Abstract:[Objective] To detect the clustered regularly interspaced short palindromic repeats (CRISPR) in Vibrio parahaemolyticus, and analyze its structural diversities in different sources of V. parahaemolyticus strains.[Methods] The primers of convincing CRISPR structure CRISPR-1 were designed by using the sequence according to CRISPR database, while the primers of questionable CRISPR structure CRISPR-2 were designed according to the literature. PCR approach was used to detect the CRISPR locus in all 79 strains, and all CRISPR sequences were analyzed using CRISPR Finder. Furthermore, the structural diversities of CRISPR in different sources of V. parahaemolyticus were analyzed using bioinformatics methods.[Results] The positive rate of CRISPR-1 was 92.41% and of CRISPR-2 96.20%. The strains possessed with these two locus accounted for 89.87% of the total strains, and only one strain did not contain any locus. There was no difference between the repeats of CRISPR-1 and CRISPR-2 from different sources of V. parahaemolyticus, whereas the spacers of those two locus in clinical strains had more variations than those in environmental strains. Therefore, two CRISPR locus formed 8 spectral patterns (numbers A-H) according to the variations of spacers. Except type F, the patterns A-E, G only were found in the clinical strains. And the type H containing none of locus was only found in environmental strains.[Conclusion] CRISPR commonly existed in V. parahaemolyticus. There were differences in the structure of CRISPR between environmental and clinical strains.