、15% 和 3%, AOB 和 Nitrospira 体现出 比 Nitrobacter 更高的氧亲和力。相比之下,在 Law 等^[36]的研究中,与共存的 AOB 相比, *Nitrospira* 对 O_2 的亲和力更高。由此可得,在同 一混合样品中,低氧浓度下 AOB 和 Nitrospira 都有可能成为优势菌,即两者对氧的亲和力相 近,与计算结果吻合。

本研究根据最优分配比例的计算结果提出 了基于电子分配的化能自养细菌培养策略,设 置 O₂ 与 HCO₃⁻ (CO₂)的摩尔量比例,以形成相 应的电子分配比例。其中,以1 mmol/L S₂O₃²⁻ 为底物时, *Halothiobacillus* sp. DCM-3 的最优分 配比例确实有助于得到该菌株的最优生物量积 累。 SOB 菌 株 *Halothiobacillus* sp. LS2 以 1 mmol/L 硫代硫酸盐为底物时,在 20% 氧浓度 下的最大生物量为 1.4×10⁷ CFU/mL, 在 5% 氧 浓度下的最大生物量为 1.7×10⁷ CFU/mL, 表明 适当控制低 O₂摩尔量有助于提高该 SOB 菌株的 生物量积累(是 20% 氧浓度的 1.2 倍),与本研究 的计算结果部分相符^[5]。本研究中, DCM-3 菌 株在最优比例组的生物量积累是对照组的 2.2 倍,表明限制 O₂ 和 CO₂摩尔量并形成最优比 例,对于提高该 SOB 菌株的生物量积累更有 效果。

以 5 mmol/L NO₂⁻为底物培养 Nitrobacter sp. N1,当氧气的量低于最优分配比例所需的量 时,该菌株在底物未耗完且消耗速率下降的时 候进入稳定期, 生物量积累显著低于氧含量较 高的情况,可能与长期处于低氧环境有关。在 高瑶远等[37]的研究中,用低溶氧条件驯化硝化 活性污泥后,其中未检测到 Nitrobacter。推测长 期低于最优比例氧含量的环境对 Nitrobacter 的 生长活性有抑制作用。①②实验组的生物量积 累较低,也可能与缺氧条件下固定的 CO₂不同 程度地形成 PHB 储存在胞内,用于生长的固碳 量降低有关^[38]。然而,在该底物浓度下,生长 活性正常的 Nitrobacter 对 CO₂的需求较低。 Vadivelu 等^[39]的研究中,存在或不存在 CO₂不 会影响 Nitrobacter 富集培养物对 NO2⁻的亲和常 数 K_s ,即不影响能量代谢效率,与本研究的结 果相符。因此在 5 mmol/L 底物浓度下, Nitrobacter 倾向于较高氧气但对 CO2 需求低的 生存要求与计算得到的最优分配比例相符,在 该底物浓度下,给予限制的 O₂和 CO₂摩尔量, 并形成最优比例,可达到和充足 O2 与 HCO₃⁻(CO₂)条件下相近的生物量积累。

以 1 mmol/L NH₄⁺为底物培养 Nitrosomonas sp. SCUT-1,实验组中该菌株在培养前期就进入 稳定期,但与 Wu 等^[6]研究中同一菌株的生物量 积累(1.6×10⁶ CFU/mL)相比,本研究的生物量积

累约为其培养结果的37%,可能受到碳限制的 影响。Mellbye 等^[40]的研究发现,在碳限制时, Nitrosomonas europaea的 RuBisCO 表达显著上 调,而细胞密度下降至碳充足时的37%-66%, 与本研究中实验组的生长速率高但生物量积累 降低的现象相符。另外,在Nitrosomonas ureae 的基因组中缺乏编码羧酶体的基因,固碳途径 的起始酶为胞质的 I 型 RuBisCO, 对 CO_2 的浓 度要求提高^[41-42]。氧浓度低 CO₂浓度高的①组 有较优的单位 NH4+浓度生物量积累。与 Wu 等^[6]研究中同一菌株在 O₂和 HCO₃⁻充足条件下 的单位 NH4+浓度生物量积累相比,本研究实验 组的单位 NH₄⁺浓度生物量积累高出 25%-40%。 这可能是因为通过限制 O2 和 CO2 摩尔量比例限 制了 RuBisCO 的加氧酶活性,以及限制了氨氧 化产生电子的分配去向,从而提高了实验组的 固碳效率。对该 AOB 菌株最优电子分配比例的 计算高估了缺乏羧酶体情况下 RuBisCO 的固碳 效率,低估了碳限制对 AOB 的复杂影响。给予 的 CO₂浓度偏低,导致生物量积累低于适宜条 件下的表现。然而,实验组的单位 NH₄⁺浓度生 物量积累显著高于对照组,表明控制 O₂和 CO₂ 的摩尔量并形成一定比例,有助于提高该 AOB 菌株对底物 NH4+的利用效率,从而提高单位 NH₄⁺浓度的生物量积累,与最优电子分配比例 的计算原则部分相符。

