Comparison of archaeal community composition between Qinghai Lake and other salt lakes in China
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [17]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    [Objective] We compared the difference of community structure of archaea between Qinghai Lake (the largest inland saltwater lake in China) and several other salt lakes in China.[Methods] Chaka Salt Lake in Qinghai Province, Huamachi Salt Lake and Gouchi Salt Lake in Shaanxi Province, and Yuncheng Salt Lake in Shanxi Province were randomly selected as the sample pool. From each lake five samples were taken and analyzed with the high-throughput sequencing technology for 16S rRNA gene.[Results] The dominant genera of Qinghai Lake were DHVEG-6_norank, Methanomicrobia_unclassified, Methanobacterium, Methanolobus, Candidatus_Methanomethylophilus, Miscellaneous_Euryarchaeotic_Group(MEG)_norank, AMOS1A-4113-D04_norank, Methanosarcina, Miscellaneous_Crenarchaeotic_Group_norank. Among them DHVEG-6_norank (70.46%) was absolutely dominant whereas it was hardly found in other salt lakes. On the contrary, the dominant genera in the other 4 salt lakes are Halonotius, Halorubrum, Natronomonas, Halobellus and Haloarcula. Degree of mineralization was the most influential factor that affected the structure of the archaea communities in Qinghai Lake and other salt lakes. The community structure of Qinghai Lake with a low degree of mineralization was significantly different from that of the other 4 salt lakes. The second factor is pH that affected the abundance of some species. However, no significant correlation between the altitude and the community structure was found.[Conclusion] The community structure and diversity of Qinghai Lake was significantly different from that of other 4 salt lakes and it was mainly influenced by the degree of mineralization.

    Reference
    [1] Song PS, Li W, Sun B, Nei Z, Bu LZ, Wang YS. Recent development on comprehensive utilization of salt lake resources. Chinese Journal of Inorganic Chemistry, 2011, 27(5):801-815. (in Chinese)宋彭生, 李武, 孙柏, 乜贞, 卜令忠, 王云生. 盐湖资源开发利用进展. 无机化学学报, 2011, 27(5):801-815.
    [2] Borsodi AK, Rusznyák A, Molnár P, Vladár P, Reskóné MN, Tóth EM, Sipos R, Gedeon G, Márialigeti K. Metabolic activity and phylogenetic diversity of reed (Phragmites australis) periphyton bacterial communities in a Hungarian shallow soda lake. Microbial Ecology, 2007, 53(4):612-620.
    [3] Jiang JH, Huang Q. Analysis on utilization of the lacustrine water resources and the salinization of lacustring water in west China. Arid Land Geography, 2004, 27(3):300-304. (in Chinese)姜加虎, 黄群. 我国西部地区湖泊水资源利用与湖水咸化状况分析. 干旱区地理, 2004, 27(3):300-304.
    [4] Deng LJ, Lou K, Zeng J, Xu YH, Shi YW, Zhang YX. Archaea diversity in water of two typical brackish lakes in Xinjiang. Acta Ecologica Sinica, 2012, 32(21):6811-6818. (in Chinese)邓丽娟, 娄恺, 曾军, 徐赢华, 史应武, 张煜星. 新疆两典型微咸水湖水体免培养古菌多样性. 生态学报, 2012, 32(21):6811-6818.
    [5] Jiang HC, Dong HL, Yu BS, Liu XQ, Li YL, Ji SS, Zhang CL. Microbial response to salinity change in Lake Chaka, a hypersaline lake on Tibetan plateau. Environmental Microbiology, 2007, 9(10):2603-2621.
    [6] Logue JB, Bürgmann H, Robinson CT. Progress in the ecological genetics and biodiversity of freshwater bacteria. BioScience, 2008, 58(2):103-113.
