

Geomicrobiological Applications 地质微生物应用

贝莱斯芽孢杆菌 B6 强化驱油机制分析及在 高矿化度油藏中的应用

陈显轲^{1,2,7},孙培耀^{3*},蔡勇⁴,张淼峰⁵,张伟⁵,杨博⁶,马安周^{1,7}

- 1 中国科学院生态环境研究中心,北京 100085
- 2 中国科学院大学中丹学院,北京 101400
- 3 青海油田分公司钻采工艺研究院, 甘肃 敦煌 736202
- 4 青海油田分公司采油五厂,青海 茫崖 816400
- 5 青海油田分公司采油三厂,青海 茫崖 816400
- 6 青海油田分公司采油一厂,青海 茫崖 816400
- 7 中国科学院大学,北京 100049

陈显轲,孙培耀,蔡勇,张淼峰,张伟,杨博,马安周.贝莱斯芽孢杆菌 B6 强化驱油机制分析及在高矿化度油藏中的应用[J]. 微生物学报,2024,64(6):1948-1959.

CHEN Xianke, SUN Peiyao, CAI Yong, ZHANG Miaofeng, ZHANG Wei, YANG Bo, MA Anzhou. *Bacillus velezensis* B6: mechanism of enhanced oil recovery and application in highly mineralized oil reservoirs[J]. Acta Microbiologica Sinica, 2024, 64(6): 1948-1959.

摘 要: 【目的】筛选油藏内源功能微生物并探究其驱油机理,现场试验以确定油藏内源微生物 提高原油采收技术应用的工艺和技术可行性。【方法】采集英东油田样品,利用原油平板筛选驱 油功能菌,评价其环境适应性并优化培养条件,通过乳化性能、降黏防蜡和烃转化能力等评估其 驱油性能并探索其潜在机制,并在油田现场进行微生物强化驱油试验。【结果】从油水样品中分 离到的贝莱斯芽孢杆菌(Bacillus velezensis) B6,其乳化活性指数(emulsifying activity index, EI24)值 为 100.00%,降黏率为 97.20%,防蜡率为 86.90%,表明菌株 B6 具有良好的乳化降黏性能,具有 提高原油采收的潜力,并且能够减少原油中的重质组分而增加轻质烃类,改善原油物性,提升原 油品质。进一步在英东油田、跃进油田和花土沟油田进行微生物单井吞吐和清防蜡作业,共进行

资助项目:国家重点研发计划(2018YFA0901200);青海油田微生物采油技术推广应用(2022T01);青海省科技计划 (2022-QY-202)

This work was supported by the National Key Research and Development Program of China (2018YFA0901200), the Extension and Application of Microbial Oil Recovery Technology in Qinghai Oilfield (2022T01), and the Qinghai Science and Technology Plan (2022-QY-202).

^{*}Corresponding author. Tel: +86-937-8920426, E-mail: sunpyqh@petrochina.com.cn

Received: 2023-09-01; Accepted: 2023-11-10; Published online: 2023-11-21

62 井次现场试验,累计增油 1 460.36 t,平均延长洗井周期 47 d,经济效益为 342.50 万元,投入 产出比为 1:4。【结论】通过室内研究和现场试验,证实内源微生物 Bacillus velezensis B6 具有显 著提高原油采收和油井清防蜡的效果,应用潜力巨大。

关键词: 微生物吞吐采油; 乳化降黏; 规模化发酵; 微生物清防蜡

Bacillus velezensis B6: mechanism of enhanced oil recovery and application in highly mineralized oil reservoirs

CHEN Xianke^{1,2,7}, SUN Peiyao^{3*}, CAI Yong⁴, ZHANG Miaofeng⁵, ZHANG Wei⁵, YANG Bo⁶, MA Anzhou^{1,7}

1 Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China

2 Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101400, China

3 Drilling and Production Technology Research Institute of Qinghai Oilfield Company, Dunhuang 736202, Gansu, China

4 The Fifth Oil Production Plant of Qinghai Oilfield Company, Mangya 816400, Qinghai, China

5 The Third Oil Production Plant of Qinghai Oilfield Company, Mangya 816400, Qinghai, China

6 The First Oil Production Plant of Qinghai Oilfield Company, Mangya 816400, Qinghai, China

7 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract: [Objective] To screen the indigenous functional microorganisms in reservoirs and explore their oil recovery mechanisms, we conducted field tests to determine the process and technical feasibility of enhancing crude oil recovery by indigenous microorganisms. [Methods] We collected samples from the Yingdong Oilfield and used oil plates to screen for the target bacteria. Next, we evaluated the environmental adaptability and optimized the culture conditions of the strain. Further, we measured the emulsifying, viscosity-reducing, paraffin-resistant, and hydrocarbon conversion abilities of the isolate to evaluate the oil recovery competence of the strain and explored its oil recovery mechanism. Finally, we carried out the microbial enhanced oil recovery tests in the oilfields. [Results] We isolated Bacillus *velezensis* B6 from the oil-water sample with an emulsifying activity index (EI24) of 100.00%, a viscosity reduction rate of 97.20%, and a paraffin resistance rate of 86.90%, which indicated that strain B6 had good emulsifying and viscosity-reducing abilities and improved oil recovery potential. Strain B6 could reduce heavy components in crude oil and increase light hydrocarbons to improve crude oil properties and quality. Moreover, we carried out single-well huff and puff and paraffin removal operations in Yingdong Oilfield, Yuejin Oilfield, and Huatugou Oilfield with a total of 62 well-times in the field test, which resulted in a cumulative oil increase of 1 460.36 tons and an average delay of 47 days in the well flushing cycle. The economic benefit was CNY 3.425 million, and the input-output ratio was 1:4. [Conclusion] The laboratory studies and field tests proved that indigenous *B. velezensis* B6 can significantly improve the oil recovery and well paraffin removal, with great application potential.

