Research Article 研究报告

毛竹根际解磷菌木糖氧化无色杆菌的分离及其解磷 机制

项春铸,房翠莲,田佳怡,张清,李全,宋新章,曹婷婷*

浙江农林大学 竹子研究院, 亚热带森林培育国家重点实验室, 浙江 杭州

项春铸,房翠莲,田佳怡,张清,李全,宋新章,曹婷婷.毛竹根际解磷菌木糖氧化无色杆菌的分离及其解磷机制[J]. 微生物学报, 2025, 65(2): 614-628.

XIANG Chunzhu, FANG Cuilian, TIAN Jiayi, ZHANG Qing, LI Quan, SONG Xinzhang, CAO Tingting. Isolation and phosphorussolubilizing mechanism of *Achromobacter xylosoxidans* in the rhizosphere of Moso bamboo[J]. Acta Microbiologica Sinica, 2025, 65 (2): 614-628.

摘 要:【目的】分离毛竹(Phyllostachys edulis)根际兼备溶解无机磷和有机磷能力的菌株,挖掘 菌株解磷相关的功能基因,为利用解磷微生物活化土壤磷库、提高土壤磷有效性奠定基础。 【方法】以亚热带地区重要经济林木——毛竹为研究对象,采用高通量筛选技术分离毛竹根际解 磷菌。通过微孔板培养和土壤接种实验,分别探究碳源类型和土壤磷含量对其解磷能力的影响。 采用全基因组测序技术解析其与解磷相关的基因,以探究其解磷机制。【结果】筛选出一株多途 径解磷的细菌,命名为 zafu-3,鉴定为木糖氧化无色杆菌(Achromobacter xylosoxidans)。该菌株能 利用葡萄糖和柠檬酸等4种碳源来溶解Ca₃(PO₄)₂、FePO₄、AIPO₄、卵磷脂和植酸钙,最佳解磷 效果为32.75 mg/(L·d)。与对照组相比,接种菌株 zafu-3 后,土壤酸性和碱性磷酸酶活性分别增 加了4.21%-33.88%和13.54%-112.06%,特别是在高磷土壤中,土壤 pH值降低了0.04,有效磷 含量增加了16.32%。全基因组结果表明,该菌株包含了35个参与磷酸水解酶编码的基因和53 个参与有机酸代谢的编码基因。此外,菌株 zafu-3 具有产生产吲哚乙酸、铁载体和降解木质素的 相关功能基因。【结论】菌株 zafu-3 可通过分泌多种有机酸和磷酸酶直接溶解无机和有机磷源, 并可能通过促进植物生长间接激活土壤磷库,这为多功能生物肥料的开发提供了重要的菌种资源 和科学依据。

关键词:毛竹;木糖氧化无色杆菌;解磷菌;土壤磷动员;基因组

资助项目:国家自然科学基金(32125027, 32301674, 31930075);浙江省自然科学基金(LQ24C160005, LQ23C160006);浙 江农林大学人才启动项目(2022LFR006, 2022LFR106)

This work was supported by the National Natural Science Foundation of China (32125027, 32301674, 31930075), the Zhejiang Provincial Natural Science Foundation (LQ24C160005, LQ23C160006), and the Scientific Research Foundation of Zhejiang A&F University (2022LFR006, 2022LFR106).

^{*}Corresponding author. E-mail: caotting@zafu.edu.cn

Received: 2024-09-24; Accepted: 2024-11-10; Published online: 2024-12-20

Isolation and phosphorus-solubilizing mechanism of Achromobacter xylosoxidans in the rhizosphere of Moso bamboo

XIANG Chunzhu, FANG Cuilian, TIAN Jiayi, ZHANG Qing, LI Quan, SONG Xinzhang, CAO Tingting^{*}

Bamboo Industry Institute, Zhejiang A&F University, State Key Laboratory of Subtropical Silviculture, Hangzhou, Zhejiang, China

Abstract: [Objective] To isolate the strain for solubilizing both inorganic and organic phosphorus (P) from the rhizosphere of Moso bamboo (*Phyllostachys edulis*) and mine the related genes, laying a foundation for activating the soil P pool and improving P bioavailability by P-solubilizing microorganisms (PSM). [Methods] High-throughput screening was employed to isolate PSM strains from the rhizosphere of Moso bamboo, an important economic plant in subtropical regions. The P-solubilizing activities of the strain under various carbon sources and soil P levels were investigated by microplate culture and soil inoculation experiments, respectively. The genes involved in P solubilizing of the strain were mined by whole-genome sequencing. [Results] The strain zafu-3 (Achromobacter xylosoxidans) capable of solubilizing P via multiple pathways was isolated from the rhizosphere of Moso bamboo. The strain solubilized Ca₃(PO₄)₂, FePO₄, AlPO₄, lecithin, and calcium phytate by using four carbon sources such as glucose and citric acid, with the highest P-solubilizing activity of 32.75 mg/(L·d). Compared with the control group, the zafu-3 inoculation group showed increases of 4.21%-33.88% and 13.54%-112.06% in activities of acid phosphatase and alkaline phosphatase, respectively. In the high P-level soil, inoculation of the strain decreased the soil pH by 0.04 and increased the available P content by 16.32%. The whole genome of strain zafu-3 contained 35 genes encoding phosphohydrolases and 53 genes involved in organic acid metabolisms. Furthermore, strain zafu-3 carried the genes associated with the production of indole-3-acetic acid and siderophores, and the degradation of lignin. [Conclusion] Strain zafu-3 directly solubilized inorganic and organic P by secreting diverse organic acids and phosphatases, and indirectly activated soil P pools by promoting plant growth. These findings provide an important microbial resource and theoretical foundation for the development of multifunctional biofertilizers.

Keywords: *Phyllostachys edulis*; *Achromobacter xylosoxidans*; phosphorus-solubilizing microorganisms; soil phosphorus mobilization; genome

磷(phosphorus, P)是植物生长所必需的元素, 直接决定了植物生产力与生态功能的发挥。土 壤总磷含量约为 0.05-3.00 g/kg,但大多数磷以 难溶解的形式存在,这限制了植物对磷的直接 吸收与利用^[1]。施用含磷化肥是缓解磷限制、提 高植物生产力的重要方式。然而,磷元素因其 在土壤中移动性较差而极易被固持,导致仅有 10%-20%的磷肥可被植物吸收利用^[2]。过量施 用磷肥不仅会耗尽有限的磷矿资源,还会导致 一系列的环境问题。因此,绿色高效地激活土 壤磷库是促进磷素良性循环、缓解植物磷限制 的关键策略。

根际微生物是驱动土壤元素循环和植物养 分获取的引擎。解磷菌是辅助植物获取土壤磷 素的主要微生物类群。解磷微生物活化土壤中 的磷主要包括2个过程:(1)释放多种磷酸酶矿 化有机磷; (2) 分泌有机酸、质子以及自身的呼 吸作用释放并溶解于土壤溶液中的 CO₂,从而 降低土壤 pH, 增加无机磷的溶解性^[3]。此外, 解磷菌也可通过分泌吲哚乙酸(indole-3-acetic acid, IAA)等生长激素促进植物生长^[4-5],间接增 加土壤磷素的释放。然而,以往研究中解磷菌 活化的磷源单一,这导致解磷菌的活性较低, 且对土壤和气候等环境变化的适应能力差,使 得分离的解磷菌在田间应用仍面临很大挑战。 与解磷真菌相比, 解磷细菌繁殖速度快、多样 性更丰富^[7],它们占整个土壤微生物种群的 1%-50%^[8],并具有环境适应性强、遗传操作简 单的优势。因此, 分离多途径解磷的细菌是确 保微生物制剂能够同时活化多种磷组分,并在 多变的环境下稳定提升土壤磷可利用性与植物 生产力的先决条件。

