Genotype diversity analysis of indigenous Saccharomyces cerevisiae during spontaneous fermentations of Vitis davidii Föex in Ziyun, Guizhou
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] The aim is to study the genotype diversity of indigenous Saccharomyces cerevisiae isolated from spontaneous fermentations of Vitis davidii Föex in Ziyun County of Guizhou Province, to analyze the dynamic changes of different S. cerevisiae genotypes at different fermentation periods, and to provide theoretical references for the industrial application of excellent S. cerevisiae resources. [Methods] We applied interdelta fingerprinting analysis and microsatellite marker analysis to study the genotype diversity of indigenous S. cerevisiae during spontaneous fermentations of Vitis davidii Föex in Ziyun County of Guizhou Province. DPS software was used to analyze the genetic relationship among different genotypes. [Results] We totally isolated 75 indigenous S. cerevisiae strains, and identified them into 10 genotypes by interdelta fingerprinting analysis and microsatellite marker analysis. Genotypes 6, 9, 10, 11, 14, 15 and 16 are the peculiar seven genotypes owned by indigenous S. cerevisiae strains. Genotypes 7, 17 and 18 are the mutual three genotypes owned by both indigenous and commercial S. cerevisiae strains. Furthermore, other commercial S. cerevisiae strains in the study showed nine other specific genotypes including genotypes 1, 2, 3, 4, 5, 8, 12, 13 and 19. The genotype 17 took the highest proportion in the 75 isolates (36%) followed by the genotype 10 (13.3%). Different genotypes showed waxing and waning ratio changes during fermentations, and the cell density of each genotype varied among 104-107CFU/mL. [Conclusion] Spontaneous fermentation samples of Vitis davidii Föex in Ziyun County of Guizhou Province showed rich genotype diversity of S. cerevisiae strains. Genotypes 10 and 17 were the predominant S. cerevisiae genotypes. This study laid a basis for the development of excellent indigenous S. cerevisiae resources of Vitis davidii Föexin Guizhou Province.

    Reference
    [1] Pérez-Torrado R, Gamero E, Gómez-Pastor R, Garre E, Aranda A, Matallana E. Yeast biomass, an optimised product with myriad applications in the food industry. Trends in Food Science & Technology, 2015, 46(2):167-175.
    [2] Comitini F, Capece A, Ciani M, Romano P. New insights on the use of wine yeasts. Current Opinion in Food Science, 2017, 13:44-49.
    [3] Fleet GH. Wine yeasts for the future. FEMS Yeast Research, 2008, 8(7):979-995.
    [4] Ma J, Liu YL. Metabolism and gene regulation of important volatile sulfur compounds in wine-A review. Acta Microbiologica Sinica, 2011, 51(1):14-20. (in Chinese) 马捷, 刘延琳. 葡萄酒中重要挥发性硫化物的代谢及基因调控. 微生物学报, 2011, 51(1):14-20.
    [5] Šuranská H, Vránová D, Omelková J. Isolation, identification and characterization of regional indigenous Saccharomyces cerevisiae strains. Brazilian Journal of Microbiology, 2016, 47(1):181-190.
    [6] Nikolaou E, Soufleros EH, Bouloumpasi E, Tzanetakis N. Selection of indigenous Saccharomyces cerevisiae strains according to their oenological characteristics and vinification results. Food Microbiology, 2006, 23(2):205-211.
    [7] Parapouli M, Hatziloukas E, Drainas C, Perisynakis A. The effect of Debina grapevine indigenous yeast strains of Metschnikowia and Saccharomyces on wine flavour. Journal of Industrial Microbiology & Biotechnology, 2009, 37(1):85-93.
    [8] Yu H, Guan JX, Yang Y, Huang XY, Cheng G, Xie TL, Xie LJ. Effects of seven wild wine yeast strains on the aroma compounds of ‘guipu 3’ dry white wines. Food Science, 2019, 40(4):251-258. (in Chinese) 余欢, 管敬喜, 杨莹, 黄晓云, 成果, 谢太理, 谢林君. 7株野生葡萄酒酵母对‘桂葡3号’干白葡萄酒香气成分的影响. 食品科学, 2019, 40(4):251-258.