Keywords: microbial huff and puff; emulsification and viscosity reduction; large-scale fermentation; microbial paraffin removal

石油作为当今社会的重要能源之一,在世 界经济和人类社会的发展中起着至关重要的作 用。自工业革命以来,随着石油化工行业的深 入发展,全球石油需求量不断增加,且原油价 格持续上涨^[1-2]。但是,随着油田开采年限的增 加,常规易采石油资源储量越来越少,原油采 收率越来越低。目前地下油藏环境中仍有大量 原油亟待有效开采,其残留的剩余原油占 60%-70%^[3-5]。因此,如何绿色、高效、经济地 开采出地下剩余原油不仅是能源领域的研究热 点,而且事关国家经济发展和社会稳定。

微生物强化采油 (microbial enhanced oil recovery, MEOR)是随着 3 次采油而发展的新兴技 术,具有工艺简单、成本低廉和环境友好等特 点,在国内外被广泛推广使用^[6-11],是最具有发 展前景的采油技术之一。微生物强化采油技术工 艺主要包括微生物单并吞吐、微生物清防蜡、微 生物驱替和微生物选择性封堵,同时也开发了基 于微生物强化采油的多种工艺的整合,如多轮吞 吐、清防蜡耦合单井吞吐等驱油技术。近20余年 来,筛选了大量高产生物表面活性剂或石油烃降 解等的微生物,绝大多数菌株已在室内研究中证 实了其具有驱油的性能,为提高剩余原油的采收 奠定了坚实的基础,但目前现场试验验证和应用 仍严重不足[12]。目前,胜利油田和大庆油田等是 我国微生物强化驱油技术现场应用较为成熟日取 得成果的油田[13-16]。然而,油藏地层环境具有明 显的地质特异性、非均质性强,油藏模式复杂多 样,这导致微生物强化采油技术的具体应用表现 出一定的特异性,因而需要依据油藏环境和原油 物性施用合适的驱油微生物。

针对青海油田地层油藏环境矿化度较高和 原油采出率较低等现实问题,本文通过对筛选 获得的内源微生物贝莱斯芽孢杆菌(Bacillus velezensis) B6生长及其功能特征的研究,从而评 估该菌株对原油的作用效果。该菌株经规模化 培养后在英东油田、跃进油田和花土沟油田开 展微生物单井吞吐和清防蜡试验,实现原位乳 化降黏和井筒清防蜡,提高原油流动性并增加 油井洗井周期,验证其实际应用价值。本项研究 为开发适用于较高矿化度油藏中稠油冷采的绿 色生物采油体系提供了科学依据和技术支撑。

1 材料与方法

1.1 主要试剂和设备

葡萄糖、石蜡油、琼脂粉、氯化钠、磷酸 氢二钾和七水合硫酸亚铁等分析纯试剂购自国 药集团化学试剂有限公司;正己烷等色谱纯有机 试剂购自 Thermo Fisher Scientific 公司。气相色 谱-质谱联用仪(岛津公司),多功能酶标仪 (SpectraMax i3x, Molecular Devices 公司),表面 张力仪(Lauda Scientific 公司),流变仪(HAAKETM ViscotesterTM iQ, Thermo Fisher Scientific 公司), 光学显微镜(Olympus 公司)。现场作业使用泵车 $(2.5 \times 10^4 Pa)、罐车(30 m³)等专业设备。$

1.2 样品采集

使用 10 L 无菌塑料桶,在英东油田油井工 作过程中采集油水样,在 4 ℃条件下送至实验 室进行下一步分析。

1.3 驱油微生物的筛选及鉴定

1.3.1 培养基及培养条件

原油培养基(g/L): 原油 20, NH₄Cl 0.5, NaNO₃ 2, K₂HPO₄ 1, FeSO₄·7H₂O 0.05, SDS 0.01, pH 6.5-7.5。固体原油培养基中加入琼脂 粉 8 g/L。115 ℃灭菌 45 min。

改良 LB 培养基(Medium A) (g/L): 胰蛋白胨 10, 酵母粉 5, NaCl 20, FeSO₄·7H₂O 0.05, pH 6.8-7.2。115 °C灭菌 30 min。

发酵培养基(Medium B) (g/L): 葡萄糖 30, 酵母粉 4, 胰蛋白胨 8, K₂HPO₄ 2, NaCl 20, pH 6.8-7.2。115 °C灭菌 30 min。