    [7] Yang JX, Qi HF, Shi JQ, Chen DQ, Huang FX, Tang HY. Hydrochemistry property and water quality analysis of Qinghai Lake. Freshwater Fisheries, 2005, 35(3):28-32. (in Chinese)杨建新, 祁洪芳, 史建全, 陈大庆, 黄福祥, 唐洪玉. 青海湖水化学特性及水质分析. 淡水渔业, 2005, 35(3):28-32.
    [8] 郑喜玉, 张明刚, 徐昶, 李秉孝. 中国盐湖志. 北京:科学出版社, 2002.
    [9] Zhou GQ, Wang Q. Approach to determination of degree of mineralization for shallow groundwater. Environmental Engineering, 2003, 21(3):65-67. (in Chinese)周国强, 王强. 浅层地下水矿化度测定方法的探讨. 环境工程, 2003, 21(3):65-67.
    [10] Yu ZT, García-González R, Schanbacher FL, Morrison M. Evaluations of different hypervariable regions of archaeal 16S rRNA genes in profiling of methanogens by Archaea-specific PCR and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 2008, 74(3):889-893.
    [11] Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project:improved data processing and web-based tools. Nucleic Acids Research, 2013, 41:D590-D596.
    [12] Li L, Hao CB, Wang LH, Pei LX. Microbial diversity of salt lakes in Badain Jaran desert. Acta Microbiologica Sinica, 2015, 55(4):412-424. (in Chinese)李璐, 郝春博, 王丽华, 裴理鑫. 巴丹吉林沙漠盐湖微生物多样性. 微生物学报, 2015, 55(4):412-424.
    [13] Cui HL, Yang Y, Dilbr T, Zhou PJ, Liu SJ. Biodiversity of halophilic archaea isolated from two salt lakes in Xinjiang region of China. Acta Microbiologica Sinica, 2006, 46(2):171-176. (in Chinese)崔恒林, 杨勇, 迪丽拜尔·托乎提, 周培瑾, 刘双江. 新疆两盐湖可培养嗜盐古菌多样性研究. 微生物学报, 2006, 46(2):171-176.
    [14] Nunoura T, Oida H, Nakaseama M, Kosaka A, Ohkubo SB, Kikuch摩椠晔昬攠牋敡湺瑡汭祡?瑈漬?效湯癳楯物漭湔浡敮湡瑢慥氠?本爠慎摡楫敡湭瑵獲?椠湋?愠湋潩确楯捳?獩整摡椠浍攬渠瑈獩?潡晹??慡氠楈昬漠牉湮楡慧??祩瀠敆爬猠慔汳極湮敯??慩欠敕??瑉桳敨?卢慡汳瑨潩渠?匬攠慔???灩瀠汋椮攠摁?慣湨摡??湬瘠楤物潶湥浲敳湩瑴慹氠??楤挠牤潩扳楴潲汩潢杵祴?????ぬ?????????????????扥牯?孨??嵩??楬爠执楲牡?????慳氠汩楮?????敯牴瑨潥杲汭畡?????慩牭摥慮癴楳搠?剴???佥爠教湯????佮杩洠敋湮??乬??佖朠慨湹?????硥瑲牭敡浬攠汦祩?桬慤氠潩灮栠楴汨楥挠??牵捴桨慥敲慮?晏牫潩浮?呷畡稠??慯歵敧??吠畁牰歰敬祩??愠湡摮?琠桅敮?慩摲橯慮捭敥湮瑴??愠汍摩楣牲楯浢?慯湬摯??愬礠愲挰椱欰?猠愷氶琨攴爩渺猱??圸漭爱氲搱??漼畢牲渾慛氱‵潝映??楨据牥潩扤楥潲氠潄本礠????楇漬琠敒捥桩湭潥汲漠杁礬???どぴ???㈠??????ど???????扨特?孯??嵮??睩楣爠楡据桡楬慹?剩???潦甠獡椠湭?卣???畩楡杬慩楴??坦???潩杮慧?????卯瑢慩捡歬攠扭牡慴渠摦瑲?????牨捹桰慥敲慳污?摩楮癥攠牬獡楫瑥礠?楦渠?瑨桥攠??