本研究结果表明,基于电子分配的化能自 养细菌培养策略,通过限制 O₂和 CO₂摩尔量, 并形成一定比例,从而限制电子分配的培养条 件,有助于提高同一底物条件下的生物量积累, 为化能自养细菌的培养提供一定的策略参考。 在 ATCC 保藏中心,用于培养 Halothiobacillus 的培养基 ATCC Medium 290: S-6 medium for *Thiobacilli*、用于培养 *Nitrobacter winogradskyi* Nb-255 的培养基 ATCC Medium 480: Nitrobacter medium 203、用于培养 Nitrosomonas 的培养基 ATCC Medium 2265: Nitrosomonas europaea medium,均未写明一定底物条件下所 需的 O_2 和 CO_2 摩尔量。相比之下,在 Wu 等^[6] 的研究中,低于21% O2更有利于5株 Nitrosomonas 的生长,表明好氧的化能自养细菌 并不一定最适合在 21% O2下生长。在设计培养 条件时,除了参考现有可查阅的培养条件,还 应根据酶的底物亲和力给予适当浓度的电子供 体,并根据其氧化产生的电子量给予相应摩尔 量及一定比例的 O₂ 和 CO₂,使电子合理分配, 提高固碳效率和细胞得率。本研究的培养策略 有助于对化能自养细菌的培养条件进行精细的 优化, 使底物氧化产生的有限电子能够更充分 地被用于细胞的生长增殖。然而,该策略在其 他化能自养细菌培养中的适用性及设置 O₂和 CO₂比例的量值限制有待进一步探究。

作者贡献声明

何晓敏:研究设计、数据收集和处理、论 文撰写;林炜铁:研究构思、论文修改;罗剑 飞:研究构思、论文修改。

作者利益冲突公开声明

作者声明不存在任何可能会影响本文所报 告工作的已知经济利益或个人关系。

参考文献

- LIN S, MACKEY HR, HAO TW, GUO G, van LOOSDRECHT MCM, CHEN GH. Biological sulfur oxidation in wastewater treatment: a review of emerging opportunities[J]. Water Research, 2018, 143: 399-415.
- [2] YE JJ, LIU JY, YE M, MA X, LI YY. Towards advanced nitrogen removal and optimal energy recovery from leachate: a critical review of anammox-based processes[J]. Critical Reviews in Environmental Science and Technology, 2020, 50(6): 612-653.
- [3] WINKLER MK, STRAKA L. New directions in biological nitrogen removal and recovery from wastewater[J]. Current Opinion in Biotechnology, 2019,

57: 50-55.

- [4] NOWKA B, DAIMS H, SPIECK E. Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation[J]. Applied and Environmental Microbiology, 2015, 81(2): 745-753.
- [5] 曲珊珊, 严洪珊, 林炜铁, 罗剑飞. 化能自养硫氧化细菌 Halothiobacillus sp. LS2 介导的以乙炔为电子受体的硫 氧化反应[J]. 微生物学报, 2021, 61(6): 1488-1495. QU SS, YAN HS, LIN WT, LUO JF. Anaerobic sulfur oxidation with acetylene as electron acceptor mediated by chemoautotrophic sulfur-oxidizing bacterium Halothiobacillus sp. LS2[J]. Acta Microbiologica Sinica, 2021, 61(6): 1488-1495 (in Chinese).
- [6] WU JJ, ZHAN MJ, YUAN LL, ZHU YY, LIN WT, LUO JF. Sealing solid agar in serum bottles for rapid isolation and long-term preservation of chemoautotrophic ammonia-oxidizing bacteria[J]. Water Research, 2024, 260: 121916.
- [7] STEIN LY. Insights into the physiology of ammoniaoxidizing microorganisms[J]. Current Opinion in Chemical Biology, 2019, 49: 9-15.
- [8] LIU BC, LIN WT, HUANG SX, SUN QY, YIN H, LUO JF. Removal of Mg²⁺ inhibition benefited the growth and isolation of ammonia-oxidizing bacteria: an inspiration from bacterial interaction[J]. Science of the Total Environment, 2022, 838: 155923.
- [9] ZHANG SW, FU XH, HAN YL, WEI LW, LIU MN, WANG YN, WANG L. Main components of free organic carbon generated by obligate chemoautotrophic bacteria that inhibit their CO₂ fixation[J]. iScience, 2022, 25(12): 105553.
- [10] BALOWS A, TRÜPER HG, DWORKIN M, HARDER W, SCHLEIFER KH. The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications[M]. New York, NY: Springer, 1992: 3352-3378.
- [11] 刘步蟾. 硝化细菌的分离纯化、环境响应及在废水处理 中的应用[D]. 广州: 华南理工大学硕士学位论文, 2021. LIU BC. Isolation, purification, environmental response and application of nitrifying bacteria in wastewater treatment[D]. Guangzhou: Master's Thesis of South China University of Technology, 2021 (in Chinese).
- [12] 中华人民共和国环境保护部.土壤 氨氮、亚硝酸盐氮、 硝酸盐氮的测定氯化钾溶液提取-分光光度法: HJ 634—2012[S].北京:中国环境科学出版社, 2012. Ministry of Environmental Protection of the People's Republic of China. Soil-Determination of ammonium, nitrite and nitrate by extraction with potassium chloride solution-spectrophotometric methods: HJ 634—2012[S]. Beijing: China Environmental Science Press, 2012 (in Chinese).
- [13] CAWSE PA. The determination of nitrate in soil solutions by ultraviolet spectrophotometry[J]. Analyst, 1967, 92(1094): 311-315.
- [14] HOOD-NOWOTNY R, UMANA NHN, INSELBACHER E, OSWALD-LACHOUANI P, WANEK W. Alternative methods for measuring inorganic, organic, and total dissolved nitrogen in soil[J]. Soil Science Society of