培养条件: 37 °C, 150-200 r/min。

1.3.2 菌株 B6 的分离纯化及鉴定

将油水样接种到原油培养基中培养 10 d 后 采用稀释平板法进行驱油功能微生物的分离纯 化。取 100 μL 稀释度为 10⁻⁷、10⁻⁸ 和 10⁻⁹的菌 液涂布于固体原油培养基上,挑选平板上具有 不同菌落形态和较大透明圈的菌株作为实验菌 株,再次进行稀释涂布培养。随后,挑取单菌 落转接到改良 LB 培养基中培养 24 h,使用通用 引物 27F/1492R 扩增 16S rRNA 基因全长序列^[17], 由金唯智生物科技(北京)有限公司测序后基于 基因信息确定菌株的分类地位。

1.4 菌株环境适应性评价

1.4.1 pH

配制发酵培养基,使用 HCl 或 NaOH 调节培 养基的 pH 分别为 6.0、7.0、8.0 和 9.0, *OD*₆₀₀ 为 1 的菌液接种量为 1%, 37 ℃、200 r/min 振荡培养, 定期取样测量菌液在 600 nm 处的光密度值。

1.4.2 温度

配制发酵培养基,在 30、37、40 ℃和 50 ℃条件下培养, *OD*600 为 1 的菌液接种量为 1%,37 ℃、200 r/min 振荡培养,定期取样测量 菌液在 600 nm 处的光密度值。

1.4.3 矿化度

配制 NaCl 浓度分别为 20、100 和 150 g/L 的发酵培养基, *OD*₆₀₀ 为 1 的菌液接种量为 1%, 37 ℃、200 r/min 振荡培养,定期取样测量 菌液在 600 nm 处的光密度值。

1.5 菌液性能评价

1.5.1 乳化性能

通 过 乳 化 活 性 指 数 (emulsifying activity index, EI24)对菌液进行乳化性能评价^[18]。以石 蜡油作为原油替代物,分别各取 2 mL 石蜡油与 菌株上清发酵液加入到 10 mL 试管中,并记录 上层有机相总高度。使用漩涡振荡器振荡约

3 min, 混匀后室温静置 24 h, 记录白色乳化层 高度,并计算 EI24 值。以培养基作空白对照, 设置3组平行。其中, EI24=乳化层高度/有机层 总高度×100%。

1.5.2 原油黏度和防蜡率测定

使用流变仪测定菌株 B6 处理前后 37 °C 条件 下的原油黏度,采用倒扣瓶法评估菌株 B6 对原 油的防蜡率,原油黏度和防蜡率的具体操作方法 参考文献[18]。其中,原油黏度为2 630.42 mPas, 含蜡量为 25.00%。

1.5.3 表面张力测定

采用悬滴法测定菌株 B6 发酵上清液的表面 张力^[19]。取 40 mL 发酵菌液, 10 000×g 室温离心 10 min,取发酵上清液,利用表面张力仪测定菌 株发酵液的表面张力,测定 3 次,取平均值。

1.5.4 石油烃 C10-C40 分析

处理后的原油样品使用超声萃取法提取, 正己烷稀释后使用气相色谱-质谱联用仪 (gaschromatography-mass spectrometry, GC-MS) 进行分析,详细的处理和操作方法参考文献[20]。

1.5.5 四组分测定

采用薄层色谱-火焰离子化检测(thin-layer chromatography with flame ionization detection, TLC-FID)技术对残余油样品中的烷烃、芳香 烃、树脂和沥青质4种组分含量进行分析^[21]。

1.6 菌株 B6 的现场应用

1.6.1 油井概况

现场微生物单井吞吐和清防蜡试验油井井深 1 121-1 767 m,油藏温度 34-53 ℃,平均油井热 洗周期 45 d。单井储层孔隙度 15%-24%,渗透率 30-89 md。原油黏度 2 000-4 000 mPas,地层水矿 化度为 100 000-140 000 mg/L,平均 pH 为 8.5。

1.6.2 现场施工

规模化发酵: 配制发酵培养基,规模化发酵参数如下:转速 80-150 r/min, 37°C,压力 0.3-0.5 MPa,通气比 0.3-0.5 VVM。

单井吞吐作业:单井吞吐施工液中菌液浓度为15%,营养液浓度为6%,pH约为8.0。根据试验油井油层厚度、孔隙度和处理半径最终确定注入施工液量为6-10m³。使用套管环空注入法,从油套环空间注入单井吞吐施工液,注入排量控制在0.2-0.3m³/min,注入压力控制在1.5×10⁴Pa内,在注入过程中根据注入泵压等动态参数的变化情况调整注入速度和注入量。待全部注入后,关井7d后开井作业,定期监测油井产量。

清防蜡作业:清防蜡作业液中菌液浓度为 30%,营养液浓度为8%,pH约为8.5。采用套筒 注入方式,注入量为1m³,注入完成后油井正常 生产,定期监测油井示功图,评估洗井周期。

1.7 数据分析

使用 GraphPad Prism 8 软件进行统计分析 和图示化,误差棒表示标准差。

2 结果与讨论

2.1 菌株 B6 的鉴定及其生长性能

基于在线工具 NCBI BLAST (https://blast.