    [9] Pei YF, Liu YL. Application of DNA molecular markers in genetic diversities of Saccharomyces cerevisiae strains. Scientia Agricultura Sinica, 2010, 43(5):1023-1030. (in Chinese) 裴颖芳, 刘延琳. DNA分子标记技术在酿酒酵母菌株遗传多样性分析中的应用. 中国农业科学, 2010, 43(5):1023-1030.
    [10] Sun Y, Zhang FF, Chu SX, Li JX, Shao S, Zhang JX. Effects of Saccharomyces cerevisiae strains with different killer activities on yeast diversity during inoculated fermentation of cabernet sauvignon. Food Science, 2020, 41(2):166-172. (in Chinese) 孙悦, 张方方, 褚遂兴, 李佳幸, 邵帅, 张军翔. 接种不同嗜杀特性的酿酒酵母对赤霞珠发酵中酵母多样性的影响. 食品科学, 2020, 41(2):166-172.
    [11] Zhao JJ, Li Y, Zhang LZ, Zhuang YT. Interdelta PCR fingerprinting for the identification of Saccharomyce cerevisiae from Shacheng area. Food Science, 2010, 31(23):281-284. (in Chinese) 赵静静, 李艳, 张利中, 庄玉婷. Interdelta PCR指纹图谱法区分鉴定沙城产区酿酒酵母. 食品科学, 2010, 31(23):281-284.
    [12] Liu Y, Wang C, Joseph CML, Bisson LF. Comparison of two PCR-based genetic fingerprinting methods for assessment of genetic diversity in Saccharomyces strains. American Journal of Enology and Viticulture, 2014, 65(1):109-116.
    [13] Liu N, Qin Y, Song YY, Ye DQ, Yuan W, Pei YF, Xue B, Liu YL. Selection of indigenous Saccharomyces cerevisiae strains in Shanshan County (Xinjiang, China) for winemaking and their aroma-producing characteristics. World Journal of Microbiology and Biotechnology, 2015, 31(11):1781-1792.
    [14] Jia J, Wang GQ, Zhu LX, Han PJ, Guo DQ, Chen M. Structure characteristics of Saccharomyces cerevisiae population associated with grape and wine in Xinjiang. Journal of Dalian Polytechnic University, 2018, 37(2):94-99. (in Chinese) 贾佳, 王冠群, 朱丽霞, 韩培杰, 郭东起, 陈明. 新疆葡萄和葡萄酒相关酿酒酵母种群的结构特征. 大连工业大学学报, 2018, 37(2):94-99.
    [15] Feng L, Wang JM, Ye DQ, Song YY, Qin Y, Liu YL. Yeast population dynamics during spontaneous fermentation of icewine and selection of indigenous Saccharomyces cerevisiae strains for the winemaking in Qilian, China. Journal of the Science of Food and Agriculture, 2020, 100(15):5385-5394.
    [16] Agarbati A, Canonico L, Ciani M, Comitini F. Fitness of selected indigenous Saccharomyces cerevisiae strains for white Piceno DOC wines production. Fermentation, 2018, 4(2):37.
    [17] de Celis M, Ruiz J, Martín-Santamaría M, Alonso A, Marquina D, Navascués E, Gómez-Flechoso MÁ, Belda I, Santos A. Diversity of Saccharomyces cerevisiae yeasts associated to spontaneous and inoculated fermenting grapes from Spanish vineyards. Letters in Applied Microbiology, 2019, 68(6):580-588.
    [18] Sun Y, Qin Y, Pei YF, Wang GP, Joseph CML, Bisson LF, Liu YL. Evaluation of Chinese Saccharomyces cerevisiae wine strains from different geographical origins. American Journal of Enology and Viticulture, 2017, 68(1):73-80.
    [19] Feng L, Jia H, Wang JM, Qin Y, Liu YL, Song YY. Selection of indigenous Saccharomyces cerevisiae strains for winemaking in northwest China. American Journal of Enology and Viticulture, 2019, 70(2):115-126.
    [20] Franco-Duarte R, Umek L, Zupan B, Schuller D. Computational approaches for the genetic and phenotypic characterization of a Saccharomyces cerevisiae wine yeast collection. Yeast, 2009, 26(12):675-692.
    [21] Xiao Y, Hu Y, Zhang L, Shi GY. Screening of microsatellite markers associated with acetic acid tolerance of Saccharomyces cerevisiae. Microbiology China, 2015, 42(11):2065-2072. (in Chinese) 肖银, 胡芸, 张梁, 石贵阳. 酿酒酵母乙酸耐受性相关的微卫星分子标记筛选. 微生物学通报, 2015, 42(11):2065-2072.