America Journal, 2010, 74(3): 1018-1027.

- [15] KAILA VRI, WIKSTRÖM M. Architecture of bacterial respiratory chains[J]. Nature Reviews Microbiology, 2021, 19(5): 319-330.
- [16] LAMBERT AJ, BRAND MD. Superoxide production by NADH: ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane[J]. The Biochemical Journal, 2004, 382(Pt 2): 511-517.
- [17] MITCHELL P. Possible molecular mechanisms of the proton motive function of cytochrome systems[J]. Journal of Theoretical Biology, 1976, 62(2): 327-367.
- [18] WIKSTROM MK. Proton pump coupled to cytochrome c oxidase in mitochondria[J]. Nature, 1977, 266(5599): 271-273.
- [19] WEBER J, SENIOR AE. ATP synthesis driven by proton transport in F1F0-ATP synthase[J]. FEBS Letters, 2003, 545(1): 61-70.
- [20] KÜHLBRANDT W. Structure and mechanisms of F-type ATP synthases[J]. Annual Review of Biochemistry, 2019, 88: 515-549.
- [21] FRIEDRICH CG, BARDISCHEWSKY F, ROTHER D, QUENTMEIER A, FISCHER J. Prokaryotic sulfur oxidation[J]. Current Opinion in Microbiology, 2005, 8(3): 253-259.
- [22] GHOSH W, DAM B. Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea[J]. FEMS Microbiology Reviews, 2009, 33(6): 999-1043.
- [23] REIJERSE EJ, SOMMERHALTER M, HELLWIG P, QUENTMEIER A, ROTHER D, LAURICH C, BOTHE E, LUBITZ W, FRIEDRICH CG. The unusal redox centers of SoxXA, a novel c-type heme-enzyme essential for chemotrophic sulfur-oxidation of *Paracoccus pantotrophus*[J]. Biochemistry, 2007, 46(26): 7804-7810.
- [24] SHARKEY TD. Discovery of the canonical Calvin-Benson cycle[J]. Photosynthesis Research, 2019, 140(2): 235-252.
- [25] SPAANS SK, WEUSTHUIS RA, van der OOST J, KENGEN SWM. NADPH-generating systems in bacteria and Archaea[J]. Frontiers in Microbiology, 2015, 6: 742.
- [26] DAIMS H, LÜCKER S, WAGNER M. A new perspective on microbes formerly known as nitrite-oxidizing bacteria[J]. Trends in Microbiology, 2016, 24(9): 699-712.
- [27] SIMON J, KLOTZ MG. Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2013, 1827(2): 114-135.
- [28] STARKENBURG SR, CHAIN PSG, SAYAVEDRA-SOTO LA, HAUSER L, LAND ML, LARIMER FW, MALFATTI SA, KLOTZ MG, BOTTOMLEY PJ, ARP DJ, HICKEY WJ. Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium *Nitrobacter winogradskyi* Nb-255[J]. Applied and Environmental Microbiology, 2006, 72(3): 2050-2063.
- [29] CARANTO JD, LANCASTER KM. Nitric oxide is an obligate bacterial nitrification intermediate produced by hydroxylamine oxidoreductase[J]. Proceedings of the National Academy of Sciences of the United States of

713

America, 2017, 114(31): 8217-8222.