ncbi.nlm.nih.gov/Blast.cgi)和 EZBioCloud (www. ezbiocloud.net/identify)对筛选获得的驱油功能 菌株 B6 的 16S rRNA 基因全长序列进行比对分 析,结果表明菌株 B6 属于 Bacillus 属, Bacillus velezensis 种。使用 MEGA 11.0^[22]构建进化树后 使用 iTOL (https://itol.embl.de/)对进化树进行美 化调整。菌株 B6 与 B. velezensis CR-502、B. velezensis JK19 和 B. velezensis JS25R 等亲缘关 系更近(图 1),命名为 B. velezensis B6,NCBI序 列号为 OR277460。国内外关于 B. velezensis 的 研究主要集中在拮抗动植物病原菌,促进动植 物生长等方面^[23-26]。最近的一篇报道表明 B. velezensis 由于其高产生物表面活性剂而在微 生物强化驱油中取得了良好的应用效果,但是 其环境适应性和驱油功能特性与菌株 B6 存在不 同^[27]。此外,与菌株 B6 亲缘关系更近的 B. velezensis SRCM102755 等菌株基因组中均含有 生物表面活性剂合成基因 srfAA、srfAB 和 srfAC^[28]。因此,该菌在微生物强化采油中可 能具有重要作用。

图 1 菌株 B6 的系统发育分析

Figure 1 Phylogenetic tree analysis of strain B6. The phylogenetic tree (bootstrap consensus tree) of 16S rRNA gene of strain B6 was constructed by neighbor-joining method. Numbers at nodes are bootstrap values (>50%) based on 1 000 replications. Bar, 0.000 1 substitutions per nucleotide position.

根据生长曲线(图 2), *B. velezensis* B6 在培 养过程中表现出较短的生长周期,培养5h即可 达到对数期,12 h 后逐渐到达生长稳定期。在 pH 6.0-8.0 时菌株 B6 表现出良好的生长趋势, 而在 pH 9.0 时,B6则几乎不生长(图 2A),且与 *B. velezensis* BSA1 相比在 pH 8.0 时能更快地到 达生长稳定期^[27];菌株 B6 的生长能力随着培养 温度的升高表现出先增强后降低的趋势,30 ℃ 延缓了其对数期(图 2B);在100 g/L 以上的矿化 环境中,菌株 B6 的生长受到了一定的限制(图 2C);菌株 B6 在发酵培养基中比在改良 LB 培养 基中表现出较高的生长优势(图 2D)。综上所 述,*B. velezensis* B6 在 pH 6.0-8.0、30-40 ℃的 环境中能够良好生长,在100 g/L 的矿化度以上 生长受到一定抑制,说明本研究分离得到的菌 株 B6 能够较好地适应油田油藏环境,具有实际 应用的潜在价值。

2.2 菌株驱油功能特性评价

菌液具有较低的表面张力和较高的乳化能力能 在提高原油采收率方面起着重要作用^[29]。如表 1 所 示,菌株 B6 发酵上清液的表面张力(27.33 mN/m) 显著低于纯水的表面张力(72.80 mN/m),良好的 表面活性剂能够显著降低表面张力,可以有效 改变油、岩、水的界面状态,有助于提高地层 中油相的流动性,从而提高驱油效率^[30]。将发 酵上清液与液体石蜡混合后,EI24 值为 100.00%,具有优良的乳化性能,并高于先前 单菌或混合菌系的研究结果。如,Liu 等^[31]测

图 2 菌株 B6 在不同环境下的生长曲线分析 A: pH. B: 温度. C: 矿化度. D: 培养基对菌株 B6 生长的影响

Figure 2 Analysis of growth curves of strain B6 in different environments. Effects of pH (A), temperature (B), salinity (C), and media (D) on the growth of strain B6. Medium A and Medium B represent improved LB medium and fermentation medium, respectively. Error bar represents the standard deviation (SD).

Table 1 Evaluation of oil recovery performance of strain B6 in different media				
Improved LB medium	27.95	96.54	86.90	95.08
Fermentation medium	27 22	100.00	74.00	07.20

表 1 不同培养基中菌株 B6 的驱油性能评价

定的地衣芽孢杆菌(Bacillus licheniformis) L20 发酵上清液的 EI24 值为 62.00%,魏晓霞等^[18]测定了来源于青海油田的混合菌系 QZ-10 的 EI24 值为 91.11%。因此,以上结果表明菌株 B6 产生的生物表面活性剂其性能更为突出,具有较高的应用于微生物强化驱油的潜力。

此外, 经菌株 B6 处理后, 倒扣瓶法测得的 其防蜡率均高于 70.00%, 在 37 ℃条件下降黏 率最高可达到 97.20% (表 1)。王卫强等^[32]从石 油污染土壤中分离筛选获得的一株假单胞菌 (*Pseudomonas* sp.) W12#, 其防蜡率为 34.66%, 降黏率为 63.75%, 表明菌株 B6 在防蜡和降黏 等方面一定程度上优于先前的研究。此外, 菌 株 B6 使用发酵培养基进行发酵培养时, 其乳化 和降黏性能优于改良 LB 培养基(表 1), 表明大 规模培养菌株 B6 时使用发酵培养基可能具有较 好的驱油效果。综上所述, *B. velezensis* B6 的 驱油性能不仅强于单菌而且优于混合菌系, 具 有强化驱油的潜力, 环境适应性良好, 可用于 微生物单井吞吐和油井清防蜡作业。