    [22] Zhang LY, Huang YZ, Liu YL. Genetic diversity analysis of Saccharomyces cerevisiae strains by microsatellite marker technique. Food Science, 2014, 35(1):130-133. (in Chinese) 张留燕, 黄英子, 刘延琳. 利用微卫星标记分析酿酒酵母的遗传多样性. 食品科学, 2014, 35(1):130-133.
    [23] Tie CY, Hu Y, Zhang L, Shi GY. Genetic analysis of industrial yeast (Saccharomyces cerevisiae) based on sequencing of 26S rRNA gene D1/D2 domain and microsatellite markers. Mycosystema, 2014, 33(4):894-904. (in Chinese) 铁春燕, 胡芸, 张梁, 石贵阳. 利用26S rDNAD1/D2区序列和微卫星标记分析各种工业酿酒酵母的种内遗传差异. 菌物学报, 2014, 33(4):894-904.
    [24] Feng M, Wang CX, Liu YL. Genetic diversity of Saccharomyces cerevisiae strains revealed by microsatellite sequence polymorphism. Scientia Agricultura Sinica, 2012, 45(12):2537-2543. (in Chinese) 冯敏, 王春晓, 刘延琳. 利用微卫星多态性揭示酿酒酵母菌株遗传多样性. 中国农业科学, 2012, 45(12):2537-2543.
    [25] Wang CX, Wu C, Qiu SY. Yeast diversity investigation of Vitis davidii Föex during spontaneous fermentations using culture-dependent and high-throughput sequencing approaches. Food Research International, 2019, 126:108582.
    [26] Zhou XL, Shen W, Rao ZM, Wang ZX, Zhuge J. A rapid method for preparation of fungal chromosome DNA. Microbiology, 2004, 31(4):89-92. (in Chinese) 周小玲, 沈微, 饶志明, 王正祥, 诸葛健. 一种快速提取真菌染色体DNA的方法. 微生物学通报, 2004, 31(4):89-92.
    [27] Legras JL, Karst F. Optimisation of Interdelta analysis for Saccharomyces cerevisiae strain characterisation. FEMS Microbiology Letters, 2003, 221(2):249-255.
    [28] Wang CX, Liu YL. Dynamic study of yeast species and Saccharomyces cerevisiae strains during the spontaneous fermentations of Muscat Blanc in Jingyang, China. Food Microbiology, 2013, 33(2):172-177.
    [29] Jubany S, Tomasco I, Ponce de León I, Medina K, Carrau F, Arrambide N, Naya H, Gaggero C. Toward a global database for the molecular typing of Saccharomyces cerevisiae strains. FEMS Yeast Research, 2008, 8(3):472-484.
    [30] Borneman AR, Pretorius IS. Genomic insights into the Saccharomyces sensu stricto complex. Genetics, 2015, 199(2):281-291.
    [31] Pei YF, Wang GP, Liu YL. Strain typing of Saccharomyces cerevisiae during spontaneous fermentation of cabernet sauvigon wine. Microbiology, 2009, 36(10):1532-1535. (in Chinese) 裴颖芳, 王国平, 刘延琳. 赤霞珠葡萄酒自然发酵中酿酒酵母的菌株区分. 微生物学通报, 2009, 36(10):1532-1535.
    [32] Pfliegler WP, Sipiczki M. Does fingerprinting truly represent the diversity of wine yeasts? A case study with Interdelta genotyping of Saccharomyces cerevisiae strains. Letters in Applied Microbiology, 2016, 63(6):406-411.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Jinxian Yang, Cheng Wu, Chunxiao Wang, Jin Tian, Yinhu Xu, Shuyi Qiu. Genotype diversity analysis of indigenous Saccharomyces cerevisiae during spontaneous fermentations of Vitis davidii Föex in Ziyun, Guizhou. [J]. Acta Microbiologica Sinica, 2021, 61(11): 3431-3443

Copy
Share
Article Metrics
  • Abstract:381
  • PDF: 1299
  • HTML: 1188
  • Cited by: 0
History
  • Received:January 03,2021
  • Revised:March 15,2021
  • Online: November 04,2021
Article QR Code