毛竹(*Phyllostachys edulis*)是我国竹林资源的 主体,面积为 527.76 万 hm²,具有经济价值高 和固碳能力强等优势^[9-10]。毛竹林主要分布在缺 磷的亚热带地区,随着竹秆采伐,大量磷素被 移出生态系统,同时长期施用化肥引起的土壤 退化导致毛竹林生产力和生态功能的发挥受到 严重的磷限制^[11-12]。研究表明,毛竹林土壤微 生物可通过其 *pqqC* 或 *phoD* 等基因编码的吡咯 并喹啉醌合酶和碱性磷酸酶等酶类,活化土壤 中的难溶性无机磷和有机磷^[13-14]。因此,亟须 挖掘毛竹根际的多效解磷微生物资源,并阐明 其解磷机制,以持续活化土壤磷库、缓解毛竹 林的磷限制。 本研究以3种难溶性无机磷和2种难溶性 有机磷为磷源,分离毛竹根际解磷细菌,并采 用微孔板培养和土壤接种实验探究其解磷效果, 进一步采用全基因组测序技术,分析其解磷机 制及植物促生潜力。本研究旨在分离出能够同 时溶解多种无机磷和有机磷且具备多种促生特 性的菌株,并挖掘菌株编码有机酸和磷酸酶等 解磷相关的基因,为利用这些菌株提高土壤有 效磷含量奠定基础。

1 材料与方法

1.1 样地概况和样品采集

试验样地位于浙江省杭州市临安区毛竹林 试验平台(30°14′N, 119°42′E)。该地区地处中 亚热带季风气候区,土壤为黄土壤,pH 4.3±0.1。 于 2022 年 10 月,在试验样地随机设置 3 个 20 m×20 m 的样方。在样方内随机选择 5 株胸径 相近(11.9±0.6) cm 的毛竹,沿着毛竹基部挖取根 系样品,随后轻轻抖动根系以去除其上黏附的 大块土壤。根系样品置于无菌采样袋中,低温 运至实验室立即进行解磷微生物的分离。此外, 从该地区低磷(low phosphorus, LP)样地及其邻近 的高磷(high phosphorus, HP)毛竹林样地,各自 采集了5份林间土壤样本,分别混匀、风干后 过 20 目筛,用于探究解磷菌对土壤磷库的活化 潜力。LP 和 HP 样地土壤总磷含量分别为 (0.55±0.10) g/kg 和(0.60±0.80) g/kg, 有效磷含量 无显著差异,均为(27.20±4.54) mg/kg。

1.2 根际解磷微生物分离

采用微孔板高通量筛选法^[15]分离毛竹根际 解磷菌。筛选培养基为 3 种蒙金娜无机磷培养 基(Pikovskaya's medium, PVK) [Ca₃(PO₄)₂, PVK1; FePO₄, PVK2; AlPO₄, PVK3]和 2 种蒙金娜有 机磷培养基(Mongina medium, MG)(卵磷脂, MG1; 植酸钙, MG2)^[16-17]。简言之,将 3 g 根 系样品置于 20 mL 的 PBS 溶液(上海源叶生物科 技有限公司)中,充分振荡后所得溶液为根际微 生物悬液。微生物悬液经过 10 倍梯度稀释后, 按 1:9 的体积比与筛选培养基混合,然后添加至 96 孔细胞培养板中,于 30 ℃下培养 7 d。将培 养板中呈现浑浊状态的菌液在固体筛选培养基 上进行涂布以分离菌种。将获得的一株能同时 活化上述 5 种磷源的多效解磷菌(zafu-3),用于 后续解磷效果与机制的研究。

1.3 菌株 zafu-3 的形态及生长特征

菌株 zafu-3 接种在胰蛋白胨大豆肉汤固体 (trypticase soy agar, TSA) (青岛高科技工业园海 博生物技术有限公司)培养基上,观察其菌落特 征; 以无碳源的 PVK 和 MG 培养基为基础, 探 究菌株 zafu-3 对 15 种常见的毛竹根系分泌物中 碳源[18-21]的利用及溶磷情况,包括葡萄糖、果 糖、蔗糖、纤维素和木聚糖5种糖类,谷氨酸、 丝氨酸、脯氨酸、异亮氨酸和赖氨酸5种氨基 酸,以及草酸、苹果酸、柠檬酸、丁二酸和乳 酸5种有机酸,碳源以5g/L的浓度添加至基础 培养基中[21]。以上实验每个处理均设置3个重 复,以不接菌作为空白对照,在30℃下暗培养 3d 后进行分析。菌株 zafu-3 在光学显微镜下的 细胞形态特征、生长的 pH 范围(3.0-11.0, 以 1.0 为单位增量)和 NaCl 的质量分数范围 (1%-7%,间隔1%),通过在胰蛋白胨大豆肉汤 液体(trypticase soy broth, TSB) (青岛高科技工业 园海博生物技术有限公司)培养基中 30 ℃、 180 r/min 振荡培养 3 d 后确定。以不接菌作为空 白对照,每个处理设置6个重复。

菌株 zafu-3 接种至 TSB 培养基中, 30 ℃、 180 r/min 振荡培养 3 h 后, 30 ℃、3 000 r/min 离心 10 min,去上清,菌体用无菌水进行重悬, 调整菌液浓度至 *OD*₆₀₀ 值为 0.1,以便进行定量 分析。以体积分数 5% 的接种量将 *OD*₆₀₀ 值为 0.1 的菌液接种至新鲜的 TSB 培养基中,30 ℃、 180 r/min 振荡培养,每隔 3-9 h 测定菌液在 *OD*₆₀₀处的吸光度数值,并通过稀释涂布法,在 TSA 培养基上对菌液中的细胞数量进行计数, 绘制菌株的生长曲线。每次取样设置 3 个重复, 用未接菌的 TSB 培养基对紫外分光光度计进行 校正。

1.4 菌株 zafu-3 的解磷能力及促生特性

以葡萄糖、蔗糖、木聚糖和柠檬酸为碳源 时,菌株在解磷培养基上形成明显的溶磷圈, 用溶解圈直径(D)与菌株直径(d)的比值(D/d)初步 判断菌株的解磷能力。进一步,将菌株接种在 添加这4种碳源的PVK1、PVK2、PVK3、MG1 和MG2液体培养基中,探究碳源对菌株解磷能 力的影响。每个处理设置6个重复,以不接菌 的培养基作为空白对照。所有样本在30℃、 180 r/min振荡培养3d后,采用钼锑抗显色法测 定菌株的解磷能力^[22]。此外,将菌株接种于苯 胺蓝培养基上^[23],培养8d后观察溶解圈直径 (D)及菌株直径(d),用D/d值表示菌株对木质素 的降解能力。采用Salkowski 比色法测定菌株产 生 IAA 的能力^[24]。