2.3 原油组分变化特征

原油通常是一种化学成分复杂的黑色易燃 液体,根据其在有机溶剂中的溶解度不同,可 分为饱和烃、芳香烃、树脂和沥青质^[33]。使用 发酵培养基对菌株 B6 处理前后的原油进行四组 分测试,各组分含量如图 3 所示。经菌株 B6 处 理后,原油中的饱和烃含量显著增加了 4.38% (P<0.000 1),芳香烃、树脂和沥青质含量减 少,其中沥青质在处理前后含量差异不大(图 3)。这可能是该菌较强的乳化性能提高了细菌 对疏水性烃类的可利用性,从而提高了长链或 大分子多环烃的降解^[34-35]。此外,沥青质等大 分子是原油高黏性和油井堵塞的主要原因^[36], 该菌在一定程度上能够降解该类大分子物质。 因此,表明菌株 B6 能够将原油中的大分子重质 物质,如树脂和沥青质,降解成小分子轻质石 油基组分,增加了原油流动性,提高了原油的 品质。

对菌株 B6 处理前后原油中的饱和烃 (C10-C40)进行检测,分析处理前后不同饱和烃 组分的含量变化,以探讨对原油物性的影响。 与空白组相比,使用改良 LB 培养基培养时, C10-C20 的含量增加了 5.60%,C21-C30 和 C31-C40的含量分别减少了4.18%和1.42%;使 用发酵培养基培养时,C10-C20 的含量增加了 6.28%,C21-C30 和 C31-C40 的含量分别减少 了 4.60%和 1.68%。随着碳数的增加,菌株 B6 处理后原油中的饱和烃降解率呈现下降趋势, 特别是C30-C40范围内的烃类物质(图4)。结果

图 3 原油四组分组成分析

Figure 3 Analysis of four components of crude oil. Unpaired t test, *: P < 0.05; **: P < 0.01; ****: P < 0.000 1.

图 4 原油中饱和烃 C10-C40 组成分析

Figure 4 Analysis of C10–C40 composition in crude oil. Medium A and Medium B represent improved LB medium and fermentation medium, respectively.

表明,菌株 B6 能够对长链饱和烃进行分解,因 此原油中大分子组分的减少和短链烃的增加有 效地降低了原油的黏度,改变了原油物性。此 外,当碳数高于 20 时,易出现结蜡现象,经处 理后碳数高于 20 的长链饱和烃明显减少,这有 助于减缓油井结蜡现象,延长洗井周期^[37]。综 上所述, *B. velezensis* B6 能够降解原油中的大 分子重质组分和长链烃等物质,表明该菌在油 田微生物驱油和油井清防蜡中具有良好的应用 前景。

2.4 单井吞吐与清防蜡效果评价

微生物单井吞吐具有见效快、操作简单等优 点,是常用的一种微生物驱油工艺,且一般会使 用多轮吞吐操作以提高其有效期和原油采出率。 微生物单井吞吐和清防蜡作业选用的是以产生 生物表面活性剂为主的 *B. velezensis* B6 及其发 酵产物的混合物,其混合液 pH 值为 6.6–7.5, 每毫升菌数≥10⁸ 个。在现场作业前,对菌液进 行乳化性能测试, EI24 值均为 100.00%。结合 室内研究结果和油藏环境以及先前操作经验^[27], 在英东油田、跃进油田和花土沟油田进行微生 物单井吞吐和清防蜡试验。其中,微生物单井 吞吐主要评价指标为油井的日产液量、日产油 量和含水率,而微生物油井清防蜡则以洗井周 期和油井载荷为主要评价指标(图 5)。

如图 5A-5C 所示,微生物单井吞吐作业前 油井的平均日产液量为 4.12 t,日产油量为 1.05 t, 含水率 65.61%;作业后油井的平均日产液量为 5.02 t,日产油量为 1.56 t,含水率 60.05%,微 生物单井吞吐有效率 100%。与作业前相比,平 均日产液增加 0.9 t,平均日增油 0.51 t,平均含 水率降低了 5.56%,作业后驱油效果显著,且 采油率高于枯草芽孢杆菌(*Bacillus subtilis*) XT-1 和螯台球菌(*Chelatococcus daeguensis*) HB-4 岩 芯驱油的结果^[38-39],表明使用油藏内源微生物 *B. velezensis* B6 的强化驱油效果更为显著。先 前的研究表明,注入菌液制剂可以激活油藏中 的其他功能微生物,如产表面活性剂、石油烃降 解和产气体的微生物,不同功能微生物的综合 作用有助于提高石油采收率^[27]。此外,吞吐油 井能够有效延长洗井周期,这可能归功于微生 物对大分子重质原油组分的降解转化,原油物 性得到了改善。在油井清防蜡现场试验中,处 理前平均洗井周期为 45 d,处理后平均洗井周 期为 92 d,平均延长洗井周期 47 d (图 5D),清 防蜡有效率 96.55%,优于 QZ-10 混合菌液的作 业效果^[18]。作业前油井最大载荷与最小载荷差 值的平均值为 19.68 kN,作业后油井最大载荷 与最小载荷差值的平均值为 17.38 kN,作业后油 井载荷显著降低(图 5E)。上述相关数据表明该 菌能够有效地改善油井载荷,降低采油负荷。 综上所述, *B. velezensis* B6 具有良好的现场应 用效果,在提高原油采收率方面具有很大的实 际应用价值。