- [30] LANCASTER KM, CARANTO JD, MAJER SH, SMITH MA. Alternative bioenergy: updates to and challenges in nitrification metalloenzymology[J]. Joule, 2018, 2(3): 421-441.
- [31] GONZÁLEZ-CABALEIRO R, CURTIS TP, OFIŢERU ID. Bioenergetics analysis of ammonia-oxidizing bacteria and the estimation of their maximum growth yield[J]. Water Research, 2019, 154: 238-245.
- [32] KIM HJ, ZATSMAN A, UPADHYAY AK, WHITTAKER M, BERGMANN D, HENDRICH MP, HOOPER AB. Membrane tetraheme cytochrome c_{m552} of the ammoniaoxidizing *Nitrosomonas europaea*: a ubiquinone reductase[J]. Biochemistry, 2008, 47(25): 6539-6551.
- [33] CHAIN P, LAMERDIN J, LARIMER F, REGALA W, LAO V, LAND M, HAUSER L, HOOPER A, KLOTZ M, NORTON J, SAYAVEDRA-SOTO L, ARCIERO D, HOMMES N, WHITTAKER M, ARP D. Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph *Nitrosomonas europaea*[J]. Journal of Bacteriology, 2003, 185(9): 2759-2773.
- [34] HINK L, LYCUS P, GUBRY-RANGIN C, FROSTEGÅRD Å, NICOL GW, PROSSER JI, BAKKEN LR. Kinetics of NH₃-oxidation, NO-turnover, N₂O-production and electron flow during oxygen depletion in model bacterial and archaeal ammonia oxidisers[J]. Environmental Microbiology, 2017, 19(12): 4882-4896.
- [35] SLIEKERS AO, HAAIJER SCM, STAFSNES MH, KUENEN JG, JETTEN MSM. Competition and coexistence of aerobic ammonium- and nitrite-oxidizing bacteria at low oxygen concentrations[J]. Applied Microbiology and Biotechnology, 2005, 68(6): 808-817.
- [36] LAW Y, MATYSIK A, CHEN XM, SWA THI S, NGOC NGUYEN TQ, QIU GL, NATARAJAN G, WILLIAMS RBH, NI BJ, SEVIOUR TW, WUERTZ S. High dissolved oxygen selection against *Nitrospira* sublineage I in full-scale activated sludge[J]. Environmental Science &

Technology, 2019, 53(14): 8157-8166.

- [37] 高瑶远, 彭永臻, 包鵬, 郭思宇, 王淑莹. 低溶解氧环境 下全程硝化活性污泥的特性[J]. 中国环境科学, 2017, 37(5): 1769-1774.
 GAO YY, PENG YZ, BAO P, GUO SY, WANG SY. The characteristic of activated sludge in nitrifying low-DO reactor[J]. China Environmental Science, 2017, 37(5): 1769-1774 (in Chinese).
- [38] FREITAG A, RUDERT M, BOCK E. Growth of *Nitrobacter* by dissimilatoric nitrate reduction[J]. FEMS Microbiology Letters, 1987, 48(1/2): 105-109.
- [39] VADIVELU VM, YUAN ZG, FUX C, KELLER J. Stoichiometric and kinetic characterisation of *Nitrobacter* in mixed culture by decoupling the growth and energy generation processes[J]. Biotechnology and Bioengineering, 2006, 94(6): 1176-1188.
- [40] MELLBYE BL, GIGUERE A, CHAPLEN F, BOTTOMLEY PJ, SAYAVEDRA-SOTO LA. Steadystate growth under inorganic carbon limitation conditions increases energy consumption for maintenance and enhances nitrous oxide production in *Nitrosomonas europaea*[J]. Applied and Environmental Microbiology, 2016, 82(11): 3310-3318.
- [41] KOOPS HP, BOTTCHER B, MOLLER UC, POMMERENING-ROSER A, STEHR G. Classification of eight new species of ammonia-oxidizing bacteria: *Nitrosomonas communis* sp. nov., *Nitrosomonas ureae* sp. nov., *Nitrosomonas aestuarii* sp. nov., *Nitrosomonas marina* sp. nov., *Nitrosomonas nitrosa* sp. nov., *Nitrosomonas eutropha* sp. nov., *Nitrosomonas oligotropha* sp. nov., and *Nitrosomonas halophila* sp. nov.[J]. Journal of General Microbiology, 1991, 137(7): 1689-1699.
- [42] YOSHIZAWA Y, TOYODA K, ARAI H, ISHII M, IGARASHI Y. CO₂-responsive expression and gene organization of three ribulose-1,5-bisphosphate carboxylase/ oxygenase enzymes and carboxysomes in *Hydrogenovibrio marinus* strain MH-110[J]. Journal of Bacteriology, 2004, 186(17): 5685-5691.