1.5 菌株 zafu-3 对土壤磷素的活化

土壤样品在 121 ℃灭菌 5 次,每次 30 min, 每次间隔 12 h。实验在 300 mL 的玻璃培养瓶中 进行。每个培养瓶中加入 30 g LP 或 HP 样地的 土壤。然后,将 1 mL 处于指数期的菌液在 30 ℃、3 000 r/min 离心 10 min 后,与用等量无 菌水重悬,将其接种至土壤中,使得终浓度为 10⁹ CFU/g。最后,加入无菌水混匀,调整土壤 含水率至田间最大持水量的 60%^[25]。添加等量 灭菌的菌液为对照组,每个处理设置 3 个重复。 培养瓶置于室温下暗培养 30 d 后,采用稀释涂 布法确定土壤中菌株的存活情况^[26]。将土壤和 水按照 1:2.5 的质量比混匀后,用于测定土壤 pH^[27]。采用土壤酸碱磷酸酶活性测定试剂盒(苏州科铭生物技术有限公司)测定土壤酸性磷酸酶 (acid phosphatase, ACP) 和碱性磷酸酶 (alkaline phosphatase, ALP)的活性。采用 Hedley 等的方法 测定土壤有效磷含量^[28]。

1.6 菌株 zafu-3 的全基因组测序及分析

将菌株 zafu-3 接种至装有 50 mL TSB 的 100 mL 锥形瓶中, 在 30 ℃、180 r/min 振荡培 养 12 h 后, 于 30 ℃、12 000 r/min 离心 10 min, 去上清, 收集菌体。通过细菌 DNA 提取试剂盒 (磁珠法)(上海美吉生物医药科技有限公司)对菌 株 zafu-3 进行基因组 DNA 提取。对菌株基因组 DNA 进行定量后,高质量的 DNA 用于建库测 序。使用 Sequel IIe 测序仪 (PacBio 公司)和 Illumina 测序仪[因美纳(中国)科学器材有限公 司]进行全基因组测序。将 DNA 片段化为约 400 bp 片段,并使用琼脂糖凝胶鉴定片段的大 小和分布,之后进行 Illumina 文库制备;将基因 组 DNA 片段化为约 10 kb 的片段, 然后根据 PacBio 说明书进行末端补平,两端分别连接环 状单链,构建 PacBio 文库。在 Illumina 测序仪 上对文库分别进行双端测序(2×150 bp),通过高 通量测序技术测定其序列^[29]。对文库单链环退 火后,在 PacBio Sequel IIe 测序仪上通过单分子 实时测序技术进行实时检测^[30]。使用 fastp v0.23.0 去除质量较低、含 N 比例较高的序列, 并通过 Unicycler v0.4.8^[31]对 PacBio Sequel IIe 和 质控后的 Illumina 测序结果进行组装,使用 Pilon v1.22 将 Illumina 测序得到的短序列组装到 基因组上,并进行二次矫正获得全基因完成图。 利用 Glimmer 和 Prodigal v2.6.3 对基因组中的编 码序列(coding sequences, CDS)进行预测^[32]。利 用 BLASTp、Diamond、HMMER 等序列比对工 具,从 KEGG 数据库中对预测到的 CDS 进行功 能注释。以上数据分析均在上海美吉生物云平 台进行(http://cloud.majorbio.com)。菌株 zafu-3 并将组装好的基因序列通过与 NCBI 数据库对 比,在数据库中基于 16S rRNA 基因序列选择相 似度最高的 20 株菌,用 MEGA 11.0 软件及邻接 法(neighbor joining, NJ)构建菌株系统发育树。利 用在线工具 JSpeciesWS (https://jspecies.ribohost. com/jspeciesws/#home)中的 ANIb 模式将菌株 zafu-3 与其近缘菌株进行平均核苷酸一致性 (average nucleotide identity, ANI)比对。

1.7 统计分析

数据采用 SPSS 22.0 进行分析,运用单因素 方差分析(one-way ANOVA)检测不同磷源下菌株 的解磷能力差异、不同碳源下菌株的解磷能力 差异,以及不同磷添加水平和溶磷菌接种对土 壤理化性质的影响,具体包括土壤 pH、ACP活 性、ALP 活性和有效磷含量,并采用最小显著 差值法(least significant difference, LSD)进行显著 性分析(α=0.05),采用 Logistic 模型对菌株的 *OD*₆₀₀ 值和 CFU 对数值进行非线性拟合。采用 Origin 2024 对数据进行绘图,图中所用数据均 为平均值±标准差。

2 结果与分析

2.1 解磷菌株的形态及培养特征

从毛竹根际分离得到一株能活化 Ca₃(PO₄)₂、 FePO₄、AIPO₄、卵磷脂和植酸钙 5 种磷源的菌 株 zafu-3。该菌株可在 pH 4.0-10.0、6% 以下的 NaCl 浓度条件下生长。菌株 zafu-3 在 6-24 h 快速增长,培养 24 h 后,菌株 *OD*₆₀₀ 值为 3.21, 细胞数量为 3.15×10¹⁵ CFU/mL, 24 h 后开始进 入稳定期(图 1A)。菌株的菌落颜色为淡黄色, 不透明(图 1A 中 1)。菌株为革兰氏阴性菌,细 胞 呈 球 杆 状 ,大 小 为 1.3 μm×1.8 μm (图 1A 中 2)。

添加不同碳源后菌株 zafu-3 在 5 种磷源培

图1 菌株zafu-3的形态与培养特征及其解磷能力。A: 生长曲线(1: 菌落形态; 2: 光学显微镜下的细胞 形态); B: 添加不同碳源后菌株解磷能力的变化(1: 不同碳源下菌株溶解5种磷源的总量),不同小写字母 和斜体小写字母分别代表组内和组间显著差异(*P*<0.05)。

Figure 1 The morphological and cultural characteristics and the phosphorus solubilization ability of strain zafu-3. A: Growth curves (1: Colony morphology; 2: Cell morphology under the light microscope); B: P solubilizing activity of strain zafu-3 cultured with different carbon sources (1: Total content of five P sources solubilized among different carbon sources). Different lowercase letters and italic lowercase letters indicated significant differences among groups and between different groups respectively (P < 0.05).