2.5 经济效益

在英东油田、跃进油田和花土沟油田进行 微生物单井吞吐和清防蜡作业,共进行 62 井 次现场试验。微生物单井吞吐作业后平均日增 液量最大值 4.32 t,平均日增油最大值 1.97 t, 最大有效期 138 d;作业后平均日增液量最小 值 1.29 t,平均日增油最小值 0.32 t,最小有效 期 35 d。吞吐前后对比,产液量累计增加了 1 613.22 t,产油量累计增加了 1 124.85 t,平 均有效期 128 d。原油结算价格按 3 000 元/t 计 算,经济效益为 249.00 万元,投入产出比为 1:3.8。清防蜡作业后累计增油 335.51 t,平均 延长洗井周期 47 d,经济效益为 93.50 万元, 投入产出比为 1:4.8。

图 5 微生物单井吞吐和油井清防蜡效果评价 产液量(A)、产油量(B)和含水率(C)用于评估微生物单井 吞吐效果,洗井周期(D)和油井载荷(E)用于评估清防蜡效果

Figure 5 Evaluation of microbial single well huff and puff and oil-well paraffin removal. Fluid production (A), oil production (B), and water content (C) are used to evaluate the effectiveness of microbial single well huff and puff. Purge period (D) and oil-well load (E) are used to evaluate the effectiveness of paraffin removal. Paired *t* test, *: P<0.05; ****: P<0.000 1.

3 结论

在地下油藏环境中,微生物生长代谢过程 中所产生的生物活性物质具有改善油藏环境、 乳化原油、降低原油黏度和改变原油物性等功 能,从而提高残余原油的采收率^[40]。本研究从 英东油田油水样中筛选到一株能够产生生物表 面活性剂的 B. velezensis B6, 该菌具有适应较 高矿化度油藏环境的能力,表现出优良的乳化 降黏性能。此外,通过对处理前后原油组分的 分析,表明菌株 B6 能够降低大分子重质石油基 组分,如树脂和沥青质,增加了小分子短链饱 和烃等轻质烃组分,改善原油物性,提高了原 油的流动性和原油的品质。规模化发酵的菌液 在英东油田、跃进油田和花土沟油田进行微生 物单井吞吐和清防蜡试验,现场试验效果良 好,累计增油1456.36t,平均延长洗井周期47d, 经济效益为342.50万元,投入产出比为1:4。综 上所述, B. velezensis B6 能够较好地应用于微 生物单井吞吐和清防蜡等微生物强化采油。但 是,针对清防蜡作业仍需要优化工艺参数,包 括培养基的选择、菌液的注入量和注入方式, 以提高现场作业效率。此外,鉴于油井层间较 强的非均质性,下一步可通过组学技术、原油 指纹图谱和驱油模型等多角度的交叉分析,了 解并确定改善原油物性的关键机制和因素,并 完善长期原油采收监测技术,建立适合多层间 的油井组微生物强化驱油工艺体系。

参考文献

- SONG YG, ZHANG XY, HU GH. Relationships among geopolitical risk, trade policy uncertainty, and crude oil import prices: evidence from China[J]. Resources Policy, 2023, 82: 103555.
- [2] CHAI J, WANG YR, WANG SY, WANG YY. A decomposition-integration model with dynamic fuzzy reconstruction for crude oil price prediction and the

implications for sustainable development[J]. Journal of Cleaner Production, 2019, 229: 775-786.

- [3] BROWN LR. Microbial enhanced oil recovery (MEOR)[J]. Current Opinion in Microbiology, 2010, 13(3): 316-320.
- [4] GUO K, LI HL, YU ZX. *In-situ* heavy and extra-heavy oil recovery: a review[J]. Fuel, 2016, 185: 886-902.
- [5] KANG WL, ZHOU BB, ISSAKHOV M, GABDULLIN M. Advances in enhanced oil recovery technologies for low permeability reservoirs[J]. Petroleum Science, 2022, 19(4): 1622-1640.
- [6] LAZAR I, PETRISOR IG, YEN TF. Microbial enhanced oil recovery (MEOR)[J]. Petroleum Science and Technology, 2007, 25(11): 1353-1366.
- [7] 汪卫东. 微生物采油技术研究及试验[J]. 石油钻采 工艺, 2012, 34(1): 107-113.
 WANG WD. Laboratory research and field trials of microbial oil recovery technique[J]. Oil Drilling & Production Technology, 2012, 34(1): 107-113 (in Chinese).
- [8] 侯研博, 宋欣, 孙刚正, 谭晓明. 新型激活剂提高内 源微生物驱油效果研究及应用[J]. 石油与天然气化 工, 2018, 47(5): 85-89.
 HOU YB, SONG X, SUN GZ, TAN XM. Research and application of the new activator to improve the effect of MEOR[J]. Chemical Engineering of Oil and Gas, 2018, 47(5): 85-89 (in Chinese).
- [9] 宋永亭,李彩风,曹嫣镇,孙刚正,吴晓玲. 内外源 微生物复合吞吐技术在常规稠油低效井中的研究与 应用[J]. 石油钻采工艺, 2018, 40(3): 400-404.
 SONG YT, LI CF, CAO YB, SUN GZ, WU XL.
 Research and application of indigenous and exogenous microbial compound huff & puff technique in conventional heavy oil low-efficiency wells[J]. Oil Drilling & Production Technology, 2018, 40(3): 400-404 (in Chinese).
- [10] ZHENG CG, HE JL, WANG YL, WANG MM, HUANG ZY. Hydrocarbon degradation and bioemulsifier production by thermophilic *Geobacillus pallidus* strains[J]. Bioresource Technology, 2011, 102(19): 9155-9161.
- [11] 崔庆锋,俞理,张群,代学成,王红波.内源微生物 驱油及其对油藏微生物活动的影响[J]. 微生物学报, 2023,63(6):2173-2184.
 CUI QF, YU L, ZHANG Q, DAI XC, WANG HB. Indigenous microbial flooding and its influence on microbial activities in reservoirs[J]. Acta Microbiologica Sinica, 2023, 63(6): 2173-2184 (in Chinese).

