Optimization of Agrobacterium-mediated transformation of Chlamydomonas reinhardtiii
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    [Objective] To establish a rapid, simple and efficient Agrobacterium-mediated genetic transformation system for Chlamydomonas reinhardtiii, we used the model organism C. reinhardtiii as the receptor material and optimized the Agrobacterium-mediated transformation system of C. reinhardtiii from two aspects: transformation method and transformants identification method. [Methods] We compared the effect of solid co-culture and liquid co-culture on the transformation efficiency of C. reinhardtii CC425 mediated by A. tumefaciens LBA4404. Besides, we analyzed the optimal reaction conditions and amplification efficiency of (1) two-step PCR after TE cleavage, and (2) one-step PCR without TE cleavage. [Results] The highest transformation efficiency was achieved by a 5-day liquid-medium co-culture of Agrobacterium and Chlamydomonas. The transformation rate was 43.33±1.67 transformants/106 algal cells. The optimal reaction conditions were: amplification with high fidelity DNA polymerase Taq 1; the cell density involved in PCR was 5×103–5×106 cells/mL; before amplification, cells were boiled in TE lysis buffer for 20 min (two-step PCR method), or initial denaturation for 15 min (one-step direct PCR method). The amplification efficiency of two-step PCR is better than that of one-step PCR, but the latter is more concise. [Conclusion] Agrobacterium-mediated transformation system of C. reinhardtii was established and optimized, through which rapid genetic transformation can be fulfilled and the workload could be reduced.

    Reference
    Related
    Cited by
Get Citation

Xiaoyun Qin, Fang Li, Shujun Wang, Zhiyuan Liu. Optimization of Agrobacterium-mediated transformation of Chlamydomonas reinhardtiii. [J]. Acta Microbiologica Sinica, 2021, 61(1): 92-103

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 24,2020
  • Revised:May 18,2020
  • Adopted:
  • Online: January 12,2021
  • Published:
Article QR Code