养基中的生长情况如表1所示。以葡萄糖、脯 氨酸、异亮氨酸、草酸或丁二酸为唯一碳源时, 菌株在5种磷源培养基上均能生长,但其难以 利用丝氨酸和乳酸。添加果糖、蔗糖或赖氨酸 等8种碳源后,菌株仅在部分磷源培养基中 生长。

2.2 菌株 zafu-3 的解磷能力与促生特性

以葡萄糖、蔗糖、木聚糖和柠檬酸为碳源 时,菌株在部分解磷培养基上形成明显的溶磷 圈(表 1),且在以柠檬酸为唯一碳源、植酸钙为 唯一磷源的培养基中效果最好,D/d=2.67±0.10 (图 2A)。添加这4种碳源后,对菌株 zafu-3 的 解磷能力变化进一步定量分析,结果表明以葡 萄糖为唯一碳源时,菌株 zafu-3 对5种磷源的 总溶解量最高,为46.57 mg/(L·d),分别是以蔗 糖、柠檬酸和木聚糖为唯一碳源时的1.8、2.3 和3.7 倍(图 1B 中 1)。以葡萄糖或柠檬酸为唯一 碳源时,菌株 zafu-3 对 Ca₃(PO₄)₂的溶解效果均 为最佳,溶磷量分别为 32.75 mg/(L·d)和 13.14 mg/(L·d)。以蔗糖或木聚糖为唯一碳源时,菌株对植酸钙的溶解效果最好,溶磷量为 12.42 mg/(L·d)和 10.83 mg/(L·d)。菌株溶解 FePO₄、AlPO₄或卵磷脂时,分别添加柠檬酸、葡萄糖和蔗糖的解磷效果最好,溶磷量分别为 10.99、5.84和 1.31 mg/(L·d)(图 1B)。此外,菌株 zafu-3 接种在苯胺蓝培养基上培养后,其菌 落周边形成明显的透明圈(图 2B), *D/d*=1.37±0.04,表明菌株具有降解木质素的能力。向菌株的培养液中加入 Salkowski 比色液后,观察到溶液明显变红(图 2C),表明菌株 zafu-3 具备产生 IAA 能力。

2.3 菌株 zafu-3 对土壤磷有效性的调控

菌株 zafu-3 接种至土壤中 30 d 后,其在 LP 和 HP 土壤中的数量分别为 68.34 CFU/g 和 162.72 CFU/g。在 HP 土壤中接菌后,土壤 pH 值与对照相比降低了 0.04,而 LP 土壤 pH 值几

Carbon source	PVK1	PVK2	PVK3	MG1	MG2	
Carbohydrate						
Glucose	+++*	+++*	++*	++*	+++*	
Fructose	+++	+	_	++	++	
Sucrose	++	+*	_	+*	++*	
Cellulose	_	-	+	_	-	
Xylan	+*	-	_	+*	++*	
Amino acid						
Glutamate	_	-	++	++	+++	
Serine	_	-	_	_	-	
Proline	++	++	+	+++	++	
Isoleucine	++	++	++	++	++	
Lysine	++	++	+++	_	++	
Organic acids						
Oxalic acid	+++	+++	++	+++	++	
Malic acid	+	-	-	+	-	
Citric acid	+++*	++*	_	_	++*	
Succinic acid	+++	+++	++	+++	+++	
Lactic acid	-	-	-	-	-	

表1 添加不同碳源后菌株zafu-3在不同磷源培养基上的生长情况

Table 1 Growth of strain zafu-3 on the different P source media containing different carbon sources

-: Negative; +, ++, +++: Positive; * indicated the presence of a P-solubilizing circle on the medium.

图2 菌株zafu-3的促生特性。A: 以柠檬酸为唯一碳源降解植酸钙; B: 木质素降解; C: IAA产生。 Figure 2 The plant growth-promoting properties of strain zafu-3. A: Degradation of calcium phytate using citric acid as the sole carbon source; B: Degradation of lignin; C: Generation of IAA.

乎不变(图 3A)。接菌后 LP 和 HP 土壤的 ACP 活性分别上升了 33.88% 和 4.21% (图 3B)。在
HP 土壤中 ALP 上升了 13.54%,在 LP 土壤中
ALP 活性显著增加,是对照组的 2.12 倍(图 3C)。接菌后有效磷含量在 LP 土壤中降低了

7.87%,而在 HP 土壤中增加了 16.32%,但这些 差异均不显著(图 3D)。

2.4 菌株 zafu-3 全基因组特征和 KEGG 分析

基于 16S rRNA 基因序列的系统发育树分

图3 接种菌株zafu-3后低磷和高磷土壤的理化性质。A: pH; B: 酸性磷酸酶活性; C: 碱性磷酸酶活性; D: 有效磷含量。不同小写字母表示不同处理之间的显著性差异(P<0.05)。

Figure 3 The soil physicochemical properties of LP and HP after the inoculation with strain zafu-3. A: pH; B: ACP activity; C: ALP activity; D: Available P content. Different lowercase letters indicated significant differences in different conditions (P<0.05).

析,结果表明菌株 zafu-3 与木糖氧化无色杆菌 (Achromobacter xylosoxidans)在一起形成稳定的 分支(图 4)。将菌株 zafu-3 与 GenBank 中已收录 的近缘菌株进行 ANI 值比对分析发现,其全基 因组序列也与 A. xylosoxidans 高度相似,序列相 似度达 98.95%,与其他无色小杆菌属 (Achromobacter)相应标准菌株序列相似度均大于

80.00%。因此, 菌株 zafu-3 为木糖氧化无色杆 菌(A. xylosoxidans)。

全基因组结果表明, 菌株 zafu-3 由一个环 状染色体组成, 其全基因组序列长度为 6 650 369 bp, G+C 比例为 67.49%, 包含了 6 009 条编码基因。全基因组有 6 条 KEGG 一级 分类通路, 共包含 42 条 KEGG 二级分类通路

1	89.09	90.97	91.26	98.95	*
2	88.95	90.82	91.13	*	98.85
3	88.86	93.46	*	91.45	91.47
4	88.60	*	92.78	90.49	90.58
5	*	90.02	89.58	90.03	89.98
ANI (%) 5	4	3	2	1

图4 基于16S rRNA基因序列的系统发育树及与近缘菌株的ANI值。括号中为菌株的GenBank序列号,标 尺0.01表示每个位点的核苷酸替换率,ANI值对比菌株与发育树菌株水平对应。

Figure 4 The phylogenetic tree of strain zafu-3 based on 16S rRNA gene sequences and ANI values among strain zafu-3 and other closely related four strains. The serial number in brackets was the GenBank accession number of the strain. Bar indicated 0.01 nucleotide substitutions per site. The strains with comparative ANI values horizontally corresponded to the strains of the phylogenetic tree.

(图 5)。6条 KEGG 分类通路中属于代谢通路的 基因最多,为2874个,其次分别是环境信息处 理通路(660个)、细胞过程通路(476个)、人类疾 病通路(247个)、遗传信息处理通路(202个)、生 物系统通路(106个)。

2.5 菌株 zafu-3 编码有机酸和水解酶的 基因

菌株 zafu-3 有 53 个参与有机酸代谢的编码 基因,这些基因共合成 26 种与有机酸代谢相关 的酶且均属于代谢通路(表 2)。菌株包含了 35 个参与 26 种磷酸水解酶编码的基因,这些酶分解不同底物的同时会产生能被植物吸收的磷酸(H₃PO₄),除了 *ipgD* 基因属于人类疾病通路、*wzb*和*fh*属于环境信息处理通路外,其余基因均属于代谢通路。此外,在代谢通路中发现有45 个编码色氨酸代谢途径(Pathway ID: ko00380)的基因和 28 个编码苯丙氨酸、酪氨酸和色氨酸的生物合成(Pathway ID: ko00400)的基

图5 菌株zafu-3的KEGG通路。不同颜色代表KEGG通路的一级分类;纵坐标代表KEGG通路的二级分类;横坐标代表该分类的基因数量。

Figure 5 The KEGG pathways in strain zafu-3. Different column colors indicated the level 1 classification of KEGG pathway; The ordinate indicated the level 2 classification of KEGG pathway; The abscissa indicated the number of genes under the annotation of this classification.