- [12] GAO CH. Experiences of microbial enhanced oil recovery in Chinese oil fields[J]. Journal of Petroleum Science and Engineering, 2018, 166: 55-62.
- [13] LE JJ, WU XL, WANG R, ZHANG JY, BAI LL, HOU ZW. Progress in pilot testing of microbial-enhanced oil recovery in the Daqing Oilfield of North China[J]. International Biodeterioration & Biodegradation, 2015, 97: 188-194.
- [14] LI CF, LI Y, LI XM, CAO YB, SONG YT. The application of microbial enhanced oil recovery technology in Shengli Oilfield[J]. Petroleum Science and Technology, 2015, 33(5): 556-560.
- [15] 伍晓林,乐建君,王蕊,柏璐璐.大庆油田微生物采 油现场试验进展[J]. 微生物学通报, 2013, 40(8): 1478-1486.
 WU XL, LE JJ, WANG R, BAI LL. Progress in pilot tests of microbial enhanced oil recovery in Daqing Oilfield[J]. Microbiology China, 2013, 40(8): 1478-1486 (in Chinese).
- [16] 曹功泽,李彩风,陈琼瑶,刘涛,汪卫东,汪庐山, 孙刚正. 胜利油田微生物吞吐体系的性能评价及应 用[J]. 油田化学, 2022, 39(3): 493-497.
 CAO GZ, LI CF, CHEN QY, LIU T, WANG WD, WANG LS, SUN GZ. Performance evaluation and application of microbial huff and puff system for Shengli Oilfield[J]. Oilfield Chemistry, 2022, 39(3): 493-497.
- [17] WU G, LIU Y, LI Q, DU HJ, YOU J, LI H, KE CY, ZHANG X, YU JL, ZHAO T. *Luteimonas huabeiensis* sp. nov., isolated from stratum water[J]. International Journal of Systematic and Evolutionary Microbiology, 2013, 63 (Pt 9): 3352-3357.
- [18] 魏晓霞,尹珺,纪淑玲,程涛,马莎莎,薛成,耿朋学. 混合菌系 QZ-10 对原油的作用性能表征及现场 清 防 蜡 应 用 [J]. 微 生 物 学 通 报, 2022, 49(3): 1057-1066.
 WEI XX, YIN J, JI SL, CHENG T, MA SS, XUE C, GENG PX. Effect of consortium QZ-10 on crude oil

and its application in the removal of oil well paraffin[J]. Microbiology China, 2022, 49(3): 1057-1066 (in Chinese).

- [19] SONG BH, SPRINGER J. Determination of interfacial tension from the profile of a pendant drop using computer-aided image processing: 1. Theoretical[J]. Journal of Colloid and Interface Science, 1996, 184(1): 64-76.
- [20] GENG PX, MA AZ, WEI XX, CHEN XK, YIN J, HU FT, ZHUANG XL, SONG MY, ZHUANG GQ.

Interaction and spatio-taxonomic patterns of the soil microbiome around oil production wells impacted by petroleum hydrocarbons[J]. Environmental Pollution, 2022, 307: 119531.

