Abstract:Calcineurin is a serine/threonine (Ser/Thr) protein phosphatase and generally conserved in fungal genus. Its upstream signaling pathway were composed of Ca2+ channel (CCH1), transporter (MID1), calcium ion sensing protein (CaM), calmodulin-dependent phosphatase and etc. Calcineurin is the only phosphatase in fungi that is regulated by calcium ions and calmodulin, and plays a central role in the calcium signal cascade that regulates fungal Ca2+ homeostasis. Through calcium signaling cascade pathway, it participates in biological processes that regulates the growth, development and virulence formation of fungi for response to changes in external environmental factors, as well as fungi can adapt to various environment and maintain normal life activities. This review summarizes the signal composition of fungal calcineurin and the upstream and downstream signal transduction pathways, as well as the regulation of cell growth and metabolism, the formation of virulence, and tolerance resistance. With the advantage of the regulation of fungal metabolite synthesis, the mining of calcium regulating phosphatase signal as a potential synthetic biological element and regulatory switch was also proposed.