Table 2 Function prediction of genes involved in organic acid and organic phosphorus hydrolase secreted by strain zafu-3

Genes	KEGG ID	Annotation	EC number	Gene numbers
Organic ac	id			
ilvB	K01652	Acetolactate synthase I/II/III large subunit	2.2.1.6	8
argD	K00821	Acetylornithine/N-succinyldiaminopimelate aminotransferase	2.6.1.11; 2.6.1.17	2
leuA	K01649	2-isopropylmalate synthase	2.3.3.13	2
argJ	K00620	Glutamate N-acetyltransferase/amino-acid N-acetyltransferase	2.3.1.35; 2.3.1.1	1
aspB	K00812	Aspartate aminotransferase	2.6.1.1	4
argC	K00145	N-acetyl-gamma-glutamyl-phosphate reductase	1.2.1.38	2
ilvD	K01687	Dihydroxy-acid dehydratase	4.2.1.9	2
ilvE	K00826	Branched-chain amino acid aminotransferase	2.6.1.42	2
icd	K00031	Isocitrate dehydrogenase	1.1.1.42	2
ilvH	K01653	Acetolactate synthase I/III small subunit	2.2.1.6	1
ilvC	K00053	Ketol-acid reductoisomerase	1.1.1.86	1
argE	K01438	Acetylornithine deacetylase	3.5.1.16	4
gltA	K01647	Citrate synthase	2.3.3.1	4
argAB	K14682	Amino-acid N-acetyltransferase	2.3.1.1	1
ectB	K00836	Diaminobutyrate-2-oxoglutarate transaminase	2.6.1.76	1
leuC	K01703	3-isopropylmalate/(R)-1-methylmalate dehydratase small subunit	4.2.1.33; 4.2.1.34	2
leuD	K01704	3-isopropylmalate/(R)-2-methylmalate dehydratase small subunit	4.2.1.33; 4.2.1.35	2
leuB	K00052	3-isopropylmalate dehydrogenase	1.1.1.85	1
asd	K00133	Aspartate-semialdehyde dehydrogenase	1.2.1.11	1
acnA	K01681	Aconitate hydratase	4.2.1.3	2
lysC	K00928	Aspartate kinase	2.7.2.4	1
acnB	K01682	Aconitate hydratase 2/2-methylisocitrate dehydratase	4.2.1.3; 4.2.1.99	1
LYSN	K05825	2-aminoadipate transaminase	2.6.1	2
argB	K00930	Acetylglutamate kinase	2.7.2.8	1
ict-P	K18289	CoA-transferases;succinyl-CoA:(S)-malate CoA-transferase	2.8.3.22	2
-	K18292	(S)-citramalyl-CoA lyase	4.1.3.25	1
Phosphohy	drolase			
acyP	K01512	Acylphosphate phosphohydrolase	3.6.1.7	1
ushA	K11751	UDP-sugar sugarphosphohydrolase	3.1.3.5	1
gph	K01091	2-phosphoglycolate phosphohydrolase	3.1.3.18	4
rsbU_P	K07315	O-phosphoserine phosphohydrolase	3.1.3.3	4
suhB	K01092	Myo-inositol-phosphate phosphohydrolase	3.1.3.25	2
gmhB	K03273	D-glycero-alpha-D-manno-heptose 1,7-bisphosphate 7-phosphohydrolase	3.1.3.82; 3.1.3.83	2
serB	K01079	O-phosphoserine phosphohydrolase	3.1.3.3	2
mupP	K22292	N-acetyl-D-muramate 6-phosphate phosphohydrolase	3.1.3.105	1

(待续)

XIANG Chunzhu et al.	Acta Microbiologica	Sinica, 2025, 65(2)
----------------------	---------------------	---------------------

				(续表2)
Genes	KEGG ID	Annotation	EC number	Gene numbers
rsgA	K06949	Thiamine phosphate phosphohydrolase	3.1.3.100	1
phnX	K05306	2-oxoethylphosphonate phosphonohydrolase	3.11.1.1	1
fbp	K03841	D-fructose-1,6-bisphosphate 1-phosphohydrolase	3.1.3.11	1
pphA	K07313	Protein-serine/threonine-phosphate phosphohydrolase	3.1.3.16	1
surE	K03787	Phosphoric-monoester hydrolases;3'-ribonucleotide phosphohydrolase	3.1.3.5; 3.1.3.6	1
-	K07053	Nucleoside-3',5'-bisphosphate 3'-phosphohydrolase	3.1.3.97	1
cpdB	K01119	3'-ribonucleotide phosphohydrolase	3.1.3.6	1
wzb	K25307	Protein-tyrosine-phosphate phosphohydrolase	3.1.3.48	1
ipgD	K13085	1-phosphatidyl-1-D-myo-inositol-4,5-bisphosphate 4-phosphohydrolase	3.1.3.78	1
bacA	K06153	Ditrans, octacis-undecaprenyl-diphosphate phosphohydrolase	3.6.1.27	1
ppx-gppA	K01524	Polyphosphate phosphohydrolase	3.6.1.40; 3.6.1.11	1
bcrC	K19302	Ditrans, octacis-undecaprenyl-diphosphate phosphohydrolase	3.6.1.27	1
pgpA	K01095	Phosphatidylglycerophosphate phosphohydrolase	3.1.3.27	1
ribBA	K14652	GTP 7,8-8,9-dihydrolase (formate-releasing, phosphate-releasing)	3.5.4.25	1
ffh	K03106	GTP phosphohydrolase (protein-synthesis-assisting)	3.6.5.4	1
-	K01081	5'-ribonucleotide phosphohydrolase	3.1.3.5	1
kdsC	K03270	3-deoxy-D-manno-octulosonate-8-phosphate 8-phosphohydrolase	3.1.3.45	1
IMPL2	K18649	β -L-galactose-1-phosphate phosphohydrolase	3.1.3.15; 3.1.3.25; 3.1.3.93	1

因。在细胞过程通路中发现有3个参与木质素 降解的基因,其中2条同属于环境信息通路, 3条基因编码同种超氧化氢酶降解木质素,同时 有165个基因,编码参与苯丙氨酸代谢、苯甲 酸盐降解、丙酮酸代谢等代谢路径的蛋白质, 这些蛋白质与木质素降解过程密切相关。