- [21] SHARMA BK, SAROWHA SS, BHAGAT SD, TIWARI RK, GUPTA SK, VENKATARAMANI PS. Hydrocarbon group type analysis of petroleum heavy fractions using the TLC-FID technique[J]. Fresenius' Journal of Analytical Chemistry, 1998, 360(5): 539-544.
- [22] TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
- [23] GAO XY, LIU Y, MIAO LL, LI EW, SUN GX, LIU Y, LIU ZP. Characterization and mechanism of anti-Aeromonas salmonicida activity of a marine probiotic strain, Bacillus velezensis V4[J]. Applied Microbiology and Biotechnology, 2017, 101(9): 3759-3768.
- [24] RUIZ-GARCÍA C, BÉJAR V, MARTÍNEZ-CHECA F, LLAMAS I, QUESADA E. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Vélez in Málaga, southern Spain[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(1): 191-195.
- [25] BYUN H, BROCKETT MR, PU QQ, HRYCKO AJ, BELD J, ZHU J. An intestinal *Bacillus velezensis* isolate displays broad-spectrum antibacterial activity and prevents infection of both Gram-positive and Gram-negative pathogens *in vivo*[J]. Journal of Bacteriology, 2023, 205(6): e0013323.
- [26] ZAID DS, CAI SY, HU C, LI ZQ, LI YG. Comparative genome analysis reveals phylogenetic identity of *Bacillus velezensis* HNA3 and genomic insights into its plant growth promotion and biocontrol effects[J]. Microbiology Spectrum, 2022, 10(1): e0216921.
- [27] YIN J, WEI XX, HU FT, CHENG CK, ZHUANG XL, SONG MY, ZHUANG QG, WANG F, MA AZ. Halotolerant *Bacillus velezensis* sustainably enhanced oil recovery of low permeability oil reservoirs by producing biosurfactant and modulating the oil microbiome[J]. Chemical Engineering Journal, 2023, 453: 139912.
- [28] 张丽娟,黄伟,王宁,宋博,朱静,热依罕姑丽·阿卜 杜克依穆,布坚乃提·阿巴斯,王玮.耐辐射芽胞杆 菌 JK23 的鉴定及其生防活性研究[J].中国生物防治 学报,2021,37(5):997-1006.

ZHANG LJ, HUANG W, WANG N, SONG B, ZHU J, ABDUKEYIM RYHGL, ABBAS BJNT, WANG W. Identification of radiation-resistant *Bacillus velezensis* JK23 and its biocontrol activity[J]. Chinese Journal of Biological Control, 2021, 37(5): 997-1006 (in Chinese).

- [29] KRYACHKO Y. Novel approaches to microbial enhancement of oil recovery[J]. Journal of Biotechnology, 2018, 266: 118-123.
- [30] GUIMARÃES CR, PASQUALINO IP, de SOUSA JS, NOGUEIRA FCS, SELDIN L, de CASTILHO LVA, FREIRE DMG. *Bacillus velezensis* H₂O-1 surfactin efficiently maintains its interfacial properties in extreme conditions found in post-salt and pre-salt oil reservoirs[J]. Colloids and Surfaces B: Biointerfaces, 2021, 208: 112072.
- [31] LIU Q, NIU JJ, LIU YJ, LI LK, LV J. Optimization of lipopeptide biosurfactant production by *Bacillus licheniformis* L20 and performance evaluation of biosurfactant mixed system for enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2022, 208: 109678.
- [32] 王卫强,崔静,吴尚书,董美,张海娟.石油烃降解 菌 *Pseudomonas* sp.及其生物表面活性剂对原油处理 效果分析[J].石油学报(石油加工), 2020, 36(5): 1039-1046.
 WANG WQ, CUI J, WU SS, DONG M, ZHANG HJ.

Effect of petroleum hydrocarbon decomposing bacteria *Pseudomonas* sp. and its biosurfactants on crude oil treatment[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(5): 1039-1046 (in Chinese).

- [33] VARJANI SJ. Microbial degradation of petroleum hydrocarbons[J]. Bioresource Technology, 2017, 223: 277-286.
- [34] DAS S, DAS N, CHOURE K, PANDEY P. Biodegradation of asphaltene by lipopeptide-biosurfactant

producing hydrocarbonoclastic, crude oil degrading *Bacillus* spp.[J]. Bioresource Technology, 2023, 382: 129198.

- [35] 张亚楠,杨兴伦,卞永荣,谷成刚,王芳,王代长, 蒋新. 鼠李糖脂与 β-环糊精复合提取预测污染土壤 中 PAHs 的生物有效性[J].环境科学,2016,37(8): 3201-3207.
 ZHANG YN, YANG XL, BIAN YR, GU CG, WANG F, WANG DC, JIANG X. Prediction of PAHs bioavailability in spiked soil by composite extraction with hydroxypropyl-β-cyclodextrin and rhamnolipid[J]. Environmental Science, 2016, 37(8): 3201-3207 (in Chinese).
- [36] BUCKLEY JS. Asphaltene deposition[J]. Energy & Fuels, 2012, 26(7): 4086-4090.
- [37] OSMAN SA, YOUSSIF AM, ABDEL HAKIM M, SABRY SA, GHOZLAN HA. Biodegradation of paraffin wax using *Bacillus* sp. SASH for quality improvement of crude oil properties[J]. Petroleum Science and Technology, 2023, 41: 1-18.
- [38] WANG XT, YU L, LI XZ, LI Y, CUI QF, DONG H, LIN W. A thermotolerant surfactant-producing strain XT-1 applied for exogenous microbial enhanced oil recovery[J]. Petroleum Science and Technology, 2018, 36(8): 609-617.
- [39] KE CY, LU GM, WEI YL, SUN WJ, HUI JF, ZHENG XY, ZHANG QZ, ZHANG XL. Biodegradation of crude oil by *Chelatococcus daeguensis* HB-4 and its potential for microbial enhanced oil recovery (MEOR) in heavy oil reservoirs[J]. Bioresource Technology, 2019, 287: 121442.
- [40] NIU JJ, LIU Q, LV J, PENG B. Review on microbial enhanced oil recovery: mechanisms, modeling and field trials[J]. Journal of Petroleum Science and Engineering, 2020, 192: 107350.