慲汩潴慩汭歡慴汩椠湁整??慬欬攠??汮浴敲湡瑬攠楐瑡慣?楦湩??攠湐祌慯???畎牅爬攠渲琰??椬挠爸漨戶椩漺汥漶朶礶?′金??ひ?????ㄠ?????????才牋?孔??崠??楮畤??????楔測朠?塡坴??圠慈測朠?????婡桷慡渠杍?堠????潨穡穲敡椠湙?圠乔??坡慨摡慳慨湩???????慢湥?????婮桡慥湲杯?????楲?坡????畴欠慯牦礠潭瑵楮捩?浩楰捡牬漠扷楡慳汴?捷潡浴浥畲渠楡瑴椠敡獭?楩湥?桴礠灴敥牭獰慥汲楡湴敵?獥漺楁汮獡?慹湳摩?猠敯摦椠浡敲湣瑨獡?晡牬漠浣?瑭桭敵?慩汴歹愠汳楴湲敵?桴祵灲敥爠獡慮汤椠湲敥??當慥浲慹??慦欠敤?慳獳?牬敶癥敤愠汭敥摴?扡祮?????灴祥牲漠獒敥煳略敡湲捣楨測朠?‰?渲琬漠渴椶攨?瘷愩渺‵?攵收甭眵攷渶栴漮攼止? ̄???????の??????????????扨牥?孶??嵴??楡穬愠浤慩?????潵湴瑩敯潮氠楯癦愠?卥??????渠捡桲散穨????倠牣慯摭潭????剹愠浩潮猠??潥爠洢敂湬穡慣湫愠????坭攢挠此敩獳獴敵牲?????慚浨灵潳獨?噮??呡慹砠潯湦漠浌楡捫?猠瑔畡摩票?漮映?敲硣瑨牡敥浡攭?桮愠汉潮灴桥楲汮楡捴?慯牮捡桬愠敍慩?楲獯潢汩慯瑬敯摧?晣牡潬洠?瑯桵敲?≡卬愬氠愲爰?搶攬??琰愱挶愺流慲????桥椠汉敄??匲礳猲琱攳洵愮琼楢捲 ̄慛渱搸??灃灯汴楴敩摮??楡捭爠潋扌椬漠汅潷杩祮???ぁ?ㄠ????????????????CC, Weathers KC. Cyanobacteria as biological drivers of lake nitrogen and phosphorus cycling. Ecosphere, 2015, 6(1):1-19.
    [19] Werner J, Ferrer M, Michel G, Mann AJ, Huang SX, Juarez S, Ciordia S, Albar JP, Alcaide M, La Cono V, Yakimov MM, Antunes A, Taborda M, Da Costa MS, Hai T, Glöckner FO, Golyshina OV, Golyshin PN, Teeling H. Halorhabdus tiamatea:proteogenomics and glycosidase activity measurements identify the first cultivated euryarchaeon from a deep-sea anoxic brine lake as potential polysaccharide degrader. Environmental Microbiology, 2014, 16(8):2525-2537.
    [20] Cytryn E, Minz D, Oremland RS, Cohen Y. Distribution and diversity of archaea corresponding to the limnological cycle of a hypersaline stratified lake (Solar Lake, Sinai, Egypt). Applied and Environmental Microbiology, 2000, 66(8):3269-3276.
    [21] Swan BK, Ehrhardt CJ, Reifel KM, Moreno LI, Valentine DL. Archaeal and bacterial communities respond
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

Tingting Yin, Hongyu Wen, Zhenya Yuan, Xiuying Wang, Guozhen Wang. Comparison of archaeal community composition between Qinghai Lake and other salt lakes in China. [J]. Acta Microbiologica Sinica, 2017, 57(10): 1471-1480

Copy
Share
Article Metrics
  • Abstract:1187
  • PDF: 2013
  • HTML: 803
  • Cited by: 0
History
  • Received:October 11,2016
  • Revised:April 05,2017
  • Online: September 29,2017
Article QR Code