3 讨论与结论

本研究从毛竹根际分离出一株多效解磷菌 zafu-3,为木糖氧化无色杆菌。目前报道的解磷 细菌主要为芽孢杆菌属(*Bacillus*)、假单胞菌属 (*Pseudolnonas*)、 伯 克 霍 尔 德 氏 菌 属 (*Burkholderia*)等^[33]。木糖氧化无色杆菌多被报 道具有修复重金属等污染土壤^[34-35]、生物防 治^[36]、纤维素分解^[37]、降解氨氮^[38]的功能,其 解磷及植物促生能力尚未见报道。菌株 zafu-3 在提高土壤磷生物有效性方面,主要展现出以 下显著优势:(1)具有广泛的溶磷能力,能够溶 解难溶性有机磷,以及钙、铁、铝结合态无机 磷,从而提高解磷效率;(2)能够利用多种糖类、 氨基酸和有机酸作为碳源,这表明它可能在土 壤具有较强的生存能力和广泛的分布范围,特 别是在碳输入较高的区域,如植物根际;(3)菌 株 zafu-3 的生物量较高,为巨大普里斯特氏菌 (Priestia megaterium)、 大 肠 埃 希 氏 菌 (Escherichia coli)、米氏假单胞菌(Pseudomonas migulae)这些解磷菌生物量的 1.28-3.20 倍^[39-41]。 当然,TSB 作为常见的细菌培养基,含有丰富 的营养物质[42],有利于菌株生长,菌株在野外 条件下的存活能力及与其他微生物共生竞争关 系仍需进一步研究; (4) 菌株 zafu-3 具有较强的 环境耐受性,在 pH 4.0-10.0、6% 以下 NaCl 的 条件下均能生长,前期研究也表明木糖氧化无 色杆菌有较强的生存能力^[43]。在高磷土壤中, 菌株 zafu-3 可能通过降低土壤 pH、分泌碱性磷 酸酶来提高土壤有效磷含量。然而,低磷土壤 接种该菌后有效磷含量降低,可能是因为菌株 产生的磷酸酶更多将难溶性有机磷转化为难溶 性无机磷^[44],以及被微生物自身利用。因此, 菌株 zafu-3 能通过产生有机酸和磷酸酶来激活 土壤磷库,为植物和自身提供可直接吸收利用 的有效磷。

菌株 zafu-3 全基因组序列中含有 53 条编码 有机酸和 35 条编码磷酸水解酶的基因, 且接菌 后土壤 pH 下降、磷酸酶活性上升, 这表明在细 菌培养过程中, 多种编码有机酸和水解酶的基 因得到了表达。例如, gltA 编码的柠檬酸合成酶 催化草酰乙酸和乙酰辅酶 A 合成柠檬酸, 柠檬 酸和土壤中的金属离子反应后生成的柠檬酸盐 能够降低土壤 pH 值,这一变化进而增加了难溶 性磷的溶解,增强了植物对磷的吸收^[45],这有 助于减少化肥的使用量,减轻径流污染。菌株 zafu-3 分泌的多种磷酸水解酶可作用于不同的磷 酸酯键,促使多种含磷有机物发生脱磷反应。 例如, surE 编码的磷酸单酯水解酶作用于磷酸 单酯键,可溶解土壤中丰富的磷酸单酯类物 质^[46]。因此, 深入挖掘菌株 zafu-3 解磷相关的 基因资源,探究菌株解磷机制,将有助于更精 准地调控其解磷过程,这对于提高土壤磷有效 性、缓解植物磷限制至关重要。

菌株 zafu-3 不仅具备解磷功能,还具有多种促生特性。在其全基因组中,存在参与合成色氨酸侧链氧化酶(tryptophan side-chain oxidase, TSO)的基因,如 kynA,可用于合成促进植物生长的激素 IAA。在菌株培养液中已检测到 IAA,这表明相应基因在活细菌中表达。同时,菌株 zafu-3 有 21 条参与铁载体编码的基因,铁载体

与土壤中的铁螯合,进而释放磷酸铁中的磷, 为植物同时提供铁元素和有效磷。本研究在菌 株的培养过程中并未检测到铁载体的产生,这 可能是由于全基因组中有2条编码转录调节蛋 白 Fur 的 *furB* 基因。在铁离子充足的环境下, Fur 蛋白会抑制铁载体编码基因的表达^[47]。此 外,菌株 zafu-3 全基因组还包含大量与木质素 降解有关的基因 日在苯胺蓝培养基培养后现

降解有关的基因,且在苯胺蓝培养基培养后观 察到了明显的透明圈,这表明菌株 zafu-3 可能 具备分解植物凋落物的能力,能够释放植物残 体中的磷等营养物质,促使磷元素重新进入土 壤的生物地球化学循环。

值得注意的是,在实际应用中解磷菌株所 处的环境条件远比实验室环境复杂,这增加了 利用解磷菌提高土壤磷有效性和促进植物生长 的不确定性。例如, 菌株在野外环境中的稳定 性和存活期限难以预测。然而, 菌株 zafu-3 在 不同 pH 值、NaCl 浓度、碳源和磷源供应下, 均能保持其解磷活性。因此,该菌株有望在多 样化的土壤环境中持续发挥其促进土壤中有机 磷和无机磷转化的能力。这可能与菌株基因组 中编码多种有机酸和磷酸酶的基因表达密切相 关,多样化的功能基因有助于菌株适应不同的 环境条件。此外,基于菌株 zafu-3 所包含的解 磷相关功能基因,可通过基因编辑与基因表达 调控、构建工程菌株等分子生物学技术提高其 解磷能力,有效缓解植物因磷素不足而面临的 生长限制问题。

本研究从毛竹根际分离出一株具备多途径 解磷的木糖氧化无色杆菌(Achromobacter xylosoxidans) zafu-3。该菌含有大量与解磷和促 生功能相关的基因,主要通过分泌多种有机酸 和磷酸酶溶解难溶性无机磷和有机磷,尤其是 在高磷土壤中。此外,菌株 zafu-3 在多种碳源 和磷源、较宽的 pH 和 NaCl 浓度范围内均能良 好生长,这确保了其功能稳定性。因此,菌株 zafu-3 有望成为提高土壤磷生物有效性的工程菌 株,其在解磷菌肥研发、促进缺磷土壤条件下 的植物生长方面具有广阔的应用前景。

作者贡献声明

项春铸:方法设计、调查研究、数据分析、 结果可视化、论文撰写与修订;房翠莲:调查 研究、结果可视化;田佳怡:调查研究;张清: 调查研究;李全:方法设计、论文修订;宋新 章:研究概念生成;曹婷婷:研究概念生成、 方法设计、论文撰写与修订、课题监管与指导。

作者利益冲突公开声明

作者声明不存在任何可能会影响本文所报 告工作的已知经济利益或个人关系。

参考文献

- [1] ZHU J, LI M, WHELAN M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review[J]. Science of the Total Environment, 2018, 612: 522-537.
- [2] WANG JX, QI ZM, BENNETT EM. Managing mineral phosphorus application with soil residual phosphorus reuse in Canada[J]. Global Change Biology, 2024, 30(1): e17001.
- [3] YAO QM, LI Z, SONG Y, WRIGHT SJ, GUO X, TRINGE SG, TFAILY MM, PAŠA-TOLIĆ L, HAZEN TC, TURNER BL, MAYES MA, PAN CL. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil[J]. Nature Ecology & Evolution, 2018, 2(3): 499-509.
- [4] MAHREEN N, YASMIN S, ASIF M, YAHYA M, EJAZ K, UR-RAHMAN M, YOUSAF S, AMIN I, ZULFIQAR S, IMRAN A, KHALIO S, ARIF M. Mitigation of water scarcity with sustained growth of rice by plant growth promoting bacteria[J]. Frontiers in Plant Science, 2023, 14: 1081537.
- [5] PENG LY, HUANG JG, HUANG CY, YANG HJ. Genetic sequencing provides insights into molecular and genetic mechanisms of Lysobacter enzymogenes HYP18 involved in soil organic nitrogen and phosphorus mobilization and plant growth promotion[J]. Plant and Soil, 2023, 491(1): 525-542.
- [6] WANG ZK, FU XX, KURAMAE EE. Insight into farming native microbiome by bioinoculant in soil-plant system[J]. Microbiological Research, 2024, 285: 127776.

- [7] WANG CO. KUZYAKOV Y. Mechanisms and implications of bacterial-fungal competition for soil resources[J]. The ISME Journal, 2024, 18(1): wrae073.
- [8] OTEINO N, LALLY RD, KIWANUKA S, LLOYD A, RYAN D, GERMAINE KJ, DOWLING DN. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates[J]. Frontiers in Microbiology, 2015, 6: 745.
- [9] SONG XZ, PENG CH, CIAIS P, LI Q, XIANG WH, XIAO WF, ZHOU GM, DENG L. Nitrogen addition increased CO₂ uptake more than non-CO₂ greenhouse gases emissions in a Moso bamboo forest[J]. Science Advances, 2020, 6(12): eaaw5790.
- [10] 冯鹏飞,李玉敏. 2021年中国竹资源报告[J]. 世界竹藤 通讯, 2023, 21(2): 100-103. FENG PF, LI YM. China's bamboo resources in 2021[J]. World Bamboo and Rattan, 2023, 21(2): 100-103 (in Chinese).
- [11] 王潇. 磷添加对毛竹林不同土层磷组分的影响[D]. 杭 州:浙江农林大学硕士学位论文,2024. WANG X. Effect of phosphorus addition on phosphorus components in different soil layers of Moso bamboo forest[D]. Hangzhou: Master's Thesis of Zhejiang A&F University, 2024 (in Chinese).
- [12] WANG Q, YANG P, MAHARAJAN T. RAMAKRISHNAN M, ASIM M, GUI RY, ZHOU MB. Strigolactone mediates Moso bamboo root response to phosphate stress[J]. Journal of Agricultural and Food Chemistry, 2023, 71(20): 7921-7936.
- [13] SHI WH, XING YJ, ZHU Y, GAO N, YING YQ. Diverse responses of phoD- and pqqC-harbouring bacterial communities to variation in soil properties of Moso bamboo forests[J]. Microbial Biotechnology, 2022, 15(7): 2097-2111.
- [14] ZENG QX, PEÑUELAS J, SARDANS J, ZHANG QF, ZHOU JC, YUE K, CHEN Y, YANG YS, FAN YX. Keystone bacterial functional module activates P-mineralizing genes to enhance enzymatic hydrolysis of organic P in a subtropical forest soil with 5-year N addition[J]. Soil Biology and Biochemistry, 2024, 192: 109383.
- [15] ZHANG JY, LIU YX, GUO XX, QIN Y, GARRIDO-OTER R, SCHULZE-LEFERT P, BAI Y. Highthroughput cultivation and identification of bacteria from the plant root microbiota[J]. Nature Protocols, 2021, 16(2): 988-1012.
- [16] GADAGI RS, SA T. New isolation method for microorganisms solubilizing iron and aluminum phosphates using dyes[J]. Soil Science and Plant Nutrition, 2002, 48(4): 615-618.
- [17] NAUTIYAL CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms[J]. FEMS Microbiology Letters, 1999, 170(1): 265-270.
- [18] 刘耀辉. 促生菌对毛竹幼苗根系代谢物及微生物群落 的影响[D]. 南昌: 江西农业大学硕士学位论文, 2022. LIU YH. Effects of growth-promoting bacteria on root metabolites and microbial community of Phyllostachys pubescens seedlings[D]. Nanchang: Master's Thesis of

Jiangxi Agricultural University, 2022 (in Chinese).

- [19] GARCÍA-PALACIOS P, SHAW EA, WALL DH, HÄTTENSCHWILER S. Temporal dynamics of biotic and abiotic drivers of litter decomposition[J]. Ecology Letters, 2016, 19(5): 554-563.
- [20] WANG XJ, YANG LL, GENG X, SHI WJ, CHEN YZ, LU CF. Integrative analysis of metabolome and transcriptome reveals the different metabolite biosynthesis profiles related to palatability in winter and spring shoot in Moso bamboo[J]. Plant Physiology and Biochemistry, 2023, 202: 107973.
- [21] YANG CL, DONG Y, FRIMAN VP, JOUSSET A, WEI Z, XU YC, SHEN QR. Carbon resource richness shapes bacterial competitive interactions by alleviating growthantibiosis trade-off[J]. Functional Ecology, 2019, 33(5): 868-875.
- [22] 杨顺,杨婷,林斌,刘杏忠,向梅春.两株溶磷真菌的筛选、鉴定及溶磷效果的评价[J]. 微生物学报,2018,58(2):264-273.
 YANG S, YANG T, LIN B, LIU XZ, XIANG MC. Isolation and evaluation of two phosphate-dissolving fungi[J]. Acta Microbiologica Sinica, 2018, 58(2):264-273 (in Chinese).
- [23] 韩东晶, 王志花, 周宁, 刘国庆, 杨少华, 汪文君. 白蚁菌 圃中木质素降解菌的筛选及降解效果[J]. 生物技术通 报, 2022, 38(3): 113-120.
 HAN DJ, WANG ZH, ZHOU N, LIU GQ, YANG SH, WANG WJ. Screening and degradation effect of lignindegrading bacteria in termite nurseries[J]. Biotechnology Bulletin, 2022, 38(3): 113-120 (in Chinese).
- [24] ZHANG Y, WAN SZ, SHI FX, FANG XM, HUANG C. Identification and characterization of a phosphatesolubilizing bacterium and its growth-promoting effect on Moso bamboo seedlings[J]. Forests, 2024, 15(2): 364.
- [25] LI JQ, PEI JM, PENDALL E, REICH PB, NOH NJ, LI B, FANG CM, NIE M. Rising temperature may trigger deep soil carbon loss across forest ecosystems[J]. Advanced Science, 2020, 7(19): 2001242.
- [26] 张艳军,陈宝婷,张玉梅,张逸飞,朱宝琳,苏盼,丁林贤, 谢乃钧,张萍华.广西蚕沙细菌组成多样性解析和 VBNC 菌群的发掘[J]. 微生物学报,2020,60(5): 1036-1046. ZHANG YJ, CHEN BT, ZHANG YM, ZHANG YF, ZHU BL, SU P, DING LX, XIE NJ, ZHANG PH. Bacterial diversity and VBNC bacteria in silkworm excrement from Guangxi[J]. Acta Microbiologica Sinica, 2020,60(5): 1036-1046 (in Chinese).
- [27] ZHOU J, LI XL, PENG F, LI CY, LAI CM, YOU QG, XUE X, WU YH, SUN HY, CHEN Y, ZHONG HT, LAMBERS H. Mobilization of soil phosphate after 8 years of warming is linked to plant phosphorusacquisition strategies in an alpine meadow on the Qinghai-Tibetan Plateau[J]. Global Change Biology, 2021, 27(24): 6578-6591.
- [28] HEDLEY MJ, STEWART JWB, CHAUHAN BS. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Soil Science Society of America Journal, 1982, 46(5): 970-976.

- [29] VAN-DIJK EL, AUGER H, JASZCZYSZYN Y, THERMES C. Ten years of next-generation sequencing technology[J]. Trends in Genetics, 2014, 30(9): 418-426.
- [30] JIAO YP, PELUSO P, SHI JH, LIANG T, STITZER MC, WANG B, CAMPBELL MS, STEIN JC, WEI XH, CHIN CS, GUILL K, REGULSKI M, KUMARI S, OLSON A, GENT J, SCHNEIDER KL, WOLFGRUBER TK, MAY MR, SPRINGER NM, ANTONIOU E, et al. Improved maize reference genome with single-molecule technologies[J]. Nature, 2017, 546(7659): 524-527.
- [31] WICK RR, JUDD LM, GORRIE CL, HOLT KE. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads[J]. PLoS Computational Biology, 2017, 13(6): e1005595.
- [32] HYATT D, CHEN GL, LOCASCIO PF, LAND ML, LARIMER FW, HAUSER LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification[J]. BMC Bioinformatics, 2010, 11: 119.
- [33] 朱德旋, 杜春梅, 董锡文, 薛春梅, 王瑞. 一株寒地高效 解无机磷细菌的分离鉴定及拮抗作用[J]. 微生物学报, 2020, 60(8): 1672-1682.
 ZHU DX, DU CM, DONG XW, XUE CM, WANG R. Identification and antagonism activity of an inorganic phosphorus-dissolving bacterial strain isolated from cold region[J]. Acta Microbiologica Sinica, 2020, 60(8): 1672-1682 (in Chinese).
- [34] GUNASEKARAN V, DONMEZ E, GIRHARD M, URLACHER VB, CONSTANTÍ M. Biodegradation of fuel oxygenates and their effect on the expression of a newly identified cytochrome P450 gene in *Achromobacter xylosoxidans* MCM2/2/1[J]. Process Biochemistry, 2014, 49(1): 124-129.
- [35] 李哲,陈潼樾,冷粟,吴迪,张秀芳,周野,车驰,李明堂. 株氧化木糖无色杆菌对 Pb 的生物矿化作用及其应用效 果研究[J]. 农业环境科学学报, 2017, 36(10): 2014-2020.
 LI Z, CHEN TY, LENG S, WU D, ZHANG XF, ZHOU Y, CHE C, LI MT. Biomineralization of Pb by a strain of Achromobacter xylosoxidans and its practical application in bioremediation[J]. Journal of Agro-Environment Science, 2017, 36(10): 2014-2020 (in Chinese).
- [36] 武凤霞, 范丙全, 刘建玲. 木糖氧化无色杆菌反硝化亚种细菌的分离鉴定及其菲降解特性研究[J]. 植物营养与肥料学报, 2007, 13(4): 725-729.
 WU FX, FAN BQ, LIU JL. Isolation of Achromobacter xylosoxidans subsp. denitrificans and it's degradation of phenanthrene[J]. Journal of Plant Nutrition and Fertilizers, 2007, 13(4): 725-729 (in Chinese).

[37] 贺军军, 罗萍, 陈永辉, 易润华, 李勤奋, 戴小红. 甘蔗渣 纤维素降解菌的筛选及鉴定[J]. 微生物学杂志, 2011, 31(1): 39-42.
HE JJ, LUO P, CHEN YH, YI RH, LI QF, DAI XH. Screening and identification of cellulose degradingbacteria from fermented bagasse[J]. Journal of Microbiology, 2011, 31(1): 39-42 (in Chinese).

[38] 刘韶娜,杨国明,李卫芬.一株降解氨氮菌株的筛选[J]. 养猪, 2014, 2: 77-78.
LIU SN, YANG GM, LI WF. Isolation of microorganisms degrading ammonia-nitrogen of wastewater[J]. Swine Production, 2014, 2: 77-78 (in Chinese).

- [39] 原海兵, 刘军, 韩志双, 郇阿梅, 石娇娇. 土壤中1株解磷 细菌的筛选及其生长特性的研究[J]. 安徽农业大学学 报, 2013, 40(5): 843-848.
 YUAN HB, LIU J, HAN ZS, HUAN AM, SHI JJ. A phosphorus bacteria separated from soil and its growth characteristics[J]. Journal of Anhui Agricultural University, 2013, 40(5): 843-848 (in Chinese).
- [40] 张晗昱,李丹丹,郑瑾,樊金娟,王清威,杜显元,任金蔓, 宋权威,吴慧君,谢加才.青藏高原多年冻土区解磷菌 筛选及抗逆能力评价[J]. 微生物学报, 2024, 64(6): 1876-1890.

ZHANG HY, LI DD, ZHENG J, FAN JJ, WANG QG, DU XY, REN JM, SONG QW, WU HJ, XIE JC. Screening of phosphorus-solubilizing strains with stress tolerance in the permafrost region of the Qinghai-Xizang Plateau[J]. Acta Microbiologica Sinica 2024, 64(6): 1876-1890 (in Chinese).

[41] 张雪梅,张秀梅,李文涛. 鳗草根际溶磷微生物分离、筛 选及其对鳗草生长的影响[J]. 中国水产科学, 2020, 27(1): 82-96.
ZHANG XM, ZHANG XM, LL WT. Isolation and

characterization of phosphate-solubilizing bacteria in the rhizosphere of eelgrass *Zostera marina* and promotion effect on eelgrass growth[J]. Journal of Fishery Sciences of China, 2020, 27(1): 82-96 (in Chinese).

[42] AHN Y, LEE UJ, LEE YJ, LIPUMA JJ, HUSSONG D, MARASA B, CERNIGLIA CE. Oligotrophic media compared with a tryptic soy agar or broth for the recovery of *Burkholderia cepacia* complex from different storage temperatures and culture conditions[J]. Journal of Microbiology and Biotechnology, 2019, 29(10): 1495-1505.

[43] 张巧, 商飞飞, 段振华, 唐小闲. 荸荠贮藏期间2株腐败 菌鉴定及其特性[J]. 江苏农业学报, 2019, 35(1): 189-194.
ZHANG Q, SHANG FF, DUAN ZH, TANG XX.

Identification and characteristics of two spoilage bacteria from water chestnut during storage[J]. Jiangsu Journal of Agricultural Sciences, 2019, 35(1): 189-194 (in Chinese).

- [44] NAZ F, MAQBOOL A, MALIK K. Degradation of legume phytate in soil using fungal phytase[J]. Pakistan Journal of Botany, 2013, 45(3): 1017-1022.
- [45] MCKAY FLETCHER DM, RUIZ S, DIAS T, PETROSELLI C, ROOSE T. Linking root structure to functionality: the impact of root system architecture on citrate-enhanced phosphate uptake[J]. The New Phytologist, 2020, 227(2): 376-391.
- [46] HUANG LM, JIA XX, ZHANG GL, SHAO MN. Soil organic phosphorus transformation during ecosystem development: a review[J]. Plant and Soil, 2017, 417(1): 17-42.
- [47] GABALLA A, ANTELMANN H, AGUILAR C, KHAKH SK, SONG KB, SMALDONE GT, HELMANN JD. The *Bacillus subtilis* iron-sparing response is mediated by a Fur-regulated small RNA and three small, basic proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33): 11927-11932.